
Customer: Abacus
Date: September 19th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Abacus

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Interchain message service

Platform EVM

Network Ethereum, BSC

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://www.useabacus.network/

Timeline 01.08.2022 – 19.09.2022

Changelog 12.08.2022 – Initial Review
19.09.2022 – Second Review

www.hacken.io
2

https://www.useabacus.network/

Table of contents
Introduction 4

Scope 4

Executive Summary 9

Checked Items 10

System Overview 13

Findings 15

Disclaimers 21

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Abacus (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/abacus-network/abacus-monorepo/tree/audit-scope-0
Commit:

24dc33c976cc51364abc5f5a63cf5ce46b84bbf1
Technical Documentation:

Whitepaper (partial functional requirements provided)

General repository instructions

Technical description

Integration and Unit Tests: Yes
Contracts:

File: ./solidity/core/contracts/libs/Merkle.sol
SHA3: 26bda8009ee094c60b3c0c10ec454bc3bfffbc74d45c49fd1ed50d696aed7751

File: ./solidity/core/contracts/libs/Message.sol
SHA3: 2ead151cdd7d8193950405628e5a20e991109bc81262a5f7b0ce280a8af463c1

File: ./solidity/core/contracts/libs/TypeCasts.sol
SHA3: a6aba3f1569a897fef473a4a05d632db8b111eb41fe48f8c36c27a7d382a028a

File: ./solidity/core/contracts/upgrade/UpgradeBeacon.sol
SHA3: 48b14dde31005bf4426dc0c4bd65e87379348500c0bf4f947ba9bc04ca168564

File: ./solidity/core/contracts/upgrade/UpgradeBeaconController.sol
SHA3: 8ea1331d0e07ddb67bd6d52e53522b62aeea380b918219332e40964945cdbe39

File: ./solidity/core/contracts/upgrade/UpgradeBeaconProxy.sol
SHA3: 7f96ee4188cffa4d478d541eeaae5fdb1a403e409b4ef0b2ac02d69201dffd6c

File: ./solidity/core/contracts/validator-manager/InboxValidatorManager.sol
SHA3: 4189c2eee44795ae1e6b24376f3030c13bfdee0ff816bb6a33138b0ce8de8682

File: ./solidity/core/contracts/validator-manager/
MultisigValidatorManager.sol

SHA3: 160f595417b01479062dbf15566898b199ac3ea701ca3ebf06afb07c47563d3c

File: ./solidity/core/contracts/validator-manager/
OutboxValidatorManager.sol

SHA3: 4e45c04b1665fe1ba9b5ddc2ce2fa9be06acbd4c43445bad8d4fa8950ced2099

File: ./solidity/core/contracts/AbacusConnectionManager.sol
SHA3: cb07d82574faea7a7286685f50eecb4a7f815fa382d4c850abdeb4913bb5b080

www.hacken.io
4

https://github.com/abacus-network/abacus-monorepo/tree/audit-scope-0
https://docs.useabacus.network/
https://github.com/abacus-network/abacus-monorepo/blob/main/README.md
https://github.com/abacus-network/abacus-monorepo/blob/main/solidity/core/README.md

File: ./solidity/core/contracts/Inbox.sol
SHA3: 15773ac4d11dcda43910c291b213da81ef3e62009df57ede81d9d82f3b15a444

File: ./solidity/core/contracts/InterchainGasPaymaster.sol
SHA3: 1c930d51238016674d986ecb5e6816371bc1cadf1c58d2eaffdb6ff71e69e83c

File: ./solidity/core/contracts/Mailbox.sol
SHA3: 29e6f9d11cf1c40a66d0453938a6bd8657381beedaf950483967f55c831e6514

File: ./solidity/core/contracts/MerkleTreeManager.sol
SHA3: 69a11aaee626c1546fefce4070f3ae9691ed2b4ada452455d3a945b546707cfa

File: ./solidity/core/contracts/Outbox.sol
SHA3: 67d53fef05a998291188d9a3b643254ca081d3ca4bb44c671cabfb3873b9364f

File: ./solidity/core/contracts/Version0.sol
SHA3: 4e16eb24d2e65e52b7c568d45177288f98b4db4b49c2da17824851f12ed190ca

File: ./solidity/core/interfaces/IAbacusConnectionManager.sol
SHA3: a8aea1f2c0bf3992edbcda5ec6b6b45b465647307873c91b964781b18a1dc8f0

