
Customer: Dorado Holding Limited
Date: January 26, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Dorado Holding Limited

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type ERC20 tokens; Staking; Vesting; DEX (Margin Trading, Order Book)

Platform EVM

Language Solidity

Methodology Link

Website https://www.vela.exchange/

Changelog

14.11.2022 – Review #1
30.11.2022 - Review #2
28.12.2022 - Review #3
06.01.2023 - Review #4.1
13.01.2023 - Review #4.2
26.01.2023 - Review #5

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.vela.exchange/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 9

System Overview 12

Findings 16

Disclaimers 53

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Dorado Holding Limited (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

Review #1 scope

Repository https://github.com/VelaExchange/vela-contracts

Commit D3defe4d6b62b48fdb9d299d72c9f020761aa4a0 (19 Oct 2022)

Documentation https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/HbajZ
Qp8nE2WzkXt1zhK/ (21 Oct 2022)

Contracts File: contracts/**/*.sol

Review #2 scope

Repository https://github.com/VelaExchange/vela-contracts

Commit 4c64473e39bcdfd54aadb65cfe60d702a51cd07b (17 Nov 2022)

Documentation https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/Ga5jD
zCyDWh4GHOFBuml/ (17 Nov 2022)

Contracts File: contracts/**/*.sol

Review #3 scope

Repository https://github.com/VelaExchange/vela-contracts

Commit 86ed413f79701bdeccbdb193835492c98662bfa7 (12 Dec 2022)

Documentation https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/572iD
PvehIVzwPTc531b/ (12 Dec 2022)

Contracts File: contracts/**/*.sol

Review #4.1 scope

Repository https://github.com/VelaExchange/vela-contracts

Commit 90d7913b36ca9b4f5bb00afd9e66cc66fca3e979 (04 Jan 2023)

Documentation https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/AjrCo
1QmEQ3fKoucIokD/ (04 Jan 2023)

www.hacken.io
4

https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/HbajZQp8nE2WzkXt1zhK/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/HbajZQp8nE2WzkXt1zhK/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/Ga5jDzCyDWh4GHOFBuml/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/Ga5jDzCyDWh4GHOFBuml/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/572iDPvehIVzwPTc531b/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/572iDPvehIVzwPTc531b/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/AjrCo1QmEQ3fKoucIokD/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/AjrCo1QmEQ3fKoucIokD/

Contracts File: contracts/**/*.sol

Review #4.2 scope

Repository https://github.com/VelaExchange/vela-contracts

Commit 81c3213e9f3da9fceff6b78ae6a23fc776709ca9 (13 Jan 2023)

Documentation https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/qF45v
ljTvy9uJk4psY88/ (14 Jan 2023)

Contracts File: contracts/**/*.sol

Review #5 scope

Repository https://github.com/VelaExchange/vela-contracts

Commit 2fcde6212f48fdd51b5d7c2e68883d12b347d27f (22 Jan 2023)

Documentation https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/gAQUR
W3OPuNVbuDu8g5W/ (25 Jan 2023)

Contracts File: contracts/**/*.sol

www.hacken.io
5

https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/qF45vljTvy9uJk4psY88/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/qF45vljTvy9uJk4psY88/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/gAQURW3OPuNVbuDu8g5W/
https://app.gitbook.com/s/LupLtausi1b6bKXJPlbN/~/revisions/gAQURW3OPuNVbuDu8g5W/

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● There is no NatSpec, but the main documentation book has a similar
contract/functions description.

● The doc is written mostly in a conversational style, sometimes lacks
formality and rigor, but the overall level of detail is satisfactory.

Code quality
The total Code Quality score is 4 out of 10.

● Coding best practices are violated, there are cases of: naming
convention violation, member order convention violation, missing
visibility/mutability modifiers, Solidity type system is not properly
utilized.

● Particular examples are listed in Low issues.

Test coverage
Test coverage of the project is 92.89% (branch coverage).

● Some cases are not tested.
● Each test file is exactly one test, even though it looks like there

are many small tests inside a file; the small tests share the same
state within a file; therefore, they cannot be considered as separate
tests.

● There are invocations of code whose effects are not checked (one way
or another) in the tests.

● Only a narrow basic set of parameters is tested for a given
functionality.

Security score
As a result of the audit, the code contains 0 critical, 0 high, 2 medium
and 12 low severity issues. The security score is 8 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 7.1.

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Table. The distribution of issues during the audit

Review # Low Medium High Critical

1 15 3 14 3

2 9 0 8 0

3 9 0 5 1

4.1, 4.2 22 9 28 0

5 12 2 0 0

www.hacken.io
8

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Failed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Failed

www.hacken.io
9

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Failed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.
Hacken Comment: users' funds can be
locked or burned by the project
privileged roles. Affected assets:
vUSDC, esVELA (Escrowed VELA), VLP (Vela
LP). VELA (Vela) token could not be
burned or locked from a specific
account.

Failed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Failed

Style guide
violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
11

System Overview

Vela - is a margin trading platform, with the core functionality
implemented in smart contracts. Tokens are deposited and converted to an
internal pseudo-USD token called vUSD. vUSD is the ubiquitous currency in
the trading subsystem: all token trading pairs are against vUSD, user
balances are in vUSD. Withdrawing funds from trading entails converting
vUSD to any registered token of choice. Registered tokens - are those for
which there is price feed in the oracle. The price oracle is managed
exclusively by Vela.

In trading, there is the concept of “position”, which is a tuple of:
- Token to trade
- Whether to trade as long or as short
- The address of the trader

Each position has its unique ID, positions with the same parameters have
different IDs.

The core trading functionality boils down to 2 functions:
- Add funds to a position at the current oracle price aka “increase

position”. Each addition specifies the amount of collateral added,
and the amount borrowed.

- Remove some or all funds from a position known as “decrease
position”. The gain/loss is materialized against the current oracle
price.

