
Customer: Colony Lab LTD
Date: October 24th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Colony Lab LTD

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Access; Staking; Vesting; Project Factory; ERC20

Platform EVM

Network Avalanche C-chain

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website www.colonylab.io

Timeline 12.09.2022 – 24.10.2022

Changelog 30.09.2022 – Initial Review
24.10.2022 - Second Review

www.hacken.io
2

http://www.colonylab.io

Table of contents
Introduction 4

Scope 4

Severity Definitions 9

Executive Summary 10

Checked Items 11

System Overview 14

Findings 17

Disclaimers 19

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Colony Lab LTD (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/ColonyLab/colony-app/tree/develop
Commit:

4107b6b5ea5e5df354ca498138f9b8fc50ae9c35
Documentation: Yes

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/Access/KYCManager.sol
SHA3: c546e40719fab1c4cb900101d1611e71b517ed62e38e2c1420902117339f13e8

File: ./contracts/Access/MasterACL.sol
SHA3: ffc5b5aff1749a6d03a195eb3d44101e5a906de17193785a6f9891cb1fb25c26

File: ./contracts/Access/PrivilegedGroup.sol
SHA3: fd57d817c115d3cd75befea12f9f3642ea20232a50a06fd7fc95b939bfadf75f

File: ./contracts/Access/PrivilegedGroupUpgradeable.sol
SHA3: 33726593b695c7babe7665956ab73e1c2e71860b0e77a9568865e5ed81c86ab2

File: ./contracts/EarlyStage/AnalysisManager.sol
SHA3: 2bae1019508cece07ca2c2b02604a7ad048fe6acdd92f013d293c33d07c44cc8

File: ./contracts/EarlyStage/CommentManager.sol
SHA3: 26b1f1402460f3ec5604398bc65499519b410f3a96412602d1d5932fccc25b75

File: ./contracts/EarlyStage/CountdownManager.sol
SHA3: bd68f9b1f0426215bcb2e6caa2c6b34de9df727475dff7dd6939d96ab69c92ad

File: ./contracts/EarlyStage/EarlyStageManager.sol
SHA3: a93c6904e81b9675157e534a4263d4be5cc48682498426a3fe4815d0694a9085

File: ./contracts/EarlyStage/EventStoredList.sol
SHA3: f8c7c9debcf7c014431c00731816cd5dbc84024cea9af7a527b38e43530af499

File: ./contracts/EarlyStage/ProjectNest.sol
SHA3: 1ff0b8d0ec562744496c4b026f7fbd084d2090d47bdf0b120279d447defc2f5a

File: ./contracts/EarlyStage/ProjectNestFactory.sol
SHA3: b00bb8c2d445724662ce066f566a0d3605549ba79c5b53093945091b3907af62

File: ./contracts/EarlyStage/UpvoteManager.sol
SHA3: 6426e7dec59cadeb35d038f8360cc53b1d46f3efb2517ed4afb476e839c63836

www.hacken.io
4

File: ./contracts/Interfaces/IAnalysisManager.sol
SHA3: 03a40e8a0b389f8ed0c926b120798f29dc9508d4bdcac97ededcc0af823589bc

File: ./contracts/Interfaces/ICeTokenDistributionStrategy.sol
SHA3: e1e7fadcc2d9143c352eee43760769496d1f642a47e838cbd456d550935bf0e5

File: ./contracts/Interfaces/ICeTokenFactory.sol
SHA3: 230139b6abb6f225825de770aeb08bb309f26cddc6b33d112bc7cd9c99f969d8

File: ./contracts/Interfaces/ICollateralToken.sol
SHA3: a588cb669cd14008682b2e0ffeace84a493e98ecac7c89c44061f96af1ea0901

File: ./contracts/Interfaces/IDiscreteVestingV2.sol
SHA3: c52d1925e08a95c175c5fbd2700d504e3b4be2be4389e2997b20e5868205e15f

File: ./contracts/Interfaces/IDiscreteVestingV2Factory.sol
SHA3: 3084e9004551ebea88ab0d7d63c1bfe003772ef1a870db8468f63e228541afb0