File: ./solidity/core/interfaces/IInbox.sol
SHA3: f22aa00f106c1b553f871b92d98948726342acc9365e9c66597e5f4935de34cf

File: ./solidity/core/interfaces/IInterchainGasPaymaster.sol
SHA3: 51a202396b7d72003b8e4f4fa595fb1341b1267e5df5c2204e62b8710d425622

File: ./solidity/core/interfaces/IMailbox.sol
SHA3: fb450d381651a13bcfe25ed43693b824f19b4b3f71b0ead552ccee89cc282344

File: ./solidity/core/interfaces/IMessageRecipient.sol
SHA3: df770d6ff439c2300c4ba039ecdc5eb5757db06d8df98d64a47659204c4bfd1b

File: ./solidity/core/interfaces/IOutbox.sol
SHA3: 34e28426db9f6e9406e75fe24648b2043cdd29190e897b9a96c61acb4bb9279b

Second review scope
Repository:

https://github.com/abacus-network/abacus-monorepo/tree/hacken-fixes
Commit:

bbf3abfe0588a0842fcec0e7674d08b0227e9a43
Technical Documentation:

Whitepaper (partial functional requirements provided)

General repository instructions

Technical description

Integration and Unit Tests: Yes
Contracts:

File: ./solidity/core/contracts/libs/Merkle.sol
SHA3: 26bda8009ee094c60b3c0c10ec454bc3bfffbc74d45c49fd1ed50d696aed7751

File: ./solidity/core/contracts/libs/Message.sol
SHA3: 2ead151cdd7d8193950405628e5a20e991109bc81262a5f7b0ce280a8af463c1

www.hacken.io
5

https://github.com/abacus-network/abacus-monorepo/tree/hacken-fixes
https://docs.useabacus.network/
https://github.com/abacus-network/abacus-monorepo/blob/hacken-fixes/README.md
https://github.com/abacus-network/abacus-monorepo/blob/hacken-fixes/solidity/core/README.md

File: ./solidity/core/contracts/libs/TypeCasts.sol
SHA3: a6aba3f1569a897fef473a4a05d632db8b111eb41fe48f8c36c27a7d382a028a

File: ./solidity/core/contracts/upgrade/UpgradeBeacon.sol
SHA3: 48b14dde31005bf4426dc0c4bd65e87379348500c0bf4f947ba9bc04ca168564

File: ./solidity/core/contracts/upgrade/UpgradeBeaconController.sol
SHA3: 8ea1331d0e07ddb67bd6d52e53522b62aeea380b918219332e40964945cdbe39

File: ./solidity/core/contracts/upgrade/UpgradeBeaconProxy.sol
SHA3: 7f96ee4188cffa4d478d541eeaae5fdb1a403e409b4ef0b2ac02d69201dffd6c

File: ./solidity/core/contracts/validator-manager/InboxValidatorManager.sol
SHA3: 113cfc400104ad83cc5ab1c2672c0cac5ff4accb7e5e0a190a0d9d1b7b9080f9

File: ./solidity/core/contracts/validator-manager/
MultisigValidatorManager.sol

SHA3: 7d7005fd0c8cca9a79a9aabe4b9aff40da91bce88d16bd62bfc2f0893387c9d7

File: ./solidity/core/contracts/validator-manager/
OutboxValidatorManager.sol

SHA3: f0b0f0531b0a775aa29c20ba5de1a8b1651a04af1ceebf72e3eef975289ee40f

File: ./solidity/core/contracts/AbacusConnectionManager.sol
SHA3: 27cb1a87868564ecf7ce1a051a1c2b6ba72b814358b9717431535e005d42b1e2

File: ./solidity/core/contracts/Inbox.sol
SHA3: 00d362bb88d0432029ad5b6d7999479ac50614ff7f649f7b36d7f40af96cafa7

File: ./solidity/core/contracts/InterchainGasPaymaster.sol
SHA3: 1c930d51238016674d986ecb5e6816371bc1cadf1c58d2eaffdb6ff71e69e83c

File: ./solidity/core/contracts/Mailbox.sol
SHA3: 29e6f9d11cf1c40a66d0453938a6bd8657381beedaf950483967f55c831e6514

File: ./solidity/core/contracts/MerkleTreeManager.sol
SHA3: 69a11aaee626c1546fefce4070f3ae9691ed2b4ada452455d3a945b546707cfa

File: ./solidity/core/contracts/Outbox.sol
SHA3: 3e07b2d4e87a65f16d140229239d742abc75e2fec4de61d6d2b6bdaf474b68ea