On top of the core functionality, there is the order book with common order
features like “limit” and ”stop” prices, “take profit” and ”stop loss”
prices with configurable position decrease percentages.

Vela has vesting and staking - it allows a user to temporarily lock up
funds in exchange for gradually received rewards. Staking some tokens
decreases the trading fees for a staker. Vela has a set of own tokens,
which are distributed as rewards or given in exchange for locking other
tokens in the platform.

More details are in the documentation (most recent publicly available
version): https://vela-exchange.gitbook.io/vela-knowledge-base/

Contracts Summary
● access/Governable.sol - Common ‘gov’ role implementation. The role

can be transferred.
● access/Constants.sol - All the constants in the project.
● core/Multicall.sol - A library code for atomically executing multiple

contract calls, unused.
● core/PriceManager.sol - The highest-level price data facade,

delegates to VaultPriceFeed internally.

www.hacken.io
12

https://vela-exchange.gitbook.io/vela-knowledge-base/

● core/SettingsManager.sol - The host of most configuration parameters,
used in different contracts.

● core/TriggerOrderManager.sol - The API/implementation for “take
profit” and “stop loss” prices.

● core/Vault.sol - Core trading functionality (increase/decrease a
position), position management, staking (a registered token in, VLP
out).

● core/VaultPriceFeed.sol - Aggregate price oracle, composed of
individual token price oracles.

● core/VaultUtils.sol - A collection of internal utilities used by
Vault.

● oracle/FastPriceFeed.sol - A simple price get/set contract i.e. a
price oracle contract.

● staking/ComplexRewardPerSec.sol - A utility contract that implements
staking reward distribution for TokenFarm.

● staking/TokenFarm.sol - Vesting and staking.
● tokens/BaseToken.sol - Abstract ERC20 token contract with mint/burn

functionality (descendants decide on whether they will use
mint/burn).

● tokens/MintableBaseToken.sol - Abstract ERC20 token contract with
mint/burn functionality. Introduces ‘minter’ role that can mint/burn.

● tokens/eVela.sol - Extends MintableBaseToken.
● tokens/VLP.sol - Extends MintableBaseToken.
● tokens/vUSDC.sol - Mintable and burnable token contract (not

transferable).
● tokens/VELA.sol - ERC20 mintable token. Implements EIP-2612,

EIP-2771. Supports pausing and unpausing (pausing blocks all
transfers). Has a function to withdraw any ERC20 token accidentally
sent to the contract itself.

Privileged Roles
● core/PriceManager.sol

○ owner: setTokenConfig(..)
● core/SettingsManager.sol

○ gov: setFeeManager(..), setVaultSettings(..),
setCloseDeltaTime(..), setCustomFeeForUser(..),
setDelayDeltaTime(..), setDepositFee(..), setEnableDeposit(..),
setFundingInterval(..), setFundingRateFactor(..),
setLiquidateThreshold(..), setLiquidationFeeUsd(..),
setMarginFeeBasisPoints(..), setMaxBorrowAmountPerAsset(..),
setMaxBorrowAmountPerSide(..), setMaxBorrowAmountPerUser(..),
setPositionManager(..), setReferEnabled(..), setReferFee(..),
setStakingFee(..)

● core/Vault.sol

www.hacken.io
13

○ owner: setVaultSettings(..)
○ manager known as “position manager”:

confirmDelayTransaction(..), triggerPosition(..),
updateTrailingStop(..)

● core/VaultPriceFeed.sol
○ gov: setTokenConfig(..)

● oracle/FastPriceFeed.sol
○ gov: setAdmin(..)
○ admin: setDescription(..), setLatestAnswer(..)

● staking/ComplexRewardPerSec.sol
○ owner: add(..), addRewardInfo(..), emergencyRewardWithdraw(..),

emergencyWithdraw(..)
● staking/TokenFarm.sol

○ owner: add(..), set(..), updateCooldownDuration(..),
updateRewardTierInfo(..), updateVestingDuration(..)

● tokens/BaseToken.sol
○ gov: setInfo(..)

● tokens/MintableBaseToken.sol
○ gov: setInfo(..), setMinter(..)
○ minter: burn(..), mint(..)

● tokens/eVela.sol
○ gov: setInfo(..), setMinter(..)
○ minter: burn(..), mint(..)

● tokens/VLP.sol
○ gov: setInfo(..), setMinter(..)
○ minter: burn(..), mint(..)

● tokens/vUSDC.sol
○ gov: setInfo(..), addAdmin(..)
○ admin: burn(..), mint(..)

● tokens/VELA.sol
○ DEFAULT_ADMIN_ROLE: disableMetaTxns(..), enableMetaTxns(..)
○ MINTER_ROLE: mint(..)
○ PAUSER_ROLE: pause(..), unpause(..)
○ RESCUER_ROLE: rescueTokens(..)

Risks
● Prices are completely controlled by the platform. Abuse or software

glitches are possible.
● Most of the contracts have ‘gov’ (inherited from

contracts/access/Governable.sol) and/or ‘owner’ (inherited from
@openzeppelin/contracts/access/Ownable.sol) role, which has exclusive
access to some functions, and is meant to be assigned to some
platform-owned address(es). In each contract, ‘gov’ and ‘owner’ can

www.hacken.io
14

be assigned to only one address at a time. If the address is an
externally-owned account, it means there is a single private key to
which the role is assigned, and this key is potentially copied many
times across computers in the platform’s backend infrastructure (e.g.
for horizontally scaling the blockchain clients). It may happen that
the deployment model is such that the same private key is made
‘owner’ or ‘gov’ in all contracts.

‘owner’ or ‘gov’ could also be assigned to smart contracts. The
deployment/configuration is out of scope of this audit; nevertheless,
we note that it would be the most secure to assign ‘owner’ and ‘gov’
to some smart contracts which allow advanced key-management
techniques like hierarchical roles/keys, multisig. If ‘owner’ or
‘gov’ are simply assigned to externally-owned accounts, there is an
increased risk of the private key(s) loss or theft, with severe
consequences. Both ‘owner’ and ‘gov’ can be transferred (by the
bearer of the role); therefore, when the contracts are initially
deployed with the naive EOA key-management approach, it could be
upgraded to a more robust scheme later.