File: ./contracts/Interfaces/IEarlyStageManager.sol
SHA3: 51fbc9b7e89f340a022f934180bfad2d7b301ebd06b41ade0e28302a12884c05

File: ./contracts/Interfaces/IKYC.sol
SHA3: 0719da9b6f5ae73a250f894633e7c8be9b3357f8c2dc311e6e5f49ebd8d37847

File: ./contracts/Interfaces/ILinearVestingV2.sol
SHA3: d5f636652f4dac8979456ddb01bc405ace6cb4e653d4e3ebb12f3657730bfbcf

File: ./contracts/Interfaces/ILinearVestingV2Factory.sol
SHA3: 00b9bf8243a792a63bb311b5f25694e7c235fae564865dcc0709f77d641b9851

File: ./contracts/Interfaces/IMasterACL.sol
SHA3: efe7305ab9200745df31745814efd66704f6a56046668664b97f4cc80b14f30a

File: ./contracts/Interfaces/IProjectNest.sol
SHA3: 5f3df47efbc7b7f9c00b1d614eafbe395624fd9ab5cd6537d2fa0e93ee03897a

File: ./contracts/Interfaces/IProjectNestFactory.sol
SHA3: 6750fb4dc2588802bbd0bc48d5edad9c99639cbe49a0e003b858023109524af9

File: ./contracts/Interfaces/IStakingV2Auth.sol
SHA3: dde4f1adde7c25493ff3f1ac711bc6c4730b3dfbaa1ad0e064ae8b1a20a294d3

File: ./contracts/Interfaces/IStakingV2RewardNotifier.sol
SHA3: 44055ea263ff04f55a6418bcfe6c3bb7397e67b550f764bbcfd9d9bec3fe5796

File: ./contracts/Interfaces/IVestingV2.sol
SHA3: 59fe8a6f0bc962567375bbf5fa2d450fc8a37149db2f9dc23b0caaf47e2884ce

File: ./contracts/StakingV2/AntToken.sol
SHA3: 766fb45e4036d75115520d951fdddc009ae41fe7449cdeaf6e25b8839770182b

File: ./contracts/StakingV2/StakingV2.sol
SHA3: 664db5a10b2de0123c0dfb9de6a45cb6365079134a8801ffdfb861737d619da6

File: ./contracts/StakingV2/UniversalClaimer.sol
SHA3: 8fab7c97c1c62d11953704f18c9526ae48562efab3e7afb82b8a3e195336a78d

File: ./contracts/VestingV2/AbstractVestingV2.sol
SHA3: 14f6616ee08b475ab59f49e6cfdd143d896f1ad8389112d06d66e6f3df830698

www.hacken.io
5

File: ./contracts/VestingV2/AbstractVestingV2.sol
SHA3: 14f6616ee08b475ab59f49e6cfdd143d896f1ad8389112d06d66e6f3df830698

File: ./contracts/VestingV2/ceToken.sol
SHA3: 152f427c0801097600388b6d4e864269208ab2ba250a7cba4225a215a303b469

File: ./contracts/VestingV2/ceTokenDistributor.sol
SHA3: 8c19450e1d4cddff949722973776aed7c9bf5b5793759af4566a8112527de873

File: ./contracts/VestingV2/ceTokenFactory.sol
SHA3: 7b410251a930bb8e673ab45dead30f8e174bbafbca598f6f79aae06e3ee77c15

File: ./contracts/VestingV2/DiscreteVestingV2.sol
SHA3: 97761b8df81ec720286b8391434495a9cc984cf03ae60a5e662c1b3b5f3ae2a0

File: ./contracts/VestingV2/DiscreteVestingV2Factory.sol
SHA3: 09bfe33660538dc875f91aecdf16b346c83999e52934c36a409f5ff4e5ce0bbe

File: ./contracts/VestingV2/LinearVestingV2.sol
SHA3: 5badd6451839a2f0a08cf68401489aa902397c39906e1b0b35fa318aa94e18e5