File: ./solidity/core/contracts/Versioned.sol
SHA3: 7b1e8357094ec9676a04cf8b6b6e022155c12f9949688dd9a6479e5640716a60

File: ./solidity/core/interfaces/IAbacusConnectionManager.sol
SHA3: a8aea1f2c0bf3992edbcda5ec6b6b45b465647307873c91b964781b18a1dc8f0

File: ./solidity/core/interfaces/IInbox.sol
SHA3: f22aa00f106c1b553f871b92d98948726342acc9365e9c66597e5f4935de34cf

File: ./solidity/core/interfaces/IInterchainGasPaymaster.sol
SHA3: 51a202396b7d72003b8e4f4fa595fb1341b1267e5df5c2204e62b8710d425622

File: ./solidity/core/interfaces/IMailbox.sol
SHA3: b058c5fb24b6112fb4f992dfc80ada083c60317ee726c39b1a89d733528d7108

File: ./solidity/core/interfaces/IMessageRecipient.sol
SHA3: df770d6ff439c2300c4ba039ecdc5eb5757db06d8df98d64a47659204c4bfd1b

www.hacken.io
6

File: ./solidity/core/interfaces/IMultisigValidatorManager.sol
SHA3: 8dac47c1aa7de2dfe66381a2cdb6cadb4c8bb08d070fbab97a7e1e0149fa52c4

File: ./solidity/core/interfaces/IOutbox.sol
SHA3: 34e28426db9f6e9406e75fe24648b2043cdd29190e897b9a96c61acb4bb9279b

www.hacken.io
7

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
8

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 6 out of 10. An overview of the
whole system is provided, but detailed functional requirements are missed.
The technical description is clear.

Code quality
The total CodeQuality score is 7 out of 10. The code follows official
language style guides and is mostly covered with unit tests, some negative
cases are not covered. Test coverage is 81%. The library code has some
unused functions. Code duplications found.

Architecture quality
The architecture quality score is 7 out of 10. Smart contracts of the
project follow the best practices. The project has a well-configured
development environment. Only general architecture is documented, the
mission of some contracts is not obvious.

Security score
As a result of the audit, the code contains 1 high, 1 medium, 5 low
severity issues. The security score is 4 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 4.8.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

12 August 2022 7 5 2 1

19 September 2022 5 1 1 0

www.hacken.io
9

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Failed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Failed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used. All parameters
from the signature should be used in
signer recovery

Failed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

www.hacken.io
11

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
12

System Overview

Abacus is an interchain message system. Its purpose is to allow users to
build interchain decentralized applications. The scope of the audit
contains such contracts used for messaging to/from EVM compatible networks:

● Versioned - inheritable contract that provides VERSION public
constant

● Mailbox - inheritable contract that provides onlyValidatorManager
modifier and concomitant logic

● MerkleTreeManager - inheritable contract that provides variable tree
and function root that returns root of the tree

● InterchainGasPaymaster - contract for storing Ether as a fee for the
system usage

● Outbox - contract for receiving messages, may be failed if corrupted
data was signed by validators

● Inbox - contract that sends validated messages to receivers
● AbacusConnectionManager - contract that manages outbox and inbox

contracts in the chain of deployment
● UpgradeBeacon contracts - custom implementation of the upgradable

beacon pattern
● ValidatorManager contracts - multisignature contracts, which control

message processing power of the system

Privileged roles
● The owner of UpgradeBeaconController can upgrade contract code of:

○ Inbox, Outbox
○ MerkleTreeManager
○ InterchainGasPaymaster

● The owner of Inbox, Outbox contracts can update ValidatorManager
contracts for them

● The owner of InterchainGasPaymaster contract obtains all Ether sent
to the contract

● The owner of ValidatorManager contracts can update validators list

Risks
● The contracts in the system are upgradable; this allows the

administrator to update the contract logic.
● The administrator of the contract may add new validators, which makes

the system dependent on the owner's behavior.
● The majority of Validators may send any arbitrary messages.

Administrators may increase the possibility of signing an arbitrary
message by setting a low threshold value, which allows the minority
of validators to make the decisions.

www.hacken.io
13

● The Outbox contract may be in Failed state, this leads to inability
to process new messages.

● In case of domain collision, messages may be delivered to the wrong
chain, and the Outbox contracts of the collision chains may fail
regularly.

● There is no guarantee that any messages will be delivered, but it is
guaranteed that if message X is signed by a validator, it is possible
to deliver messages up to and including the X.

