
Customer: CSS_LeechProtocol
Date: February 8, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
CSS_LeechProtocol

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Farm

Platform EVM

Language Solidity

Methodology Link

Changelog
29.12.2022 – Initial Review
25.01.2023 - Second Review
08.02.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12
Critical 12
High 12

H01. Highly Permissive Role Access 12
H02. Checks-Effects-Interactions Pattern Violation 12

Medium 12
Low 12

L01. Floating Pragma 12

Disclaimers 13

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by CSS_LeechProtocol (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/Leech-Protocol/farm-contract/

Commit 921b7dda5e83e4505cb33e041b1582669fcef7b2

Technical
Requirements

Link

Contracts File: ./contracts/Context.sol
SHA3:
b352b9c9ce4d7b9d16589b4b398e6cdadb8b7a82857597d5ef43262ee5131cef

File: ./contracts/Farm.sol
SHA3:
a1fbb1a1504d1125218878205fba0ea3abe3f7e6d9605482495e49d56df77ed2

File: ./contracts/FarmCore.sol
SHA3:
c0f848316b27534219e54cf515f0d33c14e423c577efe6a20144a7cdfea85549

File: ./contracts/IERC20.sol
SHA3:
83f3ba28dbcb0cda61852e0148b3473815ccf4e6e0879ab4fecfdf31f793604d

File: ./contracts/Ownable.sol
SHA3:
3355bf742a33a01b6e0a6dbce72f23b058b2137f88203514d33dec9845d593e2

Second review scope
Repository https://github.com/Leech-Protocol/farm-contract/

Commit f68f292577ccf1919153e9a99cfd9a0c1761df7e

Technical
Requirements

Link

Contracts File: ./contracts/Context.sol
SHA3:
6ad58d09c85257dd94cc378aaff5b3862cbe3e640066155248f8a2c64e3c689b

File: ./contracts/Farm.sol
SHA3:
21d49279169d6782c135b91c2aed8c379c609ba3b38bb4b11629566cd5ee1bcf

File: ./contracts/FarmCore.sol

www.hacken.io
4

https://github.com/Leech-Protocol/farm-contract/blob/main/technical-docs/smart-contracts.md
https://github.com/Leech-Protocol/farm-contract/blob/main/technical-docs/smart-contracts.md

SHA3:
33691f2c6d77b0d74eb119293c04466672547ed6d578ada10861795e4a46f91a

File: ./contracts/IERC20.sol
SHA3:
dcd808947ee6a949d53349c3e457860da91943fe98e17298ba620c98150358c2

File: ./contracts/Ownable.sol
SHA3:
03e961a326fabe733dc7a3894e62e5295f03bcf289b58cce3688c201931a9bbd

Third review scope
Repository https://github.com/Leech-Protocol/farm-contract/

Commit 3cc1690e3c1b6b21b15c37faab95accc4e7b025f

Technical
Requirements

Link

Contracts File: ./contracts/Farm.sol

SHA3:
3bec5492ba96755bca3a531f29d4ea80d46728186ef67e14acb34d3214529f5f

File: ./contracts/IFarm.sol

SHA3:
086a5375534dd9d41c9f14693bf444643d8fa68ebb3b6019c358a6ede66f90e6

www.hacken.io
5

https://github.com/Leech-Protocol/leech-docs/blob/main/smart-contracts.md

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

Code quality
The total Code Quality score is 10 out of 10.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and user interactions are covered with tests.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

29 December 2022 1 0 2 0

25 January 2023 0 0 0 0

7 February 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Not Relevant

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Not Relevant

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not Relevant

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

System Overview

CSS_LeechProcol is a mixed-purpose system with the following contracts:
● Context.sol - Provides information about the current execution

context.
● Farm.sol - Allows users to deposit and withdraw funds.
● FarmCore.sol - Contains setter and getter functions for storage

variables.
● Ownable.sol - Restricts and controls access to specific functions.
● IERC20.sol - An interface of ERC20 token.

Privileged roles
● The admin of the Farm can block and unblock user from interacting

with smart contract.
● The admin of the FarmCore can set service percent, disable and enable

all functions of the smart contract, set MINTVL, CAPY, MINAPY, farm
service, farm pool and farm pair.

● The owner of the FarmCore can set withdraw address, start and end the
moving from farm to farm, add and remove admins.

Risks
● In case of an admin keys leak, an attacker can lock access to funds

that belong to users.

www.hacken.io
11

Findings

Critical

No critical severity issues were found.

High

H01. Highly Permissive Role Access

The owners of the project can set deposit and withdraw addresses, set
service percent, start and stop farm, enable and disable services,
remove and add admins, set farm pairs and pools, block and unblock
users.

Path: ./contracts/*

Recommendation: Add highly permissive functionality to the public
documentation.

Status: Fixed (documentation link)

H02. Checks-Effects-Interactions Pattern Violation

The code violates the CEI pattern. This lowers code quality and can
lead to reentrancy attacks.

Path: ./contracts/Farm.sol: deposit();

Recommendation: Refactor code to fit CEI pattern.

Status: Fixed (revised commit: f68f292)

Medium

No medium severity issues were found.

Low

L01. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Path: ./contracts/*

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (revised commit: f68f292)

www.hacken.io
12

https://github.com/Leech-Protocol/leech-docs/blob/main/smart-contracts.md

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
13

