
Customer: WeSendit
Date: October 20th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
WeSendit

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 system

Platform EVM

Network BSC

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://wesendit.io/

Timeline 03.10.2022 – 20.10.2022

Changelog 11.10.2022 – Initial Review
20.10.2022 - Second Review

www.hacken.io
2

https://wesendit.io/

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 11

Findings 12

Disclaimers 18

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by WeSendit (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/wesenditmedia/contracts
Commit:

bb76815454d2860b0c7bb27a78651ae88abdccff
Documentation:
https://github.com/wesenditmedia/contracts/blob/main/README.md
https://docs.google.com/document/d/1iea6jRToGQCGSJsDU5pJDfHpHHvUHYdldZ2uoWhShdI

Integration and Unit Tests: Yes
Deployed Contracts Addresses:
Contracts:

File: ./contracts/interfaces/IDynamicFeeManager.sol
SHA3: c6322926db0cbb54387e8ee453e2b5e1754d0ad0e2c27db83995df6532e61eae

File: ./contracts/interfaces/IEmergencyGuard.sol
SHA3: 2c40babba26a1eedcf0ce5ea22514771a271972755e9715856a8b449175ae9ac

File: ./contracts/interfaces/IFeeReceiver.sol
SHA3: c843509a238a740c404138c1d99353f93167f6a5cb7bf301395a1b2a909e93f9

File: ./contracts/interfaces/IPancakeRouter.sol
SHA3: a07b8230731d408c679a08296d4a51ed1a40037b8ebb1b5c39dd1116e0b44e08

File: ./contracts/interfaces/IWeSenditToken.sol
SHA3: bf260cdfe9769b13629fd170018aec2a74c85999f317d4aeca6f197202f63729

File: ./contracts/BaseDynamicFeeManager.sol
SHA3: 1869593a3237ccce23e3c9f3a99a1a985d1f653fcff45a3ebe01c430fdb13dcb

File: ./contracts/BaseWeSenditToken.sol
SHA3: 0d45c4d14bed59cb1d4724b8dac1bdfeca453ee71d68a6b564a129c5d59dfb17

File: ./contracts/DynamicFeeManager.sol
SHA3: 74e7dfcc158f62c8d9bc636737d6e8a01ddcb7c3df7b819c358aa913610a8398

File: ./contracts/EmergencyGuard.sol
SHA3: 3fbcf99ff58e02bbdda3d74e30f1a3172a5124665bd4095d9d46eca55563e13b

File: ./contracts/WeSenditToken.sol
SHA3: 6813e196c74a50790b750359fdd0daf2d177f922b4a4cbf032897900570e7412

www.hacken.io
4

https://github.com/wesenditmedia/contracts

Second review scope
Repository:

https://github.com/wesenditmedia/contracts
Commit:

e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4
Documentation:
https://github.com/wesenditmedia/contracts/blob/main/README.md
https://docs.google.com/document/d/1iea6jRToGQCGSJsDU5pJDfHpHHvUHYdldZ2uoWhShdI

Integration and Unit Tests: Yes
Deployed Contracts Addresses:
Contracts:

File: ./contracts/interfaces/IDynamicFeeManager.sol
SHA3: 187653c39e16154afacce2c9601cd8d0125f70c7cf48e8973019023e323f1f75

File: ./contracts/interfaces/IEmergencyGuard.sol
SHA3: dd03e3354b8c124cf76246d1b0fa2e839df9dedc5b4f3959a69d25aa6415348d

File: ./contracts/interfaces/IFeeReceiver.sol
SHA3: fdab70d081f80b4baf5b75e64c50578537077acf65c751d3372413b628232f0b

File: ./contracts/interfaces/IPancakeRouter.sol
SHA3: 16e1e3679313cf4e9c4fd9fe495105e1839114eb9e28ec993aa10fbf468ae5ed