● There is no guarantee of receiving fraudulent messages, but according
to the documentation, there are watchtowers which should stop the
system in case of fraudulence.

● On the destination side, the recipient's contract “handle” function
may be called by any caller with arbitrary data; this requires
checking if the sender is an expected Inbox contract.

www.hacken.io
14

Findings

Critical

1. Signed message replay attack

As it is possible to set several inboxes per domain in
AbacusConnectionManager and Inbox contracts only check if the message
was not processed in the contract before, it is possible to execute
one message more than once.

Note: changing Inbox contract may lead to the same consequences as
the list of processed messages is clear on creation.

This may lead to the users' funds loss.

Path: ./solidity/core/contracts/AbacusConnectionManager.sol :
domainToInboxes

Recommendation: provide bijective relation from domain to inbox and
remove the possibility of changing inbox contracts.

Status: Fixed (Revised commit:
bbf3abfe0588a0842fcec0e7674d08b0227e9a43)

High

1. Denial of Service vulnerability

The system has the Outbox contract, which may be set to Failed state
by the fail function call if a quorum of validators signed a
non-existent message. The message signed by the quorum may be used
more than once to make the contract Failed.

This may lead to blocking the Outbox contract functionality
repeatedly.

Path:
./solidity/core/contracts/validator-manager/OutboxValidatorMana
ger.sol : prematureCheckpoint(), fraudulentCheckpoint()

Recommendation: rework the logic to deny the double usage of the
signed message.

Status: Reported (The impact of fail() ing the Outbox multiple times
is trivial because once it is failed, there is no mechanism to
recover. However, we acknowledge the need to prevent evidence reuse
once economic slashing is implemented and are tracking this work in
the issue)

2. Undocumented behaviour

There is an InterchainGasPaymaster contract implemented, which aims
to take fees when a user sends a message using the system. However,

www.hacken.io
15

https://github.com/abacus-network/abacus-monorepo/issues/982

it is possible to avoid paying fees if calling the dispatch function
in the Outbox contract directly.

This may lead to no fees paid to validators for their work.

Path: ./solidity/core/contracts/Outbox.sol : dispatch()

Recommendation: add the fees related logic to the Outbox contract to
prevent free dispatch function calls.

Status: Mitigated (There is currently no fee implemented to pay
validators for their work on individual messages. The
InterchainGasPaymaster functionality is documented here:
https://docs.useabacus.network/abacus-docs/developers/messaging-api/g
as)

Medium

1. Unwanted transaction reverting

As the Outbox contract may be recreated after failing, the first
transactions on the new instance may be the same as in the old
instance. In such a situation, the same root of the Merkle tree
appears, and messages may not be considered for executing in the
Inbox contract.

This may lead to unwanted transactions reverting.

Path: ./solidity/core/contracts/Outbox.sol : dispatch()

Recommendation: send a specific zero system message with salt to
prevent the case.

Status: Mitigated (Each deployment is versioned such that new
deployments are completely independent from previous deployments.
Because the replay protection provided by Inboxes is distinct for
each Outbox , there is no danger that identical messages sent to
multiple Outboxes will cause messages to be dropped)

2. Requirement violation

According to the documentation, watchtowers should be able to check
signed data for fraudulence. However, it is impossible to check the
first message until the next message is sent. It happens so, as it is
not possible to run cacheCheckpoint function when the count of
messages is 1.

Note: cachedCheckpoints function returns 0 for all non-existent
roots, so removing zero checks is not applicable.

Paths:
./solidity/core/contracts/Outbox.sol : latestCheckpoint(),
cacheCheckpoint()
./solidity/core/contracts/validator-manager/OutboxValidatorMana
ger.sol : fraudulentCheckpoint()

www.hacken.io
16

Recommendation: send a specific zero system message to fill the space
out or reimplement leaf indexing from 1.

Status: Mitigated (In this case, the watchtower can atomically
dispatch another message and then prove fraud in the same
transaction)

3. Missing check for return value

Return value should be taken into account.

Path: ./solidity/core/contracts/AbacusConnectionManager.sol :
_unenrollInbox(), _enrollInbox()

Recommendation: check return values in all cases.

Status: Fixed (Revised commit:
bbf3abfe0588a0842fcec0e7674d08b0227e9a43)

4. Code duplication

The Message library has the leaf function, which calculates the hash
for message and leaf index data, but in the Outbox contract in the
dispatch function, the hash _messageHash for the message and leaf
index is calculated by the duplicated code.

