
Customer: PreSend
Date: January 30th, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
PreSend

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Transaction verifier; Affiliate program

Platform EVM

Network Ethereum, Polygon

Language Solidity

Methodology Link

Website -

Changelog
17.11.2022 – Initial Review
21.12.2022 - Second Review
30.01.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 20

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by PreSend (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Presend-DeFi/presend-protocol-payment-affiliate
Commit:

0743ffc
Documentation:

Technical description in the README.md
Integration and Unit Tests: Yes
Contracts:

File: ./contracts/PreSendAffiliate.sol
SHA3: f70726703fb04a9f5c15f8a8f22cc74cb318bcb0cfa50df15174812d8a9a2690

File: ./contracts/PreSendPayments.sol
SHA3: 39d1df8c7544a6128519c58c7039ba493a0c72570107cab68e5b1b5a7a5767d5

File: ./contracts/transparent_proxy/ProxyAdmin.sol
SHA3: e29292065af23dea48f09efabb42155a63810583c6afb2a2515d7537e4e8d248

File: ./contracts/transparent_proxy/TransparentUpgradeableProxy.sol
SHA3: 13e717cd1e4c20d24739fde5ce0ee14102cfdec2f7558ad989bf133f2443ab86

File: ./interfaces/AggregatorV3Interface.sol
SHA3: 4f25993d7f224bcb01be58e9cc13ddf3cd9b6ce7ec3ea717175b0c4ca5198a40

Second review scope
Repository:

https://github.com/Presend-DeFi/presend-protocol-payment-affiliate
Commit:

5ffd536b441a5f12044f7b57f0c32e3ef9d69ef2
Documentation:

Technical description in the README.md
Integration and Unit Tests: Yes
Contracts:

File: ./contracts/PreSendAffiliate.sol
SHA3: a044445b99175018e242e5c7b03fda637b1db032531db25e90db837f91e31ee5

File: ./contracts/PreSendPayments.sol
SHA3: 4edb5bdc41b41641a321928197b4a8885f4e269988f2724f681d1041e29e3718

Third review scope
Repository:

https://github.com/Presend-DeFi/presend-protocol-payment-affiliate
Commit:

d2c814f6dd1e574b1d0452c243eca4669be6dd94
Documentation:

Technical description in the README.md
www.hacken.io

4

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/PreSendAffiliate.sol

SHA3: 8596d90b541017c42d4aff34739d2287ad953ffc590017aa7fdb08138480d5e2

File: ./contracts/PreSendPayments.sol

SHA3: 314bee2eeeccf4ed5d1543c598918c237241c1077bb7f829f18422e55491f79f

File: ./interfaces/IPreSendAffiliate.sol

SHA3: 2b4397c8452622891908d01105d891bbf35c493a67f63b9474252bd967b7ab5f

www.hacken.io
5

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Technical descriptions are provided.
● Functional requirements are provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.

Test coverage
Code coverage of the project is 98.65%.

● Some error handlers were not tested.

Security score
As a result of the audit, the code contains 0 critical, 0 high, 0 medium, 0
low severity issues. The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.95.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

17 November 2022 4 8 1 3

21 December 2022 0 2 1 1

06 January 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not Relevant

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passe

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

PreSend contracts stand for storing affiliates and fees collecting. They
are represented by these contracts:

● PreSendPayment — Payment contract gives it permission to increase
and decrease the amount of funds affiliates can withdraw. Inherited
from OpenZeppelin’s Initializable, AccessControl, Chainlink’s
AutomationCompatible contracts.
It has the following attributes:

○ affiliate smart contract reference
○ address of the treasury where affiliate payments will go.
○ aggregator to get the price of the native coin in USD.
○ the Default Admin user.

● PreSendAffilate - Role to manage affiliates. This role can add/remove
affiliates, update the affiliate tier that determines the percentage
of fees they get, and add new tiers for affiliates. This role can
also update the reference to the payment contract. Inherited from
OpenZeppelin’s Initializable, AccessControl contracts.
It has the following attributes:

- affiliate features and properties
- the address of the PreSend payments smart contract.
- the Default Admin user.