File: ./contracts/interfaces/IWeSenditToken.sol
SHA3: 12949f9d4acd9b36ce3c6504febe6ca8d2e28c691f195f2d8e299b030603f2ed

File: ./contracts/BaseDynamicFeeManager.sol
SHA3: 70dc171a2dced116bda3fe4a26cc7756b2ddb2d4bb251aaae024260f72e5059e

File: ./contracts/BaseWeSenditToken.sol
SHA3: 6ca45ffd804945cd2e8d5be362c7ced74a6568a92c3588841527351a482d2f18

File: ./contracts/DynamicFeeManager.sol
SHA3: 023f7343a81b2d85a42e925174964528801067ffe73e13cad2e665f28c22068f

File: ./contracts/EmergencyGuard.sol
SHA3: 8ac7a40c1a0ac3f209ef9e8d702ea15f2e570699b0c115eb8d4529e397459ab9

File: ./contracts/WeSenditToken.sol
SHA3: 6d3855fde3c22ea16de4850eb0279f9bf3de3758aa51340d4f14fb3977b41f1a

www.hacken.io
5

https://github.com/wesenditmedia/contracts

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Contracts follow official Solidity guidelines.

Test coverage
Test coverage of the project is 100.00%.

● Deployment and basic user interactions are covered with tests.
● Negative cases are covered.
● Interactions by several users are tested.

Security score
As a result of the audit, the code contains 0 issues. The security score is
10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

6 October 2022 8 4 4 2

20 October 2022 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

The WeSendit token is an essential part of the WeSendit ecosystem. The fee
system introduced with token helps reduce volatility and ensure liquidity
for future project growth.
The files in the scope:

● BaseDynamicFeeManager.sol - base contract for DynamicFeeManager.sol.
Contains admin functionality.

● DynamicFeeManager.sol - main contract with adding fee functionality
and fees calculation.

● BaseWeSenditToken.sol - base contract for WeSenditToken.sol. Contains
admin functionality.

● WeSenditToken.sol - ERC20 token with fee reflection functionality
implemented with DynamicFeeManager.sol.

● EmergencyGuard.sol - Allows contract admin to withdraw funds from
WeSenditToken.sol and DynamicFeeManager.sol

Privileged roles
● DynamicFeeManager roles

○ ADMIN: allowed to do admin operations like add/remove fees,
adding to fee whitelist, withdraw tokens and chain native
currency from contract, grant roles, enable/disable fee for
transaction

○ FEE_WHITELIST: allowed to bypass fees
○ RECEIVER_FEE_WHITELIST: allowed to receive tokens without fee
○ BYPASS_SWAP_AND_LIQUIFY: allowed to bypass swap and liquify
○ EXCLUDE_WILDCARD_FEE: allowed to bypass wildcard fees
○ owner: allowed to bypass fees

● WeSenditToken roles
○ ADMIN: allowed to grant roles, unpause contract, change

DynamicFeeManager contract, withdraw tokens and chain native
currency from contract

○ BYPASS_PAUSE: allowed to bypass pause
○ owner: allowed to bypass fees

Risks
● Admin of the WeSenditToken can upgrade DynamicFeeManager at any time.

It can lead to contract transfers stop, increase of fee.
● In case when Pancakeswap pair address is zero or percentage is

settled to 0, swap will be performed according to the settled value
of fee entry and will not take into consideration pair reserves.

● Admin of the DynamicFeeManager can perform an emergency withdrawal of
funds. In this case, fee entries are not updated. Fee entries should
be replaced with new ones for correct work of the contract.

www.hacken.io
11

Findings

Critical

1. Access Control Violation

Access control is missing for critical functionality. Anyone can
change _pancakePairBusdAddress and _pancakePairBnbAddress.

This can lead to the manipulation of amounts used for swap or
liquidity adding.