It is worth noting that in contracts/oracle/FastPriceFeed.sol
there is no ‘gov’ transfer mechanism. Instead, every useful action
can only be done by an ‘admin’, and ‘gov’ can only add/remove
‘admin’s. Therefore, it is possible to perform the upgrade to a smart
contract described above by granting ‘admin’ role to the contract;
after this kind of upgrade, it would be best to destroy the original
‘gov’ private key.

● An increase of an open position via Vault.confirmDelayTransaction(..)
is executed at the current oracle price, no matter what it is. It is
dangerous for users, because the price may significantly change
between the moment the transaction is created locally by a user, and
the moment it is actually executed on the chain. The usual remedy for
this is to have some “slippage tolerance” setting for a user e.g. if
the oracle price at the moment of execution differs more than N%
(with respect to the locally observed market price) in the
unfavorable direction - do not execute the order; this feature is
implemented for “market” position opening order type - but not for
increasing an already opened position.

● By design (check the documentation), platform’s high-privilege roles
may manipulate (as well as a block) users’ funds, and supplies of
tokens.

● The frontrunning-protecting delay is only applied to increases of
already opened positions. It is possible to open a position, and thus
call Vault._increasePosition(..) without a delay. This opens a
front-running possibility, mitigated by the fact that there is a long
delay to close a profitable position since the opening (no delay if
the profit is 2%+), which makes it risky to chase a price increase
despite the assumed time edge over the platform.

www.hacken.io
15

● The actual deployment/configuration of the contracts is out of the
scope of audit. The contracts have limited mutability, but the
initial state should be checked against one’s expectations.

www.hacken.io
16

Findings

Critical

1. Access Control Violation

In the VaultUtils contract, the functions takeVUSDIn(..) and
takeVUSDOut(..) allow to mint and burn vUSDC tokens. These functions
are supposed to be accessed only by the contract Vault but are
actually accessible by anybody. Therefore, anybody can mint vUSDC
tokens for free.

Path:

- contracts/core/VaultUtils.sol:takeVUSDIn(..),takeVUSDOut(..)

Recommendation: Access to functions with critical functionality
should be limited.

Found At: Review #1

Status: Fixed (Review #2)

2. Access Control Violation

In withdrawFees(..), anybody can withdraw (e.g. to their benefit) the
value of vUSD from the contract in the equivalent amount of a given
token (if it is registered in PriceFeed)

Path:

- contracts/core/Vault.sol

Recommendation: Access to functions with critical functionality
should be limited. Contracts that are used only for test purposes
should be excluded from the scope.

Found At: Review #1

Status: Fixed (Review #2)

3. Access Control Violation

In Token, anybody can mint tokens for free with no access
restriction. However, it is not clear if this contract will be used
in production.

Path:

- contracts/tokens/Token.sol:mint(..),withdrawToken(..)

Recommendation: Access to functions with critical functionality
should be limited. Contracts that are used only for test purposes
should be excluded from the scope.

Found At: Review #1

Status: Fixed (Review #2)
www.hacken.io

17

4. Invalid Calculations

Assume Vault.totalVLP != 0. When a user calls Vault.stake(..) for the
first time, when the execution gets inside Vault._updateReward(..),
rewardAmount will be 0, because user.amount will be zero (it is
increased after this function is called). Therefore, line 627 will
not be executed, and user.lastFeeReserves will be left as 0. The
second time the user calls Vault.stake(..),
feeReserves.sub(user.lastFeeReserves) at line 621 will be equal to
feeReserves i.e. the user will claim the reward as if he were a
staker from the very beginning (when feeReserves were 0).

Disclaimer: It is likely that this behavior was not intended. The
correct behavior does not follow the provided documentation.

Path:

- contracts/core/Vault.sol:_updateReward(..)

Recommendation: Review the algorithm and test it thoroughly to be
sure it is working as intended.

Found At: Review #3

Status: Fixed (Review #4.1)

High

1. Funds Lock

Native coins and tokens should have mechanisms of their withdrawal
from the contract if they are accepted by the contract.

Path:

- contracts/core/Router.sol

Recommendation: Implement withdrawal mechanism of native coin and
clarify the purpose of this receive function.

Found At: Review #1

Status: Fixed (Review #2)

2. Invalid Hardcoded Value

The getTier(..) function returns the fee percentage with discount
depending on the amount staked on the contract. If the amount staked
is between 100 000 and 250 000, the function returns 20 instead of
100 - 20.

Path:

- contracts/staking/TokenFarm.sol:getTier(..)

Recommendation: Hardcoded values should be correct.

Found At: Review #1
www.hacken.io

18

Status: Fixed (Review #2)

3. Funds Lock Possibility

If the transfer at contracts/staking/TokenFarm.sol:552 fails, the due
redemption of the vested amount is blocked. It is not guaranteed that
the contract will always have enough of claimableToken to support
that transfer.

Because the transfer of claimableToken is a bonus for vesting, and
the primary amount that is expected to be returned in the vesting
withdrawal is the unlocked amount of previously vested token, there
are reasons to think that the failure to transfer claimableToken
should not block the primary transfer.

Path:

- contracts/staking/TokenFarm.sol:_claim(..)

Recommendation: Document this possibility or make the failure of the
transfer of claimableToken non-critical to the success of the vesting
claim transaction.

Found At: Review #1

Status: Fixed (Review #5)

4. Highly Permissive Role Access

In BetaTrading owner can burn vUSDC tokens from any user without
permission using the upgradeBetaTrading(..) function.

Path:

- contracts/core/BetaTrading.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #2)

5. Highly Permissive Role Access

An “admin” of vUSDC can burn tokens arbitrarily. It is possible to
burn user’s tokens without user allowance.

