
Customer: TrustSwap
Date: January 10, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
TrustSwap

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token; Vesting

Platform Casper

Language Rust

Methodology Link

Website https://trustswap.com

Changelog 27.12.2022 – Initial Review
10.01.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://trustswap.com

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by TrustSwap (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project consists of smart contracts in the repository:

Initial review scope
Repository https://github.com/trustswap/team-finance-casper/tree/main/cont

rol_erc20_contract

Commit ce6fb3b4

Whitepaper Link

Functional
Requirements

Link

Technical
Requirements

Link

Contracts File: ./src/address.rs
SHA3:b17196cc268b96b13195654e293df85a4d94d0bfa7452de47ee130dff02284e7

File: ./src/constants.rs
SHA3 91a9f5d4844e9d5e2d1c0a01ac80f4c8784e5c8ca111d6a8237d8eabd3245385

File: ./src/interact_token.rs
SHA3:5c169e1a17f4aecb8acaeeb7826842b217f4dffe98ea906fd6fc7dc1a3e31e68

File: ./src/lib.rs
SHA3:96a91987cf0beec69475373821d142cd09111859a2e7e1539531f3edbb17e2ad

File: ./src/main.rs
SHA3:273561348e6506cf2b9fb95aa315976537ad434deea1ec6e1b347adcdb444d7d

File: ./src/utils.rs
SHA3:1a6fba5f8c14ecdfbb7995445b83435c26e08b57538abf5715ff897b2e305dd8

File: ./src/vest.rs
SHA3:06b204d1a314c5d747e9e832933b4d572abfaa07df8287a86ecd819f15efc652

Second review scope

Repository https://github.com/trustswap/team-finance-casper/tree/main/cont
rol_erc20_contract

Commit 1494d88

Contracts File: ./src/address.rs
SHA3:b17196cc268b96b13195654e293df85a4d94d0bfa7452de47ee130dff02284e7

File: ./src/constants.rs
SHA3 00b62b6e5ff88ce1661c553f3a4efd1d17250a6258c5593c644cd4f38dfac1a3

www.hacken.io
4

https://github.com/trustswap/team-finance-casper/tree/main/control_erc20_contract
https://github.com/trustswap/team-finance-casper/tree/main/control_erc20_contract
https://github.com/hknio/team-finance-casper-a2186aeae5c6ed0d864/blob/main/control_erc20_contract/README.md
https://github.com/hknio/team-finance-casper-a2186aeae5c6ed0d864/blob/main/control_erc20_contract/README.md
https://github.com/hknio/team-finance-casper-a2186aeae5c6ed0d864/blob/main/control_erc20_contract/README.md
https://github.com/trustswap/team-finance-casper/tree/main/control_erc20_contract
https://github.com/trustswap/team-finance-casper/tree/main/control_erc20_contract

File: ./src/interact_token.rs
SHA3:cf960b9483671122eb096c4e970a88ee14a5581c46520410fc874b24a8a4bb42

File: ./src/lib.rs
SHA3:6025f0bee87d6ae511f17f18c1f2f327c38c7d408994989f3810f8f347e342ba

File: ./src/main.rs
SHA3:5f9a620aa6c7bacc1874a2124207e4d83525a597d8398bdf3261c87f9453a672

File: ./src/utils.rs
SHA3:ba090425d6cd11c2826e564d4025bac42594d3452c40f355d2400a303deaee3b

File: ./src/vest.rs
SHA3:f008b35b170be240d208565cef6b031ddd3a77aa41577253effbbcf9aab1daa3

www.hacken.io
5

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 2 out of 10.

● Functional requirements are partially missing.
● Superficial functional description is provided
● Superficial technical description is provided.

Code quality
The total Code Quality score is 6 out of 10.

● The development environment is not configured.
● Code is not covered with comments.
● Clippy errors are partially not fixed.

Test coverage
Code coverage of the project is 0% (branch coverage).

● Deployment and basic user interactions are not covered with tests.
● Negative case coverage is missing.
● Interactions with several users are not tested.

Security score
As a result of the second audit, the code contains 1 medium issue and 1 low
severity issue. The security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 7,7.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

27 December 2022 8 1 0 0

10 January 2023 1 1 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

www.hacken.io
8

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Default
Visibility

Functions and state variables visibility should be
set explicitly. Visibility levels should be
specified consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math operations
should be safe from overflows and underflows. Passed

Outdated
Compiler
Version

It is recommended to use a recent version of the
Rust compiler. Passed

Unchecked Call
Return Value

The return value of a message call should be
checked. Failed

Access Control
&
Authorization

Ownership takeover should not be possible. All
crucial functions should be protected. Users could
not affect data that belongs to other users.

Passed

Assert
Violation

Properly functioning code should never reach a
failing assert statement. Passed

DoS (Denial of
Service)

Execution of the code should never be blocked by a
specific contract state unless required. Passed

Block values
as a proxy for
time

Block numbers should not be used for time
calculations. Passed

Shadowing
State Variable

State variables should not be shadowed. Passed

Weak Sources
of Randomness

Random values should never be generated from Chain
Attributes or be predictable. Not Relevant

Calls Only to
Trusted
Addresses

All external calls should be performed only to
trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused variables if
this is not justified by design. Passed

EIP Standards
Violation

EIP standards should not be violated. Not Relevant

Assets
Integrity

Funds are protected and cannot be withdrawn without
proper permissions or be locked on the contract. Passed

User Balances
Manipulation

Contract owners or any other third party should not
be able to access funds belonging to users. Passed

www.hacken.io
9

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Data
Consistency

Smart contract data should be consistent all over
the data flow. Passed

Flashloan
Attack

When working with exchange rates, they should be
received from a trusted source and not be
vulnerable to short-term rate changes that can be
achieved by using flash loans. Oracles should be
used.