Privileged roles
- Default Admin: Admin who can set and change an Affiliate, Treasury,

aggregator, Fee divisor, Payment, Fee roles.
- Affiliate_Admin: In PreSendAffiliate.sol can add or update tier and

affiliate.
- Payment_Admin: In PreSendPayments.sol this role can increase or

decrease currency allowance.
- Fee_Admin: Fee Admin who manually sends PreSend transaction fees from

the contract to the treasury address.
- Payment_Contract: In PreSendAffiliate.sol it represents

PreSendPayments address.
- User: The person who uses a Payment contract.

www.hacken.io
11

Findings

Critical

1. Upgradeability Errors

The @openzeppelin/contracts should not be used in the OpenZeppelin
Upgrades project.

The difference between a constructor and a regular function is that
Solidity takes care of automatically invoking the constructors of all
ancestors of a contract. When writing an initializer needs to take
special care to manually call the initializers of all parent
contracts. Note that the initializer modifier can only be called
once, even when using inheritance, so parent contracts should use the
onlyInitializing modifier.

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeabl
e

This violates upgradeability best practices and can lead to issues
during an upgrade.

Paths: ./contracts/PreSendPayments.sol

./contracts/PreSendAffiliate.sol

Recommendation: use @openzeppelin/contracts-upgradeable, which is an
official fork of OpenZeppelin Contracts that has been modified to use
initializers instead of constructors.

Status: Fixed (Revised commit: 5ffd536)

2. Insufficient Funds

The extractFees function is meant to be used for fee withdrawals but
can accept an arbitrary amount that will be transferred to an admin
account.

Funds that are not a part of fees can be withdrawn. Users will not be
able to claim their affiliate fees by using the affiliateClaim
function.

Path: ./contracts/PreSendAffiliate.sol : extractFees()

Recommendation: implement proper fees withdrawal.

Status: Fixed (Revised commit: 4fa76a5)

High

1. Requirements Violation

According to documents and comments, the affiliateAmount should be 5%
or 10% of the fees. However, this function does not check for these
percentages.

www.hacken.io
12

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

The code should not violate the requirements provided by the
Customer. This can lead to misallocation of fees.

Path: ./contracts/PreSendPayments.sol : _payPreSendFee()

Recommendation: implement the validation.

Status: Fixed (Revised commit: dc4cf6d)

2. Requirements Violation

According to the docs, adding, removing, and updating affiliates
associated with a tier can only perform the AFFILIATE_ADMIN role, but
these functionality are not in this implementation.

A new feature has been added that can only add an affiliate by 5%. It
can be called by any person and add any person to the affiliate.

The code should not violate the requirements provided by the
Customer. This may lead to incorrect distribution of fees to the
affiliates.

Path: ./contracts/PreSendAffiliate.sol : addAffiliate()

Recommendation: change the documentation to match these
functionality, or revert to the previous implementation.

Status: Fixed (Revised commit: 5ccc8a1)

3. Access Control Violation

This function can be called by any person and add any person to the
affiliate.

Anyone cannot call functions to add an affiliate. This may lead to
incorrect distribution of fees to the affiliates.

Path: ./contracts/PreSendAffiliate.sol : addAffiliate()

Recommendation: limit access to this function call.

Status: Fixed (Revised commit: 5ccc8a1)

4. Undocumented Behavior

This function uses the affiliatePercentage parameter. The comment
explains that the percentage can be anywhere between 0 and 100
percent, including 0 and 100.

Documents did not describe this feature in _payPreSendFee() function.

This may lead to incorrect distribution of fees to the affiliates.

Path: ./contracts/PreSendPayments.sol : _payPreSendFee()

Recommendation: document the functionality according to the current
version of the implementation.

www.hacken.io
13

Status: Fixed (Revised commit: 5ccc8a1)

Medium

1. Best Practice Violation

Contracts use 2 access options and inherit from both.

AccessControl makes it possible to add roles, Ownable makes the
deployer the owner of the contract.

Paths: ./contracts/PreSendPayments.sol

./contracts/PreSendAffiliate.sol

Recommendation: DEFAULT_ADMIN can be used as an owner.

Status: Fixed (Revised commit: 5ffd536)

2. Best Practice Violation

The Checks-Effects-Interactions pattern is violated. During the
function, some state variables are updated after the external calls.

Path: ./contracts/PreSendPayments.sol : _payPreSendFee()

Recommendation: implement the function according to the
Checks-Effects-Interactions pattern.