File: ./contracts/VestingV2/LinearVestingV2Factory.sol
SHA3: 9ab4ab77fa26ca8559128e1e1cc12146833f2481df3b4137f6e62ddbf238d535

Second review scope
Repository:

https://github.com/ColonyLab/colony-app/tree/develop
Commit:

911229a5c6ca5ce95b6faf5b9b5e90d3ef8996f7
Documentation: Yes

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/Access/KYCManager.sol
SHA3: 5481e7e586f4e1206982b1bb837685672bfab66c45cdb8f24d9005b02013dca5

File: ./contracts/Access/MasterACL.sol
SHA3: a16cd98424eae0c685d283719f51153c6c58112533c09f97a3f2430e837549c1

File: ./contracts/Access/PrivilegedGroup.sol
SHA3: a16e578d582b619af41547f67348849881fa06d4994ab41339e93ac2b07ab392

File: ./contracts/Access/PrivilegedGroupUpgradeable.sol
SHA3: c83ff1cd2656b231d02d7be794b323cba0e25a8705c4667cc5ab56cece13f010

File: ./contracts/EarlyStage/AnalysisManager.sol
SHA3: 02c0d120d3f2bb79de727eb28adc8a727344fbe695f64db89176ec405d5ea293

File: ./contracts/EarlyStage/CommentManager.sol
SHA3: aea14222065c073c89429e649218ee450092ed02ab5caec5b20b70448a71abe3

File: ./contracts/EarlyStage/CountdownManager.sol
SHA3: d873a3cafade67cf2a801162b0fae2db1e4c92fa6e4829ff3a394f5bef9a71e6

File: ./contracts/EarlyStage/EarlyStageManager.sol
SHA3: 6b5e17c0503a56a7037e6d74fab27564c4c700a1be5640c85106f8f51eba8f1c

File: ./contracts/EarlyStage/EventStoredList.sol

www.hacken.io
6

SHA3: f875d75f00680583a42641229552923d2b7155bdbc581fbba4fa931031bd0e70

File: ./contracts/EarlyStage/ProjectNest.sol
SHA3: 470096ef09629b3edfa2fc2776c11ab1fc512afea51780e6811f563f65df98f0

File: ./contracts/EarlyStage/ProjectNestFactory.sol
SHA3: 7b47726250398fab2be85fc7e285e0251a1d407b254d43b46d6f1537126f7263

File: ./contracts/EarlyStage/UpvoteManager.sol
SHA3: 3df8c8f8c5f6021843609a3be236f2b2b820ea12a802a20271187d5376765322

File: ./contracts/Interfaces/IAnalysisManager.sol
SHA3: 4d8ed69fc9f29a47391cf1face583192f75075e132bdb9645773e6a89cc7ceac

File: ./contracts/Interfaces/ICeTokenDistributionStrategy.sol
SHA3: bb507972c72b564bcf850298b5d1c217402d985bba73bc5eee653670aef019af

File: ./contracts/Interfaces/ICeTokenFactory.sol
SHA3: c6ea5ea7d217224e0d2f8ba8351d202cca64dfe3c7b3cfee41bfd14868b1207f

File: ./contracts/Interfaces/ICollateralToken.sol
SHA3: 8ebba5a1dda1214cf0689e382d060d477f6f96399952d58137e8df8e01f3b802

File: ./contracts/Interfaces/IDiscreteVestingV2.sol
SHA3: a490d2ee8307f9e2f4c94648fef93b71c944ad3b7bafb59cd1cf294ba6362de4

File: ./contracts/Interfaces/IDiscreteVestingV2Factory.sol
SHA3: 106d33368fc53aac74a7ba42bc925b6ab959209a07850bef3852aaa731b94fdb

File: ./contracts/Interfaces/IEarlyStageManager.sol
SHA3: b46a02f144c7df1a358409b0f9eee041284f44e1bed826854989712d1ab4f1de

File: ./contracts/Interfaces/IKYC.sol
SHA3: 36c18fb2033e9bbf119eefa02e01d065411396052ba082749e555a7686f76d89