A “minter” of MintableBaseToken can burn tokens arbitrarily. It is
possible to burn user’s tokens without user allowance.

VLP and eVELA are implementing MintableBaseToken. Therefore, this
issue applies for these two tokens.

Paths:

- contracts/tokens/MintableBaseToken.sol
- contracts/tokens/vUSDC.sol

www.hacken.io
19

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #4.1)

6. Highly Permissive Role Access

An “admin” of vUSDC can mint tokens arbitrarily. It is possible to
mint vUSDC and use them in the Vault contract to retrieve other
users' funds through the withdraw function.

Path:

- contracts/tokens/vUSDC.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #4.1)

7. Highly Permissive Role Access

The owner can create pools with arbitrary staking/reward tokens,
which in turn may overlap with some tokens that the contract has
funds in. By using rescueFunds the owner can withdraw the whole
contract’s balance of any token (for example, everything that users
staked) to their benefit.

Path:

- contracts/staking/TokenFarm.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #3)

8. Highly Permissive Role Access

The owner can set an arbitrarily high unbondingPeriod, which would
block “unlocked” users’ withdrawals.

Path:

- contracts/staking/TokenFarm.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #3)

www.hacken.io
20

9. Highly Permissive Role Access

vlpRate in Vault can be changed freely by the owner. It could be set
to small/big values to the owner’s benefit, as well as to 0 to block
the unstake(..) function.

Path:

- contracts/staking/Vault.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #3)

10. Highly Permissive Role Access

The owner can set vaultUtils arbitrarily. It is possible for the
owner to set an implementation of IVaultUtils that significantly
affects the logic concerning users’ funds.

Path:

- contracts/core/Vault.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #2)

11. Highly Permissive Role Access

An admin may use recoverClaim(..) to harvest rewards of any account
in their favor.

Path:

- contracts/tokens/YieldToken.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #2)

12. Highly Permissive Role Access

The owner can use setTokenConfig(..) to manipulate tokenDecimals or
minProfitBasisPoints for its own benefit or to harm users
financially.

Path:

- contracts/core/Vault.sol
www.hacken.io

21

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #3)

13. Highly Permissive Role Access

The owner can use setRewardRate(..) to set the fees arbitrarily
high/low, for own benefit or at the expense of normal users.

Path:

- contracts/core/Vault.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #4.1)

14. Highly Permissive Role Access

The owner can use setFees(..) to set minProfitTime so high that it
would delay trading profits effectively forever. To ensure this, the
owner can use setTokenConfig(..) to set minProfitBasisPoints to a
high enough value.

Path:

- contracts/core/Vault.sol

Recommendation: Owners should not have access to funds that belong to
users or provide specific documentation.

Found At: Review #1

Status: Fixed (Review #3)

15. Non-Finalized Code

The production code should not contain any functions or variables
that are being used solely in the test environment. This will allow
malicious parties to manipulate the code or users to trigger them
accidentally.

Path:

- contracts/staking/TokenFarm.sol:getTierTest(..)

Recommendation: Remove all the code that is not used in production.

Found At: Review #2

Status: Fixed (Review #3)

16. Invalid Calculations

www.hacken.io
22

If tierLevels.length > 2, the code will never use
tierPercents[tierPercents.length - 2] (second last tier percent).

However, any possible desired result of getTier(..) can be achieved
by setting the right values with updateRewardTierInfo(..).

The problem is that those values need to respect the unconventional
layout dictated by the algorithm, which can lead to unintended and
unpredictable behavior.

Note: updateRewardTierInfo ensures that tierLevels.length ==
tierPercents.length.

Path:

- contracts/staking/TokenFarm.sol:getTier(..)

Recommendation: Review the algorithm and test it thoroughly to be
sure it is working as intended.

Found At: Review #2

Status: Fixed (Review #4.1)

17. Requirements Violation

The documentation says that “$eVELA is neither tradable nor
transferable.” but the eVela.sol implements a transfer(..) function
and a transferFrom(..) function through BaseToken.sol.

Path:

- contracts/tokens/eVela.sol

Recommendation: The code should not violate requirements provided by
the Customer.

Found At: Review #3

Status: Fixed (Review #4.1)

18. Non-Finalized Code

The production code should not contain any functions or variables
that are being used solely in the test environment. This will allow
malicious parties to manipulate the code or users to trigger them
accidentally.

Path:

- contracts/core/Vault.sol: Hardhat console import

Recommendation: Remove all the code that is not used in production.

Found At: Review #3

Status: Fixed (Review #4.1)

www.hacken.io
23

19. Invalid Logic

The condition of the check at line 484 is equivalent to:
!pool.enableLock || user.status != Status.UNLOCKED ||
user.endTimestamp <= block.timestamp

Consequently, if the lock is enabled, and a user is locked, they can
withdraw.

Disclaimer: In the previously audited version of the code, this was
not allowed, therefore we raise this as a likely issue. The locking
logic is not described in the documentation attached to the audit.

Path:

- contracts/staking/TokenFarm.sol:_withdraw(..)

Recommendation: Review the code fragment and test it thoroughly to be
sure it is working as intended.

Found At: Review #3

Status: Fixed (Review #4.1)

20. Funds Draining Possibility

Anybody can generate an endless number of new accounts for the sake
of calling BetaTrading.claim(..), and getting vUSD. If claimAmount is
small enough, it may be not financially viable (due to gas fees) to
perform the attack; there are no definitions in the code or
documentation that specify what claimAmount is going to be. Even for
moderately low values of claimAmount, the attack could be performed
despite the gas costs to drain the beta wallet and deny the service
for honest beta users.

Path:

- contracts/core/BetaTrading.sol:claim(..)

Recommendation: The giveaway amounts should be distributed over
identities that have been verified (website registration, email
verification, anti-bot verification, etc.).