Status: Fixed (Revised commit: 5ffd536)

3. Missing Event for Critical Value Updation

Critical state changes should emit events for tracking things
off-chain.

The functions do not emit events on change of important values.

Paths: ./contracts/PreSendAffiliate.sol : addOrRemoveAffiliate()

./contracts/PreSendAffiliate.sol : addOrUpdateTier()

./contracts/PreSendPayments.sol : setTreasuryAddress()

./contracts/PreSendPayments.sol : setPreSendAffiliate()

./contracts/PreSendPayments.sol : decreaseCurrencyAllowance()

./contracts/PreSendPayments.sol : increaseCurrencyAllowance()

./contracts/PreSendPayments.sol : extractFees()

./contracts/PreSendPayments.sol : setFeeDivisor()

Recommendation: emit events on critical state changes.

Status: Fixed (Revised commit: 5ffd536)

4. Unscalable Functionality

www.hacken.io
14

Well-known contracts from projects like OpenZeppelin, ChainLink
should be imported directly from the source as the projects are in
development and may update the contracts in the future.

https://github.com/smartcontractkit/chainlink/blob/develop/contracts/
src/v0.8/interfaces/AggregatorV3Interface.sol

Path: ./interfaces/AggregatorV3Interface.sol

Recommendation: import the contracts directly from the source, avoid
modifying them.

Status: Fixed (Revised commit: 5ffd536)

5. Inefficient Gas Model

For external interaction with the contract, you can use interfaces,
which makes it possible to abstract from private methods and
variables.

Using contracts instead of interfaces adds a lot of unnecessary bytes
to this contract that are taken from private methods and variables,
which increases the cost of deployment.

In PreSendPayments.sol contract imported directly
PreSendAffiliate.sol instead of the interface of this contract.

Path: ./contracts/PreSendPayments.sol

Recommendation: import the contracts interface from the source
instead of import contracts directly.

Status: Fixed (Revised commit: dc4cf6d)

6. Contradiction

The addOrRemoveAffiliate() also allows updating the existing records.
Its name does not state this feature. So it should be renamed
accordingly.

Path: ./contracts/PreSendAffiliate.sol : addOrRemoveAffiliate

Recommendation: rename the aforementioned function accordingly.

Status: Fixed (Revised commit: 5ffd536)

7. Requirements Violation

The role granting and revoking flows have separate functions
controlled by the owner. It is a long shot, but it is possible for an
owner to revoke a role and not assign a new address for it. This will
prevent some admin features from being unusable for the time being.

Paths: ./contracts/PreSendAffiliate.sol : removePaymentAdmin(),
addPaymentAdmin(), removeAffiliateAdmin(), addAffliateAdmin()

www.hacken.io
15

https://github.com/smartcontractkit/chainlink/blob/develop/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol
https://github.com/smartcontractkit/chainlink/blob/develop/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol

./contracts/PreSendPayments.sol: removePaymentAdmin(),
addPaymentAdmin(), removeFeeAdmin(), addFeeAdmin()

Recommendation: merge role changing flows into a single function for
each role.

Status: Fixed (Revised commit: 5ffd536)

8. Missing Validation

According to the documentation, the tier parameter should be checked
before updating. However, in the addOrRemoveAffiliate(),
addOrUpdateTier() functions, the validation is missed. In the future,
this can cause unexpected scenarios(for example, admin can change
percentage to 1000)

Paths: ./contracts/PreSendAffiliate.sol : addOrRemoveAffiliate()
./contracts/PreSendAffiliate.sol : addOrUpdateTier()

Recommendation: implement the validation for tear parameters.

Status: Fixed (Revised commit: 5ffd536)

9. Contradiction

The comment on the variable aggregatorCoinPriceMult does not match
this value.

This can lead to incorrect calculations.

Path: ./contracts/PreSendPayments.sol

Recommendation: edit this comment according to the implementation.

Status: Fixed (Revised commit: 5ccc8a1)

10. Contradiction

The documentation has not been updated to the latest version and is
missing information about all changed functions and variables, as
well as their interactions.

