
Binance zk-SNARKs Proof of Solvency

Independent Technical Assessment
Feb 14, 2023

Repositories:

https://github.com/binance/zkmerkle-proof-of-solvency

Commit:

c1884aae22cd17af023ac4424b4e6623eb0ea9dd

References:

● Announcement
● How to Verify Your Account Balance on Binance
● How zk-SNARKs Improve Binance’s Proof of Reserves System
● Proof of solvency - technical specification
● Having a safe CEX: proof of solvency and beyond

Authors:

Luciano Ciattaglia (l.ciattaglia@hacken.io)
Bartosz Barwikowski (b.barwikowski@hacken.io)
Yaroslav Bratashchuk (y.bratashchuk@hacken.io)
Sofiane Akermoun (s.akermoun@hacken.io)

0

https://github.com/binance/zkmerkle-proof-of-solvency
https://twitter.com/binance/status/1623970859323990016?s=46&t=3abSFECINjEDHz3CWwMUXQ
https://www.binance.com/en/support/faq/how-to-verify-your-account-balance-on-binance-815b25f0cb054bdd9d35eccc408fe981
https://www.binance.com/en/blog/ecosystem/how-zksnarks-improve-binances-proof-of-reserves-system-6654580406550811626
https://gusty-radon-13b.notion.site/Proof-of-solvency-61414c3f7c1e46c5baec32b9491b2b3d
https://vitalik.ca/general/2022/11/19/proof_of_solvency.html

1 Introduction

On February 10th, Binance revealed a new and improved Proof of Reserves
(PoR) verification system that leverages the power of both Merkle Trees and
zk-SNARKs which marks a significant upgrade from the previous system that
solely relied on plain Merkle Trees.

The integration of zk-proofs enhances the system's security by addressing
previous vulnerabilities, such as the possibility of negative balances in
fake accounts while preserving user privacy during the verification
process.

Hacken conducted an independent technical assessment on the recently
released verification system and discovered a critical vulnerability that
could lead to the creation of fake debt. This issue has been reported and
promptly fixed.

1

https://twitter.com/binance/status/1623970859323990016?s=46&t=3abSFECINjEDHz3CWwMUXQ

2 Project Summary

In the project we identified 1 critical issue which allows to fake the
total debt amount in the zero knowledge proof circuit, 1 medium severity
issue and 2 other low severity issues. The critical and medium severity
issues have been already fixed. However, any proof generated before those
issues were fixed cannot be verified to be valid, as the critical one
allowed for the total debt amount to be tampered. Although the proofs may
appear to be valid, it is not possible to ensure that they were not
modified due to the vulnerability. The other low severity issues are very
unlikely to be abused and do not need to be addressed immediately.

The project has 1157 dependencies, all of them with checksum verification.
There were found 42 vulnerabilities within all dependencies, with 16 of
them having public exploits available. 22 with high severity and 20 with
medium. None of the vulnerable functions are currently being used in the
project.

It uses a forked version of gnark made on Sep 2022 for the circuits and
Poseidon with BN254 hash function to hash the user information and the
Sparse Merkle Tree (SMT) data structure to store the hashes. The SMT is
implemented using the BSMT library, and its maximum depth is set to be 28,
which means that this Proof Of Solvency approach may be used for more than
250M users.

The code quality is clean and organized.

The README.md contains instructions on how to run tools one by one, and
motivation behind the circuits is also detailed.

The Panic is used for main function error handling, so all the tools crash
with a stack trace in case of an error.

The sample user data (balance sheets) is provided in order to test tools
manually. There is a way to fetch (probably production) Postgres
configuration from the AWS storage if the remote_password_config flag is
provided to the tools that use Postgres.

There was a function to generate fake accounts in the witness service,
which was commented out but still left in the code (probably for manual
testing purposes). EmptyAccounts are generated in the witness, and they are
used in case the last account's batch size is less than 864.