Found At: Review #4.1

Status: Fixed (Review #5)

21. Incorrect Logic (Requirements Violation)

The check at contracts/core/TriggerOrderManager.sol:202 should be:

_isLong && (_tpTriggeredAmounts[i] != 0 || price < _tpPrices[i])

The check at contracts/core/TriggerOrderManager.sol:204 should be:

!_isLong && (_tpTriggeredAmounts[i] != 0 || price > _tpPrices[i])

The check at contracts/core/TriggerOrderManager.sol:209 should be:
www.hacken.io

24

_isLong && (_slTriggeredAmounts[i] != 0 || price > _slPrices[i])

The check at contracts/core/TriggerOrderManager.sol:211 should be:

!_isLong && (_slTriggeredAmounts[i] != 0 || price < _slPrices[i])

Path:

- contracts/core/TriggerOrderManager.sol:validateTriggerOrdersDat
a(..)

Recommendation: Fix the logical expressions.

Found At: Review #4.1

Status: Fixed (Review #5)

22. Invalid Hardcoded Value (Requirements Violation)

The check at contracts/core/VaultUtils.sol:361 should be:

_triggerPrices[2] == 1

or

_triggerPrices[2] == TRAILING_STOP_TYPE_PERCENT

Path:

- contracts/core/VaultUtils.sol:361

Recommendation: Fix the hardcoded value, use variables/constants
instead of hardcoded literals.

Found At: Review #4.1

Status: Fixed (Review #5)

23. Incorrect Logic (Requirements Violation)

The check at contracts/core/VaultUtils.sol:416 should be:

!_isLong && order.stpPrice >= price

Path:

- contracts/core/VaultUtils.sol:validateTrigger(..)

Recommendation: Fix the condition.

Found At: Review #4.1

Status: Fixed (Review #5)

24. Missing Access Control

The function contracts/core/Vault.sol:deposit(..) can be called by
anybody in someone’s name (by providing someone’s address as the
first parameter). The function will fail if the address from the

www.hacken.io
25

first parameter did not provide enough of ERC20 allowance to Vault
contract.

Nevertheless, the ERC20-allowance-based authorization is not enough
here to prevent exploitation.

For an externally-owned account (which is the case for many if not
most of Vela users), calling Vault:stake(..) or Vault:deposit(..)
requires 2 separate transactions: allowance-creating transaction, and
the transaction that does the actual call to the contract; these two
steps can be done atomically in single transaction only via a
special-purpose intermediary smart contract.

There’s another function Vault:stake(..) in the contract, which is
similar to Vault:deposit(..) in the way it was described.

An attacker could monitor the allowance-creating transactions of Vela
users, and issue calls to Vault:deposit(..) or Vault:stake(..) in
their name with the goal of calling the function that a user did not
intend to call.

In result, users’ funds would be burned for something they did not
want, and they would be denied the service they wanted.

This attack could be executed despite the Gas costs with the goal of
discrediting Vela.

Paths:

- contracts/core/Vault.sol:deposit(..)
- contracts/core/Vault.sol:stake(..)

Recommendation: Implement a proper access control.

Found At: Review #4.1

Status: Fixed (Review #5)

25. Requirements Violation

The calculation at contracts/core/SettingsManager.sol:266 does not
correspond to the documentation, which states the formula:

fundingRate = fundingRateFactor * ((LongOI - ShortOI) / (LongOI +
ShortOI))

Path:

- contracts/core/SettingsManager.sol:getNextFundingRate(..)

Recommendation: Either fix the documentation or change the code to
conform to it.

Found At: Review #4.1

Status: Fixed (Review #5)

26. Incorrect Logic
www.hacken.io

26

The documentation says that to decrease or close a position one of
the following must hold:

- The position is not profitable
- The delay has passed
- The price has changed 2% or more since the opening

The last point was corrected by the Vela team during the audit to
state: the price has increased 2%+ in the profitable direction.

The checks in
contracts/core/VaultUtils.sol:validateDecreasePosition(..), namely
the if statement at line 278 only checks that the price went up 2%
regardless of whether the position is long or short.

It should be fixed to return true either if the position is long, and
the price went up 2%+, or if the position is short, and the price
went down 2%+.

Path:

- contracts/core/VaultUtils.sol:validateDecreasePosition(..)

Recommendation: Apply the mentioned fix.

Found At: Review #4.1

Status: Fixed (Review #5)

27. Unfinalized Code

Paths:

- contracts/core/TriggerOrderManager.sol:8: Hardhat console
import

- contracts/core/Vault.sol:20: Hardhat console import
- contracts/core/VaultUtils.sol:15: Hardhat console import
- contracts/staking/ComplexRewarderPerSec.sol:11: Hardhat console

import
- contracts/staking/TokenFarm.sol:12: Hardhat console import

Recommendation: Remove non-production code.

Found At: Review #4.1

Status: Fixed (Review #5)

28. Highly Permissive Role Access

Token prices can be manipulated by changing tokenDecimals. Moreover,
tokenDecimals should not change for a token, similarly to
ERC20.decimals(..).

Path:

- contracts/core/PriceManager.sol:setTokenConfig(..)

www.hacken.io
27

Recommendation: Document this possibility or allow setting token
config no more than once per token.

Found At: Review #4.1

Status: Fixed (Review #5)

29. Highly Permissive Role Access

closeDeltaTime can be changed at any time by the bearer of ‘gov’
role, and it does not have an upper or lower bound. It can be set in
a way that does not allow users to decrease (exit from) their
positions effectively forever.

Path:

- contracts/core/SettingsManager.sol:setCloseDeltaTime(..)

Recommendation: Add explicit bounds check for the value.

Found At: Review #4.1

Status: Fixed (Review #5)

30. Highly Permissive Role Access

depositFee can be changed at any time by the bearer of ‘gov’ role,
and it does not have an upper or lower bound. It can be set to 100%
to fully consume amounts being transferred as the deposits.

Path:

- contracts/core/SettingsManager.sol:setDepositFee(..)