For example:

docs have _payPreSendFee(address user, address currency, uint256
amount, uint256 payment, uint256 currencyPrice, address affiliate)

but in the current implementation has been added a new parameter
affiliatePercentage and the current function has
_payPreSendFee(address user, address currency, uint256 amount,
uint256 payment, uint256 currencyPrice, address affiliate, uint256
affiliatePercentage)

This may lead to a misunderstanding by the user of the product and
its capabilities.

Path: ./PreSend Payment and Affiliate Smart Contract Requirements.pdf

www.hacken.io
16

Recommendation: change the document to match the current version of
the implementation.

Status: Fixed (Revised commit: 5ccc8a1)

Low

1. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

Paths: ./contracts/PreSendAffiliate.sol : initialize()

./contracts/PreSendAffiliate.sol : addOrRemoveAffiliate()

./contracts/PreSendAffiliate.sol : increaseAffiliateAmount()

./contracts/PreSendAffiliate.sol : decreaseAffiliateAmount()

./contracts/PreSendAffiliate.sol : updatePaymentAddress()

./contracts/PreSendAffiliate.sol : addAffiliateAdmin()

./contracts/PreSendAffiliate.sol : removeAffiliateAdmin()

./contracts/PreSendAffiliate.sol : addPaymentAdmin()

./contracts/PreSendAffiliate.sol : removePaymentAdmin()

./contracts/PreSendPayments.sol : initialize()

./contracts/PreSendPayments.sol : setPreSendAffiliate()

./contracts/PreSendPayments.sol : setTreasuryAddress()

./contracts/PreSendPayments.sol : decreaseCurrencyAllowance()

./contracts/PreSendPayments.sol : increaseCurrencyAllowance()

./contracts/PreSendPayments.sol : addPaymentAdmin()

./contracts/PreSendPayments.sol : removePaymentAdmin()

./contracts/PreSendPayments.sol : addFeeAdmin()

./contracts/PreSendPayments.sol : removeFeeAdmin()

Recommendation: implement zero address checks.

Status: Fixed (Revised commit: 5ffd536)

2. Redundant Import

The use of unnecessary imports will increase the Gas consumption of
the code. Thus they should be removed from the code.

Paths: ./contracts/PreSendAffiliate.sol : IERC20

./contracts/PreSendPayments.sol : IERC20

www.hacken.io
17

./contracts/PreSendPayments.sol : OwnableUpgradeable

Recommendation: remove redundant import or create new behavior for
this contract.

Status: Fixed (Revised commit: 5ffd536)

3. Redundant Address

The use of unnecessary addresses will increase the Gas consumption of
the code. Thus they should be removed from the code.

Path: ./contracts/PreSendPayments.sol : preSendAffiliateAddress

Recommendation: to replace the address for this contract, you can use
the interface, or the contract itself, which has already been added.

Status: Fixed (Revised commit: 5ffd536)

4. Use of Hard-Coded Values

Using hardcoded values in the computations and comparisons is not the
best practice.

Path: ./contracts/PreSendPayments.sol : _payPreSendFee()

Recommendation: convert these variables into constants.

Status: Fixed (Revised commit: 5ffd536)

5. Redundant Variable Update

The initializer function updates affiliateRegistrationTime,
aggregatorCoinPriceMult, aggregatorCoinPriceSub, netRevenue,
grossRevenue variables with the same values as defined above.

Path: ./contracts/PreSendPayments.sol : initialize()

Recommendation: remove redundant variables update.

Status: Fixed (Revised commit: 5ccc8a1)

6. State Variables Can Be Declared Constant

aggregatorCoinPriceMult, aggregatorCoinPriceSub variables do not
change anywhere and can be declared as constant.

Path: ./contracts/PreSendPayments.sol

Recommendation: declare mentioned variables as constant.

Status: Fixed (Revised commit: 5ccc8a1)

7. Misleading Error Messages

The require handler implementation is (affiliatePercentage <= 100)
and can be explained as "affiliatePercentage must be less than or
equal to 100", but the error message is "Affiliate Percentage must be
less than 100".

www.hacken.io
18

This makes code harder to understand, test and debug.

Path: ./contracts/PreSendPayments.sol : _payPreSendFee()

Recommendation: refactor messages in require conditions to fit code
behavior.

Status: Fixed (Revised commit: 5ccc8a1)

www.hacken.io
19

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
20