Path: ./contracts/BaseDynamicFeeManager.sol

Functions: setPancakePairBusdAddress, setPancakePairBnbAddress

Recommendation: restrict access for the mentioned functions.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

2. Ambiguous Third Party Integration; Undocumented Behaviour

According to NatSpec and provided documentation function
_swapAndLiquify should transfer received LP tokens to the destination
parameter address. It transfers received BNB from the function
swapExactTokensForETHSupportingFeeOnTransferTokens call to the
destination address.

In this case, liquidity will not be added for the BNB/WSI pair.

According to the comments, NatSpec SwapTokenForBusd event should
emit the amount of received BUSD tokens on the destination address;
instead, it shows a change of $WSI token balance of the destination.

Path: ./contracts/BaseDynamicFeeManager.sol

Function: _swapTokensForBnb, _swapTokensForBusd

Recommendation: change input parameter of function _swapTokensForBnb
from destination to address(this) and make proper changes in function
_swapTokensForBusd.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

www.hacken.io
12

High

1. Requirements Violation

It is possible that the sum of all fee entries will exceed
feePercentageLimit. In this case, all user transfers will be blocked
till ADMIN of the contract removes some fee entries to reach the
limit.

Path: ./contracts/DynamicFeeManager.sol

Function: addFee

Recommendation: on adding the new fee entry, add the check that the
total percentage of all valid fee entries is less or equal to the fee
percentage limit.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

1. Race Condition

Function reflectFees is external and can be called by anyone with any
parameters. In case the user has an approved amount of tokens for the
contract DynamicFeeManager.sol an attacker can call this method with
the user as from parameter and allowed amount.

This can lead to losses of user funds by draining them to cover a
fee.

Path: ./contracts/DynamicFeeManager.sol

Function: reflectFees

Recommendation: add a sanitation check for the caller or describe in
documentation why such behavior is needed.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

2. Invalid Calculations

In function _reflectFee amounts cannot be updated properly. It is
possible due function _reflectFee updates amounts for fee entry
according to swapOrLiquifyAmount and ignores possibility that this
value can be changed in functions _getSwapOrLiquifyAmount,
_swapTokensForBusd or _swapAndLiquify.

It can lead to not properly updating the fee entry amount.

Path: ./contracts/DynamicFeeManager.sol

Function: _reflectFee

Recommendation: add check of $WSI balance changes to functions
_swapTokensForBusd and _swapAndLiquify and use them for fee entry
amount update.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

www.hacken.io
13

3. Denial of Service Vulnerability

Function reflectFees loops over all fee entries and calculates plus
reflect fee. In case of too many fee entries, the Gas usage of a
transaction can exceed the block Gas limit.

It can lead to transaction failure and, as a result, block token
transfers.

Path: ./contracts/DynamicFeeManager.sol

Function: reflectFees

Recommendation: add max limit for fee entries.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

Medium

1. Using SafeMath in Solidity ^0.8.0

Integer overflow check is built-in in Solidity ^0.8.0. Due to this,
using this library is redundant.

Paths: ./contracts/BaseDynamicFeeManager.sol,
./contracts/WeSenditToken.sol

Recommendation: remove redundant functionality.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

2. Tautology of Contradiction

Require statements with checks for uint256 >= 0 are redundant.

Path: ./contracts/BaseDynamicFeeManager.sol

Functions: setPercentageVolumeSwap, setPercentageVolumeLiquify

Recommendation: remove unnecessary checks.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

3. Missing Events Emit on Changing Important Values

The contract does not emit any events after changing important
values. It is recommended to emit events after changing important
values. This will make it easy for everyone to notice such changes.

Path: ./contracts/BaseDynamicFeeManager.sol

Function: setFeesEnabled

Recommendation: implement event emits after changing contract values.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

www.hacken.io
14

4. Unchecked Return Value

The function addLiquidityETH from pancakeRouter returns amounts of
token used for adding liquidity and LP tokens minted. The call made
to the addLiquidityETH does not check its return value. This means
that the contract will continue its execution even if there is an
erroneous situation.