Recommendation: Add explicit bounds check for the value.

Found At: Review #4.1

Status: Fixed (Review #5)

31. Highly Permissive Role Access

liquidateThreshold can be changed at any time by the bearer of ‘gov’
role, and it does not have an upper or lower bound. It can be set to
a value that allows liquidating any position of any user.

Path:

- contracts/core/SettingsManager.sol:setLiquidateThreshold(..)

Recommendation: Add explicit bounds check for the value.

Found At: Review #4.1

Status: Fixed (Review #5)

32. Highly Permissive Role Access

www.hacken.io
28

stakingFee can be changed at any time by the bearer of ‘gov’ role,
and it does not have an upper or lower bound. It can be set to 100%
to fully consume the amounts that are being transferred to the
staking.

Path:

- contracts/core/SettingsManager.sol:setStakingFee(..)

Recommendation: Add explicit bounds check for the value.

Found At: Review #4.1

Status: Fixed (Review #5)

33. Highly Permissive Role Access

The check at contracts/core/Vault.sol:393 will block users’ ability
to get their assets back, if the settingsManager.isStaking flag is
activated (which can be done only by the platform).

Path:

- contracts/core/Vault.sol:unstake(..)

Recommendation: Document the platform’s ability to block user assets
or remove the ability.

Found At: Review #4.1

Status: Fixed (Review #5)

34. Highly Permissive Role Access

The check at contracts/core/Vault.sol:427 will block users’ ability
to get their assets back, if the settingsManager.isStaking flag is
activated (which can be done only by the platform).

Path:

- contracts/core/Vault.sol:withdraw(..)

Recommendation: Document the platform’s ability to block user assets
or remove the ability.

Found At: Review #4.1

Status: Fixed (Review #5)

35. Highly Permissive Role Access

The function contracts/core/Vault.sol:setVaultSettings(..) allows the
‘owner’ to change the implementation of priceManager,
settingsManager, triggerOrderManager, and vaultUtils. This could be
abused to gain at the expense of users.

Path:

www.hacken.io
29

- contracts/core/Vault.sol:setVaultSettings(..)

Recommendation: Document this ability explicitly or allow calling the
function only once.

Found At: Review #4.1

Status: Fixed (Review #5)

36. Highly Permissive Role Access

The if statement at contracts/tokens/BaseToken.sol:59 allows a bearer
of ‘handler’ role to use anybody’s balance without the allowance.

Path:

- contracts/tokens/BaseToken.sol:transferFrom(..)

Recommendation: Document this ability explicitly or remove the
functionality.

Found At: Review #4.1

Status: Fixed (Review #5)

37. Highly Permissive Role Access

The if statement at contracts/tokens/BaseToken.sol:113 means that the
bearer of ‘gov’ role can disable the ability to transfer (i.e. use
the asset in a meaningful way) for everybody who does not have
‘handler’ role.

Path:

- contracts/tokens/BaseToken.sol:_transfer(..)

Recommendation: Document this ability explicitly or remove the
functionality.

Found At: Review #4.1

Status: Fixed (Review #5)

38. Highly Permissive Role Access

The bearer of ‘owner’ role can set use
contracts/staking/TokenFarm.sol:updateCooldownDuration(..) at any
moment to set cooldownDuration arbitrarily high to block un-staking
for any period of time.

Path:

- contracts/staking/TokenFarm.sol:updateCooldownDuration(..)

Recommendation: Check explicit bounds for the parameter in the
setter.

Found At: Review #4.1

www.hacken.io
30

Status: Fixed (Review #5)

39. Highly Permissive Role Access

Token prices can be manipulated by changing priceDecimals. Moreover,
priceDecimals should not change for a token, similarly to
ERC20.decimals(..).

Path:

- contracts/core/VaultPriceFeed.sol:setTokenConfig(..)

Recommendation: Document this possibility or allow setting token
config no more than once per token.

Found At: Review #4.1

Status: Fixed (Review #5)

40. Highly Permissive Role Access

The bearer of ‘owner’ role can use
contracts/staking/TokenFarm.sol:updateVestingDuration(..) at any
moment to arbitrarily prolong the vesting lock period represented by
vestingDuration (and hence reduce individual claim amounts).

Path:

- contracts/staking/TokenFarm.sol:updateVestingDuration(..)

Recommendation: Check explicit bounds for the parameter in the
setter.

Found At: Review #4.1

Status: Fixed (Review #5)

41. Highly Permissive Role Access

The bearer of ‘PAUSER’ role can use
contracts/tokens/VELA.sol:pause(..) to block transfers of the token.

Path:

- contracts/tokens/VELA.sol:_beforeTokenTransfer(..)

Recommendation: Document the possibility explicitly or remove the
mentioned functionality.

Found At: Review #4.1

Status: Fixed (Review #5)

42. Missing Access Control

The functions addManyToWhitelist(..) and removeManyFromWhitelist(..)
have no access control, and allow anybody to add/remove somebody’s
trusted addresses - those that are allowed to deposit and stake in
Vault on behalf of the one who entrusted it to them.

www.hacken.io
31

Path:

- contracts/core/SettingsManager.sol

Recommendation: Implement a proper access control

Found At: Review #4.2

Status: Fixed (Review #5)

43. Incorrect Constant Value

The definition at contracts/access/Constants.sol:23 reads:

uint256 public constant MAX_FEE_BASIS_POINTS = 500; // 5%

The comment next to the value of the constant says “5%”, but it is
actually 0.5%, because the value is divided by 10^5 (the value of
BASIS_POINTS_DIVISOR) in the code, when it is used in calculations.
The fact that this is an issue was confirmed with the Vela team.

Path:

- contracts/access/Constants.sol:23

Recommendation: Correct the value.

Found At: Review #4.2

Status: Fixed (Review #5)

Medium

1. Usage of Built-in Transfer

The built-in transfer(..) and send(..) functions use a hard-coded
amount of Gas. In case when the receiver is a contract with receive
or fallback function, the transfer may fail due to the “out of Gas”
exception.

