
Customer: Cirus
Date: December 7th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Cirus

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Staking

Platform EVM

Language Solidity

Methodology Link

Changelog 30.11.2022 – Initial Review
07.12.2022 Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 15

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Cirus (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/alwaysaugust/cirus-dashboard

Commit 47082a4bab524617c6e59bcd0d7f07d1364a1457

Functional Requirements https://support.cirusfoundation.com/en/knowledge/cirus-token
-hub#cirus-community-staking-pool

Technical Requirements Provided in NatSpec comments

Contract File: ./src/contracts/StakingV2Contract.sol
SHA3:
f0d774c1687aae8435ef809d1ed9b91f1f43a293a61df5a5a2474ed9ca34
b0a6

Second review scope

Repository https://github.com/alwaysaugust/token-hub-contract

Commit 860e1a2e15a10292dfd14b4cbbee5d2b7d667741

Contract File: ./CirusStakingV3Contract.sol
SHA3:
0db6aafdf0c94b290962d36a67e48d66214d226406c5a3d038488c5033cfc0
02

www.hacken.io
4

https://github.com/alwaysaugust/cirus-dashboard
https://support.cirusfoundation.com/en/knowledge/cirus-token-hub#cirus-community-staking-pool
https://support.cirusfoundation.com/en/knowledge/cirus-token-hub#cirus-community-staking-pool
https://github.com/alwaysaugust/token-hub-contract

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to assets loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect the code
quality

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

Code quality
The total Code Quality score is 10 out of 10.

Test coverage
Tests do not exist.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

28 November 2022 8 2 2 2

7 December 2022 1 0 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
7

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
8

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9

System Overview

CirusStakingV3Contract — a contract that rewards users for staking their
tokens. APY depends on rewardPerMonth variable and the total stake amount.
Inherited from Ownable, Pausable, ReentrancyGuard.

It has the following attributes:
○ _cirusToken: Represent Cirus Token.
○ _startTime: The reward starts distribution. It can set the

current time when deploying the contract.
○ _fee: Percent of fee goes to _feeCollectAddr from 0 to 100.
○ _rewardPerMonth: Total monthly reward amount, for example: if

needed to distribute 50,000 Cirus Tokens per month among
stakers, set this value to 50,000 * 10 ** 18.

○ _rewarderAddr: Rewards are distributed from this address.
○ _feeCollectAddr: Fees are transferred to this address when the

user deposits tokens.

Privileged roles
● The owner of the contract can pause and unpause the contract.

www.hacken.io
10

Findings

Critical

1. Insufficient Balance

In the emergencyWithdraw() function sets the user.amount to 0 and
then uses the same value in transfer.

A user will receive 0 tokens, and funds will be locked on the
contract.

Path: ./contracts/StakingV2Contract.sol : emergencyWithdraw()

Recommendation: transfer funds via a local variable

Status: Fixed (Revised commit: 860e1a2)

2. Data Consistency

The totalStakedAmount variable stores the total staked amount. When
a user withdraws tokens via the withdraw function, the
totalStakedAmount value is decreased, but the emergencyWithdraw lacks
the value decrease.

In case of the emergencyWithdraw function call, the totalStakedAmount
value will remain higher than the actual balance of the contact.

Path: ./contracts/StakingV2Contract.sol : emergencyWithdraw()

Recommendation: subtract the withdrawn value from the
totalStakedAmount.

Status: Fixed (Revised commit: 860e1a2)

High

1. Undocumented Behaviour

The project deducts fees. The documentation does not contain
information regarding fees.

The behavior is not described in the available documentation.

Path: ./contracts/StakingV2Contract.sol

Recommendation: document this functionality in the public
documentation.

Status: Fixed (Revised commit: 860e1a2)

2. Invalid Hardcoded Value

The project has hardcoded important values such as wallet’s private
key, infuraId and etherscan API key in the environment setup files.

Path: ./hardhat.config.js

www.hacken.io
11

Recommendation: to store and use secrets, use .env files excluded
from git commits.

Status: Fixed (Revised commit: 860e1a2)

Medium

1. Best Practice Violation

The Checks-Effects-Interactions pattern is violated. During the
deposit function, state variables are updated after the external
calls.

Path: ./contracts/StakingV2Contract.sol : deposit()

Recommendation: implement the deposit() function according to the
Checks-Effects-Interactions pattern.

Status: Fixed (Revised commit: 860e1a2)

2. Insufficient Gas Model

Since Solidity v0.8.0, the overflow/underflow check is implemented
via ABIEncoderV2 on the language level - it adds the validation to
the bytecode during compilation.

There is no need to use the SafeMath library.

Path: ./contracts/StakingV2Contract.sol

Recommendation: remove redundant import.

Status: Fixed (Revised commit: 860e1a2)

Low

1. Floating Pragma

The project uses floating pragma 0.8.11.

Path: ./contracts/StakingV2Contract.sol

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised commit: 860e1a2)

2. State Variables Can Be Declared Immutable

mulDecimal variable declared with value and never changed. This
variable can be declared immutable. This will lower the Gas taxes.

Path: ./contracts/StakingV2Contract.sol

Recommendation: declare mentioned variables as immutable.

Status: Fixed (Revised commit: 860e1a2)

3. State Variables Can Be Declared Constant

www.hacken.io
12

_cirusToken can be declared as constant. This will lower the Gas
taxes.

Path: ./contracts/StakingV2Contract.sol

Recommendation: declare mentioned variables as constant.

Status: Fixed (Revised commit: 860e1a2)

4. Unused Imports

Pausable contract important from OpenZeppelin but never use it.

The code has an unused console log import; it should be removed.

The code contains commented out imports that should be removed in the
final code.

Path: ./contracts/StakingV2Contract.sol

Recommendation: remove redundant imports.

Status: Fixed (Revised commit: 860e1a2)

5. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

Paths: ./contracts/StakingV2Contract.sol : pendingReward()

./contracts/StakingV2Contract.sol : constructor()

Recommendation: implement zero address checks.

Status: Fixed (Revised commit: 860e1a2)

6. State Variables Default Visibility

The explicit visibility makes it easier to catch incorrect
assumptions about who can access the variable.

Variables lastRewardTime and accCirusPerShare visibility is not
specified. Specifying state variables’ visibility helps to catch
incorrect assumptions about who can access the variable.

This makes the contract`s code quality and readability higher.

Path: ./contracts/StakingV2Contract.sol

Recommendation: specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Status: Fixed (Revised commit: 860e1a2)

7. Event Names Mismatch

Event names contradict events’ value or value usage purposes.

This makes the contract`s code quality and readability higher.
www.hacken.io

13

The events’ Withdrawed, EmergencyWithdrawed name and value
contradict.

This makes the contract harder to read.

Path: ./contracts/StakingV2Contract.sol

Recommendation: change event names to fit their value.

Status: Reported

8. Use of Hard-Coded Values

Using hardcoded values in the computations and comparisons is not the
best practice.

Hard-coded values are used in computations.

Paths: ./contracts/StakingV2Contract.sol: estimatedAPY()

./contracts/StakingV2Contract.sol: updateRewardAmount()

./contracts/StakingV2Contract.sol: deposit()

./contracts/StakingV2Contract.sol: constructor()

Recommendation: convert these variables into constants.

Status: Fixed (Revised commit: 860e1a2)

www.hacken.io
14

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
15

