
DECENTRALIZED APPLICATION
CODE REVIEW AND
SECURITY ANALYSIS
REPORT

Customer: Allbridge

Date: February 9th, 2023 ver. 3

This document may contain confidential information about IT systems and the
intellectual property of the Customer and information about potential vulnerabilities
and methods of their exploitation.

The report containing confidential information can be used internally by the Customer,
or it can be disclosed publicly after all vulnerabilities are fixed — upon the
Customer's decision.

Document

Name Decentralized Application Code Review and Security Analysis
Report for Allbridge.

Approved By Andrew Matiukhin | CTO at Hacken OÜ

Type Server, Bridge Oracle

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website allbridge.io

Timeline 16 JANUARY 2023 – 09 FEBRUARY 2023

Changelog
27 JANUARY 2023 – Review1
02 FEBRUARY 2023 – Remediation2
09 FEBRUARY 2023 – Remediation3

2

Table of contents
Introduction 4

Scope 4

System Overview 5

Executive Summary 6

Checked Items 8

Severity Definitions 10

Issue Overview 11
Critical 11

C01. Exposure of Sensitive Information Through Environmental Variables 11
C02. Replay Attack / DoS (bridge-stellar-server) 12

Low 12
L01. Claim Check Race Condition (stellar-bridge-validator) 12

Disclaimers 13

3

Introduction

Hacken OÜ (Consultant) was contracted by Allbridge (Customer) to conduct a
Decentralized Application Code Review and Security Analysis. This report
presents the security assessment findings of the Customer's applications.

Scope

The scope of the project is review and security analysis of applications in
the following repositories:

1. https://github.com/allbridge-io/bridge-stellar-server

- Platform: TypeScript (Node.js)
- Commit: e113f0908441b24b77c64e4d85e7659154565d1a

2. https://github.com/allbridge-io/stellar-bridge-validator

- Platform: TypeScript (Node.js)
- Commit: c46a43aab88e99f41b780feafdcafb82a61189e0

These applications were scanned for commonly known and more specific
issues. Considered items include but are not limited to:

￭ Overconfidence in a node (or node provider)
￭ Failure to account for blockchain branching out
￭ Incorrect validation of ENS records
￭ Weak authentication via message signing
￭ Unsafe private key storage
￭ XSS/SQL injections from the blockchain data

Misuse of checksum addresses
￭ Blockchain data inconsistency
￭ Incorrect integration with a smart contract and/or blockchain

platform
￭ Usage of wrong data types
￭ Application architecture
￭ Repository consistency
￭ Code style consistency
￭ Deprecated, vulnerable, or outdated Web3 libraries

4

https://drive.google.com/file/d/13aFJjXEI_SWjC3ttvLh8nqwPIS5NV7UP/view?usp=sharing

System Overview

We have identified and reviewed the following interactions between the
applications and blockchain platforms.

stellar-bridge-validator

This is a bridge oracle. It verifies the transfers made to the bridge
account on the Stellar blockchain and provides the signatures that prove
that.

It has a single public endpoint - GET /sign/$TRANSACTION_ID. It searches
for a transaction with the given identifier, collects all the relevant
information, checks whether the transaction was already claimed, and
provides a signature that proves this transaction was made on the Stellar
blockchain.

bridge-stellar-server

This is a bridge oracle. It signs and broadcasts transactions to the
Stellar and NEAR blockchains. Its API has public and private endpoints
protected by a secret key.

Public endpoints are:

- POST /unlock
It validates the signatures and sends a transaction creating a
transfer on the NEAR blockchain.

- GET /unlock/$SOURCE/$LOCK_ID
It checks if the transfer was already claimed.

- GET /token/$TOKEN_ADDRESS/$SYMBOL
It provides information about the given token.

- GET /balance/$ADDRESS
It provides the XLM balance for the given address.

- GET /fee/$TOKEN_ADDRESS/$SYMBOL
It provides fee-related information about the given token.

- POST /wallet/transaction
- POST /wallet/create-line

These endpoints build a Stellar transaction with the given arguments
and return it XDR-encoded.

Private endpoints are:

- POST /sign
It builds a payment transaction and provides the signature for it.

- POST /empty-sign
It builds a bump transaction and provides the signature for it.