Path:

- contracts/tokens/Token.sol:withdraw(..)

Recommendation: Replace transfer(..) and send(..) functions with call
or provide special mechanism for interacting with a smart contract.

Found At: Review #1

Status: Fixed (Review #2)

2. Ignored Error

The function ignores the return value of the transfer.

Path:

- contracts/tokens/Token.sol:withdrawToken(..)

www.hacken.io
32

Recommendation: Propagate the return value up, so that the caller of
withdrawToken(..) could react to an error.

Found At: Review #1

Status: Fixed (Review #2)

3. Missing Events

It is recommended to emit events after changing values. This will
make it easy for everyone to notice such changes.

Path:

- contracts/access/Governable.sol:setGov(..)
- contracts/core/BetaTrading.sol:updateExpirationTime(..),updateC

laimAmount(..),claim(..)
- contracts/core/Router.sol:setGov(..)
- contracts/core/Vault.sol:initialize(..),setFees(..),

setFundingRate(..),setRewardRate(..)
- contracts/core/VaultPriceFeed.sol:setGov(..),setSpreadThreshold

BasisPoints(..),setPriceSampleSpace(..),setMaxStrictPriceDeviat
ion(..)

- contracts/tokens/BaseToken.sol:setGov(..)
- contracts/tokens/vUSDC.sol:setGov(..)
- contracts/tokens/YieldToken.sol:setGov(..)
- contracts/tokens/YieldTracker.sol:setGov(..)

Recommendation: Implement event emits after changing contract values.

Found At: Review #1

Status: Fixed (Review #2)

4. Incorrect Logic

When a position is decreased via
contracts/core/Vault.sol:_decreasePosition(..), there is the case
when the fee has to be deducted from the collateral: see the lines
606-609 in the function _reduceCollateral(..).

The fact that this situation happened is not properly recorded in the
returned values of _reduceCollateral(..): usdOut is equal to
usdOutAfterFee, which makes the fee equal to 0 in the eyes for the
caller of this function.

The further execution of _decreasePosition(..) will proceed as if the
fee is simply 0 i.e. it will not be transferred to the system, even
though it has been deducted from the position collateral.

Path:

- contracts/core/Vault.sol:_decreasePosition(..),_reduceCollatera
l(..)

www.hacken.io
33

Recommendation: Make sure the fee is correctly processed under the
described circumstances.

Found At: Review #4.1

Status: Fixed (Review #5)

5. Missing Validation (Requirements Violation)

The documentation states that it is not valid if a stop order price
is already triggered at the moment of order creation. This is not
checked in the code. The function where it would be the most
appropriate to do the validation is VaultUtils.validatePosData(..).

Path:

- contracts/core/VaultUtils.sol:validatePosData(..)

Recommendation: Do the validation or remove the requirement from the
documentation.

Found At: Review #4.1

Status: Fixed (Review #5)

6. Missing Validation

feeRewardBasisPoints can be changed at any time, and it does not have
an upper bound. It can be set to 100% or more, which would lead to
unintended consequences.

Path:

- contracts/core/SettingsManager.sol:setVaultSettings(..)

Recommendation: Add an explicit upper bound check for the value.

Found At: Review #4.1

Status: Fixed (Review #5)

7. Missing Validation

delayDeltaTime can be changed at any time, and it does not have an
upper or lower bound. It can be set in a way that does not allow
users to increase their positions effectively forever.

Path:

- contracts/core/SettingsManager.sol:setDelayDeltaTime(..)

Recommendation: Add explicit bounds check for the value.

Found At: Review #4.1

Status: Fixed (Review #5)

8. Missing Validation

www.hacken.io
34

fundingInterval can be changed at any time, and it does not have an
upper bound. It can be accidentally set to a value that is too large,
leading to unintended consequences.

Path:

- contracts/core/SettingsManager.sol:setFundingInterval(..)

Recommendation: Add explicit bounds check for the value.

Found At: Review #4.1

Status: Fixed (Review #5)

9. Missing Events

State changes are not tracked with events.

Paths:

- contracts/core/BetaTrading.sol:claim(..)

- contracts/core/BetaTrading.sol:updateClaimAmount(..)

- contracts/core/BetaTrading.sol:updateExpirationTime(..)

- contracts/core/SettingsManager.sol:setVaultSettings(..)

Recommendation: Emit the respective events.

Found At: Review #4.1

Status: Fixed (Review #5)

10. Inconsistent Data

The function contracts/core/Vault.sol:_removeOrderId(..) uses the
delete operator to remove an active position id for a user from the
array in userPositionIds.

The layout of array userPositionIds[account] for some account is [0,
1, 2, …, n], where n is the length of that array minus 1.

delete userPositionIds[account][i] just sets the i-th element to 0,
without actually removing it from the array.

0 is a valid position id, and _removeOrderId(account, 0) will do
nothing at all: it will not change the array, and there will be no
sign that the position/order id 0 was removed.

Path:

- contracts/core/Vault.sol:_removeOrderId(..)

Recommendation: This field is only written (costs extra gas) and
never read in the contracts. Its purpose is to track the set of
active position/order ids and provide the view for the off-chain
Vela’s software. With this in mind, the recommendation is to remove

www.hacken.io
35

it completely, and use events to track the active position ids
off-chain.

Found At: Review #4.1

Status: Fixed (Review #5)

11. Missing Validation

The function contracts/staking/TokenFarm.sol:updateTierInfo(..)
Should verify the sortedness of _levels (ascending) and _percents
(descending). It should verify that each item in _percents is less
than or equal to 100%. The issue is not severe, since the function is
callable only by owner, and any mistakes can be fixed by calling this
function again.

Path:

- contracts/staking/TokenFarm.sol:updateTierInfo(..)

Recommendation: Add the mentioned validations.