2

https://github.com/bnb-chain/gnark
https://www.poseidon-hash.info/
https://github.com/bnb-chain/zkbnb-smt
https://gusty-radon-13b.notion.site/Proof-of-solvency-61414c3f7c1e46c5baec32b9491b2b3d
https://gobyexample.com/panic
https://github.com/binance/zkmerkle-proof-of-solvency/blob/main/src/witness/main.go#L22
https://github.com/binance/zkmerkle-proof-of-solvency/blob/main/src/witness/witness/witness.go#L106

The git history log has been modified several times, and as a result, the
git metadata is mixed in some places.

3 Vulnerabilities

3.1 [Critical][Fixed] TotalDebt manipulation vulnerability
caused by overflow of BasePrice

The code contains a critical error that enables it to create false user
debt, reducing the number of assets needed. This occurs because there is a
method to circumvent the assertion that checks if the user's debt exceeds
their equity.

There is a bug in the system that allows for bypassing because the
BasePrice parameter can be set to an extremely high value. This
vulnerability exists because the parameter is not checked for value range,
making it easy to manipulate. Although the BasePrice is publicly
accessible, it would be simple to identify if it has been changed. However,
there is a method to modify the BasePrice in a way that would be
undetectable by other users, making it possible to exploit the
vulnerability without being detected.

As an optimization, the code splits all the users into batches, each with
864 users. The batches are linked with each other by sharing information
about assets and the cryptographic hashes. Each exchange asset is shared
using three variables: TotalEquity, TotalDebt and BasePrice. The hash of
asset is calculated from one big integer, which is calculated using the
following formula:

𝑇𝑜𝑡𝑎𝑙𝐸𝑞𝑢𝑖𝑡𝑦 * 2 128 + 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑏𝑡 * 264 + 𝐵𝑎𝑠𝑒𝑃𝑟𝑖𝑐𝑒

The problem is, that in the code responsible for doing these calculations,
only TotalEquity and TotalDebt are checked if they are greater or equal to
0 and lower than 264. The value of BasePrice is not being checked, which
allows to set it to value higher than 264 - 1 which makes it possible to
modify the value of TotalDebt and TotalEquity. Because of that, it is
possible to generate the same value for different parameters, for example
both TotalDebt = 2, BasePrice = 3 and TotalDebt = 1, BasePrice = 264 + 3
will have value of 2 * 264 + 3. The source code responsible for this
calculations:

3

The lack of validation of BasePrice allows it to be modified between
batches, by lowering the TotalDebt by 1, the BasePrice can be increased by
264 and vice versa. Because of that, it is possible to generate almost
unlimited debt. A user with 1 coin with BaseValue greater than 264 (million
of dollars) can have almost any debt, the assertion responsible for
checking if users have lower debt than equity won’t work correctly.

It is possible to generate the debt without anyone noticing it, it is
possible by creating a batch of 864 fake users with huge debt but also with
a single coin with modified BaseValue, which will cover the whole debt. The
below diagrams demonstrate how the value of BasePrice can be modified in a
single batch.

4

Hacken team created a dedicated repository to prove the existence of this
issue: https://github.com/hknio/zkmerkle-proof-of-solvency-debt-bug.

The issue with the fix proposal was reported to Binance Team which
confirmed the issue and merged fix proposed by Hacken team:
https://github.com/binance/zkmerkle-proof-of-solvency/pull/5.

3.2 [Medium][Fixed] TotalDebt value underflow caused by integer
overflow

When TotalEquity and TotalDebt is calculated from user assets, it is
possible that it becomes bigger than 264, an example case is when two users
have both 263 debt and equity, then the sum of their debt and equity will be
equal to 264. The code responsible for the calculations:

5

https://github.com/hknio/zkmerkle-proof-of-solvency-debt-bug
https://github.com/binance/zkmerkle-proof-of-solvency/pull/5

When the value of TotalEquity or TotalDebt will become higher than 264, then
the next part of code, responsible for calculating integer used by hash
function (tempAfterCexAssets) will work incorrectly because of overflows:

When TotalEquity exceeds 264 then the proof in the next batch will be
incorrect, however when TotalDebt exceeds 264, then it will overflow into
TotalEquity. For example, TotalDebt equal to exactly 264 would be equivalent
to TotalEquity equal 1 and TotalDebt equal 0. This allows to lower the
value of TotalDebt in the similar way as it was done in the case of the
first issue with BasePrice, however it would not be beneficial in any way
so this issue is not critical.