- POST /send
It sends a bump or payment transaction for the transfer with the
latest sequence.

5

Executive Summary

This report presents the findings of a code review and security analysis
that was conducted between January 16, 2023 - February 09, 2023.
The purpose of this engagement was to evaluate the stability and security
of the application against best practices and possible attack vectors.

The score is based only on the applications that were subject to “Code
Review and Security Analysis” (see Scope).

For more details about the scoring, see Methodology.

Documentation quality

The technical documentation and functional requirements were sufficient.

The documentation quality score is 10 out of 10.

Code quality
The code follows good practices, has a consistent style, and is generally
easy to read. Tests cover the core functionality.

The code quality score is 10 out of 10.

Architecture quality
It is not possible to increase the number of signatures that are required
to transfer assets without changing the codebase. The current required
amount is 2 signatures.

The architecture quality score is 7 out of 10.

To improve the architecture quality score, design the architecture in a way
where it is possible to add an arbitrary number of required signatures.

Security and Stability
As a result of the audit, security engineers found 2 critical and 1 low
severity issues.

As a result of the remediation, 1 critical and 1 low severity issues were
not fixed.

As a result of the second remediation, 1 low severity issue was not fixed.

A detailed description of the issues can be found in the Issue Overview
section.

The security and stability score is 10 out of 10.

6

https://drive.google.com/file/d/13aFJjXEI_SWjC3ttvLh8nqwPIS5NV7UP/view?usp=sharing

Summary
According to the assessment, the Customer's applications have the following
score: 9.7

7

Checked Items

We have reviewed decentralized applications for commonly known and more
specific vulnerabilities. Here are some of the items that were considered:

Item Status

1

Private keys are safely used and stored

Private keys should be encrypted, stored in a secure
secret manager, provided to the application with a
secure method.

Passed

2

Strong authentication via message signing

A signed authentication message should be exclusive
to the application. It should have an expiration date
and time-specific nonce provided by the system.

Not Relevant

3
Blockchain branching out is accounted for

The application should wait an adequate number of
blocks to reduce the risk of a chain re-organization.

Passed

4 Healthy integration with the blockchain nodes Passed

4.1

Blockchain node redundancy

The application should not rely on a single
blockchain data provider for a trusted and stable
connectivity.

Passed

4.2

Low-trust integration with the blockchain nodes

The application should expect that each interaction
with a blockchain data provider can fail and handle
these cases accordingly.

Passed

5

Blockchain data is sanitized

The application should not trust the inputs from the
blockchain when they can be considered the same as
user inputs.

Passed

6 Secure integration with the blockchain Passed

6.1
Events are validated

The application should check the event origin, its
type and structure.

Passed

6.2

Proper mapping of types

Blockchain-specific types (uint256, bytes, etc.)
should be mapped to the correct language-specific
types without a data loss.

Passed

6.3 Error-proof data indexing Passed

8

The application should not silently skip anything
it could not process at some point in time. It
should have a retry mechanism or sufficient
logging.

6.4

Secure integration with the smart contracts

The application should follow the smart contract
specification and expect all relevant and possible
outcomes.

Passed

7 Dependencies are up-to-date and not vulnerable Passed

9

Severity Definitions

Risk Level Description

Critical
Critical issues are usually straightforward to exploit,
can lead to asset loss, data manipulations, or greatly
impact the application's stability.

High
High-level issues are difficult to exploit. However,
they also have a significant impact on the application
execution.

Medium
Medium-level issues are important to fix. However, they
cannot lead to asset loss or data manipulations.

Low
Low-level issues are mostly related to outdated,
unused code snippets that cannot significantly impact
execution.