File: ./contracts/Interfaces/ILinearVestingV2.sol
SHA3: 6fe47b209e512932138a011508563de4e446d82b0da68344e369412f58262f3a

File: ./contracts/Interfaces/ILinearVestingV2Factory.sol
SHA3: adb6e8732147aa53e23e03a1acf7228afee4101864575eca6e010d316baf25d4

File: ./contracts/Interfaces/IMasterACL.sol
SHA3: acc470aa555cdb6206ae7c24ef2bfb48f169975297ddc646e3fe86217872c106

File: ./contracts/Interfaces/IProjectNest.sol
SHA3: 5f845db5e45990bdcacd71d1b62d0f3588f398d41539c920b3c64cbf7aeed417

File: ./contracts/Interfaces/IProjectNestFactory.sol
SHA3: 2ba566e084a72e9dfd2b23b1621ad423abcc5cf01861a0df85a0bec8999e1c80

File: ./contracts/Interfaces/IStakingV2.sol
SHA3: ec3ab8018214964dac46fb2ddc82afb0a3d95a87cf001c92453da5e37e64f5f3

File: ./contracts/Interfaces/IStakingV2Auth.sol
SHA3: dcc074a2a3b9ea80f32ec795e5973b82aec128dba61ca006153d66aec88a6643

File: ./contracts/Interfaces/IStakingV2RewardNotifier.sol
SHA3: 79d7b63df2d346d3fc6ada417a8965d671ed317b1423a5a11aa52244fbad7cbd

File: ./contracts/Interfaces/IVestingV2.sol

www.hacken.io
7

SHA3: b3b6703e553bf4c97af59250f4ba644a0a62b4ac513ecc978ed6ef068464b1ae

File: ./contracts/StakingV2/AntToken.sol
SHA3: 5ffe2f74961557260f82fa1649a8afc5e0ddafb82fd20151330ee6a7eaf38cea

File: ./contracts/StakingV2/StakingV2.sol
SHA3: 419349db75a106394d9d0d8c2684c546e82cf663c0468a6f46ba72de5d571c1c

File: ./contracts/StakingV2/UniversalClaimer.sol
SHA3: 99b69064504c8884cb738a315e729f3765b62fcf2a8838a618b8390382b52d1d

File: ./contracts/Vesting/Vesting.sol
SHA3: 5118e4d14867eb1d23bbf23aa88420871ec5c9d8d0da618e0c9c3d61e7e6fcfc

File: ./contracts/VestingV2/AbstractVestingV2.sol
SHA3: 8cd5601425947353118341dcffd0800388ec9c44085aa699a4db91f556b18a37

File: ./contracts/VestingV2/ceToken.sol
SHA3: 203e9a82b1e6c7a854382e35190623767b42dabe9f62088cd6273a9fb031e94a

File: ./contracts/VestingV2/ceTokenDistributor.sol
SHA3: c6963e39f8369f7dca928cdf891d69faf6e7676d50de15aa6496af5811659cab

File: ./contracts/VestingV2/ceTokenFactory.sol
SHA3: 7e5e8c1c946cd3046e3ecabe22e49173fcfc3c2aedd110cc04a5691db4fcb4ee

File: ./contracts/VestingV2/DiscreteVestingV2.sol
SHA3: dcda075e5971b7c4f64df40f284a4be4c85107baa7caacadebf542cdfe5680a5

File: ./contracts/VestingV2/DiscreteVestingV2Factory.sol
SHA3: f0df2d919a06c73293c5d2ae3ae25935c98f3d81ebe54b64c4f0ee281f0dcc12

File: ./contracts/VestingV2/LinearVestingV2.sol
SHA3: c415cba8753810a283a9a9f89b5832733bc97dde17fc3baf87ce08c84651efdd

File: ./contracts/VestingV2/LinearVestingV2Factory.sol
SHA3: 146564aceecbba131a1507960ccdb1d1a0ca37ccfb708cd9b0232d1dac09e2a2

www.hacken.io
8

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
9

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional and technical requirements are provided.
● Code is followed by NatSpec comments.