Not Relevant

Token Supply
Manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the customer.

Not Relevant

Gas Limit and
Loops

Transaction execution costs should not depend
dramatically on the amount of data stored on the
contract. There should not be any cases when
execution fails due to the block Gas limit.

Not Relevant

Style Guide
Violation

Style guides and best practices should be followed. Failed

Requirements
Compliance

The code should be compliant with the requirements
provided by the Customer. Failed

Environment
Consistency

The project should contain a configured development
environment with a comprehensive description of how
to compile, build and deploy the code.

Failed

Secure Oracles
Usage

The code should have the ability to pause specific
data feeds that it relies on. This should be done
to protect a contract from compromised oracles.

Not Relevant

Tests Coverage

The code should be covered with unit tests. Test
coverage should be sufficient, with both negative
and positive cases covered. Usage of contracts by
multiple users should be tested.

Failed

Stable Imports The code should not reference draft contracts,
which may be changed in the future. Not Relevant

www.hacken.io
10

System Overview

The purpose of The vesting smart contract is for users to send tokens to
the smart contract for it to lock and hold them for the specified time
period, and releasing those tokens to the recipient according to the time
schedule set by the user initially. Each lock has 3 basic functionalities:
transfer, extend, and unlock. transfer changes the recipient of the
unlocked tokens to another user. extend increases the lock time of the
lock. unlock withdraws tokens based on the amount of time passed, relative
to the lock schedules.
List of smart contracts:

● VestContract — The main vesting smart contract, where lock,
extend_lock, transfer_lock and claim functionality is implemented.

● InteractToken - ERC20 functionality helper functions for the vesting
smart contract.

Privileged roles
● Recipient - vesting token owner
● Signer/Caller - smart contract action signer or caller, who pays for

transactions

Risks
● No stopping functionality provided for the smart contract, if

something goes wrong or bad actors are found, the vesting contract
can’t be stopped by an admin.

● Smart contract owner is not defined, and when the contract is invalid
or needs an update or migration, no one would be able to do that.

www.hacken.io
11

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. Unchecked Transfer Call

When the result of a transfer call is not checked, there is a risk
that calling fails, but the result will be considered as successful
and the smart contract state would be updated accordingly, so this
can lead to an invalid contract state or funds loss/lock.

InteractTokens utilizes ‘runtime::call_contract’ which will return ()
if the stored contract calls revert, it means the result should be
considered as failed and no further actions should be taken, but this
check is missing in the smart contract.

Path: ./src/vest.rs : lock(), claim()

Recommendation: Check the result of ‘runtime::call_contract’ if
revered or not.

Status: Reported

Low

1. Redundant Names in Struct Init

Redundant field names in struct initialization, fields in struct
literals should be shorthand. If the field and variable names are the
same, the field name is redundant.

Path: ./src/vest.rs : lock():ln240

Recommendation: Remove redundant names from struct initialization.

Status: Fixed (Revised commit: 1494d88)

2. Needless Range Loop

Needless looping over the range of 0..len of some collection just to
get the values by index.

Path: ./src/vest.rs : pack():ln62

Recommendation: Remove range loop use ‘for i in id_bytes’.

Status: Fixed (Revised commit: 1494d88)

www.hacken.io
12

3. Manual Slice Copy

Manually copying items between slices could be optimized by having a
‘memcpy’. Manual copy is not as fast as a ‘memcpy’.

Path: ./src/vest.rs : pack_schedule():ln101, ln105

Recommendation: try replacing the loop with:
`res[..8].copy_from_slice(&release[..8]);`

Status: Fixed (Revised commit: 1494d88)

4. Unnecessary `let` binding

let-bindings should not be subsequently returned, It is extraneous
code. Remove it to make your code more rusty.

Path: ./src/vest.rs : unpack():ln130, unpack_schedule():ln239

Recommendation: Remove let binding and return structure.

Status: Fixed (Revised commit: 1494d88)

5. Unnecessary Object Initialization

Writing `&Vec` instead of `&[_]` involves a new object where a slice
will do.

Requiring the argument to be of a specific size makes the function
less useful without any benefit; slices in the form of &[T] or &str
usually suffice and can be obtained from other types.

Path: ./src/vest.rs : unpack_recipient():ln164

Recommendation: Replace ‘&Vec<u8>’ with ‘&[u8]’

Status: Fixed (Revised commit: 1494d88)

6. Needless Borrowing

The expression ‘&runtime::get_caller().to_string().as_str()’ creates
a reference which is immediately dereferenced by the compiler.

Path: ./src/vest.rs : claim():ln361, ln364, ln373

Recommendation: Remove the unnecessary reference from
‘&runtime::get_caller().to_string().as_str()’.

Status: Fixed (Revised commit: 1494d88)

www.hacken.io
13

7. Unoptimized Empty String Check

Some structures can answer .is_empty() much faster than calculating
their length. Using .is_empty(), is recommended as it is cheaper.,
It makes the intent clearer than a manual comparison in some
contexts.

Path: ./src/vest.rs : is_valid_entry():ln391

Recommendation: Use is_empty where possible.

Status: Fixed (Revised commit: 1494d88)

8. Calls to `push` immediately after creation

If the Vec is created using with_capacity this will only lint if the
capacity is a constant and the number of pushes is greater than or
equal to the initial capacity.

If the Vec is extended after the initial sequence of pushes and it
was initialized by default then this will only lint after at least
four pushes. This number may change in the future.

Path: ./src/vest.rs : update_storage():ln432,
update_storage_transfer_lock():ln465

Recommendation: Use the vec![] macro as it’s more performant and
easier to read than multiple push calls.

Status: Reported

www.hacken.io
14

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
15