Code duplication leads to unneeded Gas usage during the contract
deployment.

Path: ./solidity/core/contracts/Outbox.sol : dispatch()

Recommendation: use leaf library function for the hash calculations.

Status: Mitigated (It is not possible to reuse the leaf function from
the Message library because of the calldata and memory type
conflict.)

5. Double event emitting

Some functions in the contract system may be called more than once,
which may redundantly emit the events.

Redundant event emitting may confuse users and has a negative effect
on the frontend side.

Paths:
./solidity/core/contracts/Mailbox.sol : _setValidatorManager()
./solidity/core/contracts/validator-manager/OutboxValidatorMana
ger.sol : fraudulentCheckpoint(), prematureCheckpoint()
./solidity/core/contracts/Outbox.sol : cacheCheckpoint(),
fail()
./solidity/core/contracts/AbacusConnectionManager.sol :
_unenrollInbox()

Recommendation: add conditional statements to avoid redundant
emitting of the same contracts.

www.hacken.io
17

Status: Mitigated (This behavior of potential redundancy in emitted
event topics due to no-op storage variable changes is consistent with
popular ecosystem contracts)

6. Unoptimized loops usage

The system has contracts with the external functions, which return an
array of addresses from the EnumerableSet.AddressSet. The functions
iterate over the items one by one to return the values from the set.

This may lead to redundant gas usage during the interaction with the
contracts.

Paths:
./solidity/core/contracts/AbacusConnectionManager.sol :
getInboxes()
./solidity/core/contracts/MultisigValidatorManager.sol :
validators()

Recommendation: EnumerableSet has native field _inner._values with
the array of values; consider using the field to avoid iterations
over values if the return type of bytes32[] is appropriate.

Status: New

Low

1. Missing zero address validation

Address parameters are used without checking against the possibility
of being 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./solidity/core/contracts/validator-manager/MultisigValidatorMa
nager.sol : _enrollValidator(), _unenrollValidator()
./solidity/core/contracts/AbacusConnectionManager.sol :
setOutbox(), enrollInbox()

Recommendation: implement zero address validations.

Status: Fixed (Revised commit:
bbf3abfe0588a0842fcec0e7674d08b0227e9a43)

2. Different versions of Solidity are used

The interfaces and contract implementation use different Solidity
versions.

Contracts should use the same compiler version to ensure that the
contracts in the system are fully compatible.

Recommendation: use one Solidity version.

Status: Reported

www.hacken.io
18

3. Default visibility

The lack of variable visibility may cause unexpected variable
visibility in derived contracts.

Path: ./solidity/core/contracts/AbacusConnectionManager.sol :
domainToInboxes

Recommendation: specify the needed visibility during the variable
initialization.

Status: Fixed (Revised commit:
bbf3abfe0588a0842fcec0e7674d08b0227e9a43)

4. Redundant pragma abicoder statement

As per the list of v0.8 breaking changes, the ABIEncoderV2 is not
experimental anymore - it is enabled by default by the compiler.

Path: ./solidity/core/contracts/AbacusConnectionManager.sol

Recommendation: remove redundant pragma abiencoder v2 statement.

Status: Fixed (Revised commit:
bbf3abfe0588a0842fcec0e7674d08b0227e9a43)

5. Interface implementation mismatch

Interfaces do not match the implementation.

Paths:
./solidity/core/interfaces/IInbox.sol : remoteDomain()
./solidity/core/interfaces/IOutbox.sol : count()

Recommendation: update interfaces according to implementation.

Status: Reported

6. Floating pragma

The contracts use floating pragma >=0.8.0 and >=0.6.11.

Contracts should be deployed with the same compiler version and flags
that they have been tested thoroughly. Locking the pragma helps
ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Reported

7. Possible Gas limit exceeding

The extraction of a significant amount of data may lead to the Gas
limit exceeding during the calls interaction with the contract’s
external functions from the other contracts.

www.hacken.io
19

Paths:
./contracts/validator-manager/MultisigValidatorManager.sol :
validators()
./contracts/AbacusConnectionManager.sol : getInboxes()

Recommendation: implement page navigation through the data set, or
bound the data size.

Status: New

8. Default visibility

The lack of variable visibility may cause unexpected visibility in
derived contracts.

Path: ./solidity/core/contracts/AbacusConnectionManager.sol :
domainHashes

Recommendation: specify the needed visibility during the variable
initialization.

Status: New

www.hacken.io
20

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
21