Code quality
The total Code Quality score is 10 out of 10.

● Code follows best practices.

Test coverage
Test coverage of the project is 90%.

● Deployment and the majority of user interactions are covered with
tests.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

30 September 2022 1 1 0 0

21 October 2022 0 0 0 0

www.hacken.io
10

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

www.hacken.io
12

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
13

System Overview

Colony App is a mixed-purpose system with the following contracts:
● MasterACL.sol - manages access control. In addition to managing 2

roles of admin and moderator, the contract is integrated with
StakingV2 and KYCManager.

● PrivilegedGroup.sol - simple access control contract. Provides
modifiers and functions to set and check privileged accounts.

● PrivilegedGroupUpgradeable.sol - contract adapted to be inherited by
upgradeable contracts.

● KYCManager.sol - simple KYC management contract, which allows
MasterACL admins to manually change accounts’ KYC compliance.

● AnalysisManager.sol - responsible for project analysis. Allows
accounts to submit project analysis, store it, and calculate average
values.

● CommentManager.sol - responsible for project comments. Registered
accounts can create comments through data URI.

● CountdownManager.sol - manages projects countdown timestamps. The
data (data URI) set in this contract is for reference only and is not
related to any logic of other early-stage functionalities.

● EarlyStageManager.sol - the main contract which allows for managing
and navigating projects through the early stage process.

● EventStoredList.sol - contract, which allows the creation, update,
and hide of simple string data.

● ProjectNest.sol - stores and calculates accounts allocations and
investments for a specific EarlyStage.

● UpvoteManager.sol - allows accounts to upvote a project.
● AntToken.sol - ERC20 token linked and complementary to

RewardingStaking.
● StakingV2.sol - implements an algorithm for multitokens rewards

distribution. Adds authorization requirements to the simple staking
base with a stake and unstake functionalities, stores account
balances, and keeps track of stake total supply and corresponding
registered values.

● UniversalClaimer.sol - universal airdrop claimer with support for
staking v1 and v2.

● AbstractVestingV2.sol - abstract contract with general
implementation for both linear and discrete vestings.

● ceToken.sol - ERC20 token with the functionality of burning tokens
for owner accounts.

● ceTokenFactory.sol - contract responsible for deploying new CeToken
contract instances.

● ceTokenDistributor.sol - is a contract responsible for deploying new
CeToken contract instances. Applies distribution strategy to newly
minted CeTokens.

www.hacken.io
14

● AbstractVestingV2.sol - an abstract contract with general
implementation for both linear and discrete vestings.

● LinearVestingV2.sol - exact linear vesting implementation based on
AbstractVestingV2.

● LinearVestingV2Factory.sol - factory contract used for deployment of
linear vesting contracts.

● DiscreteVestingV2.sol - exact discrete vesting implementation based
of AbstractVestingV2.

● VestingV2Factory.sol - factory contract used for deployment of linear
and discrete vesting contracts.

Privileged roles
● The owner of KYCManager can set a MasterACL contact address.
● The admin of KYCManager can set address compliant.
● The owner of MasterACL can set admins, set moderators, set KYC

managers and set StakingV2 address.
● The owner of PrivilegedGroup can update privileged accounts.
● The owner of PrivilegedGroupUpgradeable can update privileged

accounts.
● The registered user of AnalysisManager can submit an analysis for a

project.
● The owner of AnalysisManager can set early stage manager addresses

and master ACL addresses.
● The owner of CommentManager can set early access manager address,

master ACL and comments per phase limit.
● The registered user of CommentManager can create comments.
● The manager of CommentManager can hide comments.
● The owner of CountdownManager can set an early stage manager and

master ACL.
● The admin of CountdownManager can emit countdown timestamp, hide and

unhide countdown.
● Registered users and KYC compliant of EarlyAccessManager can increase

allocation and increase investment.
● Registered users of EarlyAccessManager can reduce allocation.
● Admin of EarlyAccessManager can update project data, update vesting

details, update project phase, emit project hidden flag and
initialize project nest.