We recommend adding additional CheckValueInRange for TotalEquity and
TotalDebt when calculating tempAfterCexAssets.

The issue was addressed and fixed by Binance Team:
https://github.com/binance/zkmerkle-proof-of-solvency/pull/6

3.3 [Low] Potential omission of users

The current system of verification lacks a mechanism to confirm the
completeness of the provider's inclusion of their users in the Merkle Tree.
It is uncertain whether the provider may have excluded some users, who they
presume will either not perform a verification of the proof or whose
objections, in the event that they do not receive a proof, will not be
given due consideration.

In the current implementation, the prover knows which users do the
verification process as they need to download the configuration files from
their website. Simplifying the process of choosing which users should be
included and which ones can be omitted.

While unlikely this would happen in practice, to address this issue, it is
necessary a trusted third party, as they become more readily available to
support crypto exchanges, must verify that all users were included in the
Merkle Tree without any exclusions.

6

https://github.com/binance/zkmerkle-proof-of-solvency/pull/6

3.4 [Low] Merkle Root hash integrity

When users download the Merkle tree and each user config from the frontend,
the Merkle root hash is included in the user_config.json file, but there is
no way to check the integrity of this hash across all Binance users in
order to be sure that this root hash wasn’t tampered depending on the
client IP or other parameters of the users.

To counteract this, the Merkle root should be signed by a trusted
third-party auditor or be published on the blockchain as a public bulletin
board, so users can easily verify the transaction's inclusion and the
validity of the Merkle root hash they got from their user_config.json. It
should be done in a single transaction, which will be easy to detect. It’s
also possible to address this issues by publishing the hash root in a
social media that the proved doesn’t control.

3.5 [Informational] Total amount of users inference

The user downloads a proof.csv file in the verification config containing
the total amount of batches and their commitments. The current number of
batches at the moment of this assessment is 49.789. If we multiply this by
the number of users per batch (currently 864), we can infer that the total
number of users is around 43.015.104, as one leaf is equal to one user in
the current implementation. Still, this amount can also include a number of
empty leaves, so it’s only an approximation.
Randomizing the number of empty leaves in bigger numbers can solve this
issue.

7

4 [Informational] Vulnerabilities in dependencies

● Improper Signature Verification affecting golang.org/x/crypto/ssh
package

● Denial of Service (DoS) affecting golang.org/x/net/html package
● NULL Pointer Dereference affecting golang.org/x/net/html package
● Authorization Bypass Through User-Controlled Key affecting

github.com/emicklei/go-restful/v3 package
● Authorization Bypass affecting github.com/emicklei/go-restful/v3

package
● Improper Input Validation affecting

github.com/ethereum/go-ethereum/core package
● Insecure Randomness affecting github.com/satori/go.uuid package

After checking every exploit of these vulnerabilities we found that none of
the vulnerable functions are being currently used in the project, but it is
suggested to update these dependencies in order to avoid them completely.

8

https://www.cve.org/CVERecord?id=CVE-2020-9283
https://www.cve.org/CVERecord?id=CVE-2020-9283
https://www.cve.org/CVERecord?id=CVE-2018-17848
https://www.cve.org/CVERecord?id=CVE-2018-17142
https://www.cve.org/CVERecord?id=CVE-2022-1996
https://www.cve.org/CVERecord?id=CVE-2022-1996
https://security.snyk.io/vuln/SNYK-GOLANG-GITHUBCOMEMICKLEIGORESTFULV3-2435654
https://security.snyk.io/vuln/SNYK-GOLANG-GITHUBCOMEMICKLEIGORESTFULV3-2435654
https://www.cve.org/CVERecord?id=CVE-2022-37450
https://www.cve.org/CVERecord?id=CVE-2022-37450
https://www.cve.org/CVERecord?id=CVE-2021-3538