10

Issue Overview

Critical

C01. Exposure of Sensitive Information Through Environmental Variables

The applications use sensitive information such as private and API keys
exposed to the environment. This practice can be easily abused and is
considered unsafe from a security perspective.

stellar-bridge-validator/src/constants.ts

25 | export const XLM_PRIVATE_KEY =

26 | process.env.XLM_PRIVATE_KEY &&

27 | CryptoJS.AES.decrypt(process.env.XLM_PRIVATE_KEY,

| AES_SECRET_KEY).toString(

28 | CryptoJS.enc.Utf8,

29 |);

bridge-stellar-server/src/constants.ts

10 | export const PK = CryptoJS.AES.decrypt(process.env.PK,

| AES_SECRET_KEY).toString(

11 | CryptoJS.enc.Utf8,

12 |);

23 | export const NEAR_PK = CryptoJS.AES.decrypt(

24 | process.env.NEAR_PK,

25 | AES_SECRET_KEY,

26 |).toString(CryptoJS.enc.Utf8);

37 | export const QUEUE_API_KEY = process.env.QUEUE_API_KEY;

39 | export const SECRET_KEY = process.env.SECRET_KEY;

40 | export const ANOTHER_SERVER_SECRET_KEY =

| process.env.ANOTHER_SERVER_SECRET_KEY;

Although the private keys are AES encrypted, they are not considered
securely encrypted because the encryption key is stored in the code as
plain text.

stellar-bridge-validator/src/constants.ts

8 | export const AES_SECRET_KEY = ' REDACTED ';

bridge-stellar-server/src/constants.ts

8 | export const AES_SECRET_KEY = ' REDACTED ';

Recommendation: Do not expose sensitive information to the environment. Use
the cloud provider’s secret manager and its interface to access the
secrets. See the cloud provider’s documentation on how to work with secret
values, as best practices may differ from one provider to another.

Status: Fixed (commit 5f992a3, 904078e)

11

C02. Replay Attack / DoS (bridge-stellar-server)

The endpoint POST /unlock (method “unlock” of the “AppController” class)
validates the provided signatures and sends a transaction to the NEAR
blockchain creating a transfer. It is possible for an attacker to reuse
valid old signatures to make the application send a transaction that will
fail, but the bridge will still pay the fee for the transaction, thus
making it possible to spend the entire balance on the NEAR blockchain
and/or cause a DoS.

These 2 transactions are an example:

JCNZKP3eYqRdBS2JGMYkJgfuhBXpSe8QFFfJwHrfVQXY - it is a valid transaction
that succeeded.

858h8uDKSi5869Hh22GZZAiQhqWDgrFDJvnDP9fZpXZ - this is a copy of a previous
transaction that was sent by the application; although it failed, the
transaction fee was paid.

See the bridge-stellar-server/src/app.controller.ts file,
AppController.unlock method for more context.

Recommendation: Check if a transfer already exists. Do not allow reuse of
old signatures.

Status: Fixed (commit 7e6a80a)

Low

L01. Claim Check Race Condition (stellar-bridge-validator)

The endpoint GET /sign/$TRANSACTION_ID (method “getSignedMessage” of the
“AppController” class) has a check that verifies that the transaction has
not been claimed yet.

stellar-bridge-validator/src/app.controller.ts

29 | await this.appService.checkIfClaimed(

30 | lockData.destination,

31 | source,

32 | lockData.lockId,

33 |);

34 | logger.info(`Not claimed`);

It uses a cached value or makes a request to the “bridge-stellar-server”
application to perform this check. The nature of the asynchronous request /
cache manager makes the race condition possible here.

Although this is an undesirable and unexpected behavior, this cannot affect
the system in any meaningful way - the verification is redundant. The
burden of verifying if the claim has been already made lies on the smart
contract, thus making duplicate signatures irrelevant.

Recommendation: Remove the claim check or document in the code that this
cannot reliably ensure that the claim has not been made already.

Status: Reported

12

https://explorer.testnet.near.org/transactions/JCNZKP3eYqRdBS2JGMYkJgfuhBXpSe8QFFfJwHrfVQXY
https://explorer.testnet.near.org/transactions/858h8uDKSi5869Hh22GZZAiQhqWDgrFDJvnDP9fZpXZ

Disclaimers

Hacken Disclaimer

The application given for the audit has been analyzed based on the best
industry practices at the time of this report, in relation to cybersecurity
vulnerabilities and issues in the application’s source code, the details of
which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of the decentralized application.

Technical Disclaimer

Decentralized applications are closely integrated with a blockchain
platform. The platform, its programming language, and other software
related to the application can have vulnerabilities that can lead to hacks.
Thus, the audit cannot guarantee the explicit security of the audited
application.

13