This can lead to improper updating of fee entries amounts.

Paths: ./contracts/DynamicFeeManager.sol.sol,
./contracts/BaseDynamicFeeManager.sol

Functions: _reflectFee, _addLiquidity

Recommendation: implement a check for the $WSI amount used for adding
liquidity and update the fee entries amounts according to the
results.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

Low

1. Floating Pragma

The project`s contracts use floating pragma ^0.8.0. Contracts with
unlocked pragmas may be deployed by the latest compiler, which may
have higher risks of undiscovered bugs. Contracts should be deployed
with the same compiler version they have been tested thoroughly.

Paths: ./contracts/ interfaces/IDynamicFeeManager.sol,
./contracts/interfaces/IEmergencyGuard.sol, ./contracts/
interfaces/IFeeReceiver.sol,

./contracts/interfaces/IPancakeRouter.sol, ./contracts/
interfaces/IWeSenditToken.sol,

./contracts/BaseDynamicFeeManager.sol,

./contracts/BaseWeSenditToken.sol,

./contracts/DynamicFeeManager.sol, ./contracts/EmergencyGuard.sol,

./contracts/WeSenditToken.sol

Recommendation: consider locking the pragma version whenever
possible.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

2. Unused Function

The internal function _mint is created and overrides other
implementations of this function in inherited contracts but not used
in the project.

Path: ./contracts/WeSenditToken.sol

www.hacken.io
15

Function: _mint

Recommendation: in WeSenditToken constructor, use the internal
function _mint instead of using it from inherited contracts.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

3. Style Guide Violation

The provided projects should follow the official guidelines.

Paths: ./contracts/BaseDynamicFeeManager.sol,
./contracts/BaseWeSenditToken.sol, ./contracts/WeSenditToken.sol

Recommendation: follow the official Solidity guidelines.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

4. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Paths: ./contracts/BaseDynamicFeeManager.sol,
./contracts/BaseWeSenditToken.sol

Functions: getFee, getFeeAmount, feeDecreased, initialSupply

Recommendation: use the external attribute for functions never called
from the contract.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

5. Redundant Require Statement

In function addFee require statement (percentage <= FEE_DIVIDER) is
redundant. The maximum percentage can be 25000 (25%) and it is
checked below in the mentioned require statement.

This can lead to higher Gas taxes.

Path: ./contracts/DynamicFeeManager.sol

Function: addFee

Recommendation: remove the redundant require.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

6. Redundant Function Call

Function reflectFees have redundant calls to function
_validateFeeAmount.Function _validateFeeAmount consists of only two
require statements. The require statement (tTotal.add(tFees) ==
amount) is redundant due to calculation of tTotal in main function
reflectFees and will always bypass this require statement. Redundant
calls to functions will create excessive Gas costs.

Path: ./contracts/DynamicFeeManager.sol

www.hacken.io
16

Functions: reflectFees , _validateFeeAmount

Recommendation: move require statement (tTotal > 0) to function
reflectFees and remove function _validateFeeAmount.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

7. Excessive State Variable Access

In function reflectFees the for loop is used to calculate the total
percentage of fees. On every iteration, it checks that i <
_fees.length.

It will lead to higher Gas costs.

Path: ./contracts/DynamicFeeManager.sol

Function: reflectFees

Recommendation: create a local variable, declare it equal to
_fees.length and use it for loop iteration.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

8. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths: ./contracts/BaseDynamicFeeManager.sol,
./contracts/BaseWeSenditToken.sol

Functions: setPancakeRouter, setBusdAddress,
setPancakePairBusdAddress, setPancakePairBnbAddress,
setDynamicFeeManager

Recommendation: Implement zero address checks.

Status: Fixed(e3cbf365f1c13a1c4697aba1ea364c90e3e6c2b4)

www.hacken.io
17

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
18