● The owner of EarlyAccessManager can set final investment, update
vesting data linear, update vesting data discrete, update linear
vesting parameters, update discrete vesting parameters, set master
ACL, set project nest factory, set analysis manager, set creator
cooldown period, update project nest linear vesting factory and
update project nest discrete vesting factory.

www.hacken.io
15

● The admin of EventStoredList can create data events, update emitted
data and hide emitted data.

● The owner of EventStoredList can update master ACL.
● The owner ProjectNest can initialize nest, close nest, increase

allocation, reduce allocation, increase investment, penalize
allocation, refund stablecoin, set final investment, set linear
vesting parameters, set discrete vesting parameters, set linear
vesting factory, set discrete vesting factory.

● The owner of ProjectNestFactory can set EarlyStageManager,, discrete
vesting factories.

● The early stage manager can create project nest.
● The owner of UpvoteManager can set MasterACL contract and

EarlyStageManager.
● The registered users of UpvoteManager can upvote projects.
● The owner of ColonyGovernanceToken can initially mint tokens to the

receivers and make a snapshot.
● The owner of AntToken can set staking address, distribution penalty,

redistribution period, and enable or disable transfers.
● The privileged addresses of AntToken can set collateral for other

addresses, mint, and burn tokens.
● The owner of StakingV2 can set the staking and unstaking fee,

redistribution period, pause and unpause staking, remove rewards, set
authorized stake amount and period, set Migrator, Staking,
MerkleDistributor contracts, and migration registration expiration
period.

● The Ant token of StakingV2 can unstake users' stakes and change stake
ownership.

● The privileged addresses of StakingV2 can unstake users' stakes.
● The owner of UniversalClaimer can register MerkleDistributor
● The owner of ceToken can burn tokens and burn them from an address.
● The owner of CeTokenDistributor can set shares, dex, and colony

addresses.
● The owner of CeTokenFactory can set ICeTokenDistributionStrategy.
● The owner of DiscreteVestingV2Factory can set CeTokenFactory.
● The owner of LinearVestingV2Factory can set CeTokenFactory.

Risks
● System owners and admins can affect many projects' functions and

processes.
● In case of admins keys leak, malicious actors will be able to access

critical functionality.

www.hacken.io
16

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. Unoptimized Loops Usage

The contracts use loops without optimization. Array size inside a
loop can be cached; state variables should be saved to local memory
for any interactions inside a loop.

This will lower Gas taxes.

Paths:
./contracts/EarlyStage/ProjectNestFactory.sol:getProjectNests();
./contracts/StakingV2/StakingV2.sol:getAllRewards();
./contracts/StakingV2/StakingV2.sol:removeReward();
./contracts/StakingV2/StakingV2.sol:updateRewards();
./contracts/StakingV2/UniversalClaimer.sol:_claimAllV1();
./contracts/VestingV2/DiscreteVestingV2.sol:unlockedProjectTokensTota
l();
./contracts/VestingV2/DiscreteVestingV2.sol:_updateVestingParameters(
);
./contracts/VestingV2/DiscreteVestingV2Factory.sol:validateDiscreteVe
stingParameters();

Recommendation: Cache arrays in a loop, save state variables to local
memory, iterate the loop and save changes to the state after the loop
finishes.

Status: Fixed (Revised commit: 911229a)

Low

2. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths: ./contracts/Access/PrivilegedGroup.sol;
./contracts/VestingV2/AbstractVestingV2.sol;
./contracts/VestingV2/ceToken.sol;
./contracts/VestingV2/ceTokenDistributor.sol;
./contracts/VestingV2/ceTokenFactory.sol;
./contracts/VestingV2/DiscreteVestingV2.sol;
./contracts/VestingV2/DiscreteVestingV2Factory.sol;
./contracts/VestingV2/LinearVestingV2.sol;
./contracts/VestingV2/LinearVestingV2Factory.sol;

www.hacken.io
17

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised commit: 911229a)

www.hacken.io
18

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
19