Found At: Review #4.1

Status: Reported

12. Missing Validation

In the function
contracts/core/TriggerOrderManager.updateTriggerOrders(..), there is
no limit to the number of trigger prices. One could set a large
number of trigger prices for an order to make it Gas-expensive for
the platform to trigger the order. The issue is not severe, since the
platform’s off-chain order triggering logic could exclude orders
having too many trigger prices by checking the number of trigger
prices using the view function getTriggerOrderInfo(..).

Path:

- contracts/core/TriggerOrderManager.updateTriggerOrders(..)

Recommendation: Add the mentioned validations.

Found At: Review #4.1

Status: Reported

Low

1. Outdated Solidity Version

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version. The project uses compiler version 0.6.12.

Path:

www.hacken.io
36

- contracts/

Recommendation: Use a contemporary compiler version.

Found At: Review #1

Status: Fixed (Review #2)

2. Precision Loss Due To Division

It is considered good practice to keep any data as accurate as
possible. The function has the code which performs division before
multiplication during the calculation. This may lead to a loss of
precision.

Path:

- contracts/core/Vault.sol:getNextFundingRate(..),getDelta(..)

Recommendation: Keep data actual to the current system state, perform
multiplication before division.

Found At: Review #1

Status: Fixed (Review #3)

3. Use of Hard-Coded Values

The function validatePosType takes as argument _posType is using
values 0, 1, 2, and 3 without any explanations.

The function validateLiquidation returns 0, 1, or 2 without any
explanations.

Paths:

- contracts/core/VaultUtils.sol:validatePosType(..),validateLiqui
dation(..)

- contracts/core/Vault.sol:626

Recommendation: Convert these variables into constants.

Found At: Review #1

Status: Fixed (Review #4.1)

4. Single Responsibility Pattern Violation

The same contract should not be responsible for multiple separate
functionalities. Contract complexity is increased, and
maintainability is lowered.

Paths:

- contracts/staking/TokenFarm.sol: staking and vesting could be
split

- contracts/core/Vault.sol: staking, core trading, order
management could be split

www.hacken.io
37

Recommendation: Separate functionality between different contracts.

Found At: Review #1

Status: Reported

5. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path:

- contracts/access/Governable.sol:setGov(..)
- contracts/core/BetaTrading.sol:constructor(..)
- contracts/core/Router.sol:constructor(..),setGov(..)
- contracts/core/Vault.sol:constructor(..),initialize(..),

setPriceFeed(..),setFeeManager(..)
- contracts/core/VaultPriceFeed.sol:setGov(..),setTokens(..),

setChainlinkFlags(..),setPairs(..)
- contracts/core/VaultUtils.sol:constructor(..)
- contracts/tokens/BaseToken.sol:setGov(..)
- contracts/tokens/vUSDC.sol:setGov(..)
- contracts/tokens/YieldToken.sol:setGov(..)
- contracts/tokens/YieldTracker.sol:constructor(..),setGov(..),se

tDistributor(..)

Recommendation: Implement zero address checks.

Found At: Review #1

Status: Fixed (Review #2)

6. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:

- contracts/core/Vault.sol:getPosition(..),getPositionLeverage(..
),getPositionDelta(..),deposit(..), withdraw(..)

- contracts/core/VaultPriceFeed.sol:getPrice(..),getLastPrice(..)
- contracts/core/VaultReader.sol:getVaultTokenInfo(..),getValidat

eInfos(..),getPositions(..)
- contracts/core/VaultUtils.sol:validateLiquidation(..),updateCum

ulativeFundingRate(..),validateTrigger(..),getFundingFee(..),se
tLiquidateThreshold(..)

- contracts/oracle/FastPriceFeed.sol:setAdmin(..),latestAnswer(..
),latestRound(..),setLatestAnswer(..),getRoundData(..),setDescr
iption(..)

www.hacken.io
38

- contracts/oracle/PriceFeed.sol:setAdmin(..),latestAnswer(..),la
testRound(..),setLatestAnswer(..),getRoundData(..)

- contracts/staking/TokenFarm.sol:getTotalVested(..)
- contracts/tokens/Token.sol:mint(..),withdrawToken(..),deposit(.

.),withdraw(..)

Recommendation: Use the external attribute for functions never called
from the contract.

Found At: Review #1

Status: Fixed (Review #2)

7. Duplicate Code

Best practices and optimization are not applied in these contracts.
Duplicate and inefficient code includes (but is not limited to):

Paths:

- Gov functionalities are copy pasted instead of inherited from
Governable.

- struct Position is duplicated at contracts/core/Vault.sol and
contracts/core/VaultUtils.sol.

- contracts/core/VaultUtils.sol:validateTrigger(..),takeVUSDIn(..
),takeVUSDOut(..): repeating patterns that can be extracted.

- contracts/core/Vault.sol:getLastPrice(..): is sometimes called
several times on the same call stack, yet the value it returns
does not change. The value it returns should be reused.

- contracts/core/VaultUtils.sol.validatePositionTPSL(..): can be
significantly simplified/reduced.

Recommendation: Apply best practices.

Found At: Review #1

Status: Fixed (Review #4.1)

8. Unindexed Events

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

Paths:

- contracts/staking/TokenFarm.sol:VestingClaim,VestingDeposit,Ves
tingWithdraw

- contracts/core/Vault.sol:IncreasePosition,LiquidatePosition,Dec
reasePosition,UpdatePosition,ClosePosition,Stake,Unstake

- contracts/core/VaultUtils.sol:TakeVUSDIn,TakeVUSDOut

Recommendation: Use the “indexed” keyword to the event parameters.

Found At: Review #1

Status: Fixed (Review #2)

www.hacken.io
39

9. Variables that Should be Declared Constant

State variables that do not change their value should be declared
constant to save Gas.

Path:

- contracts/core/Vault.sol:liquidityFeeBasisPoints

Recommendation: Declare the above-mentioned variables as constants.

Found At: Review #1

Status: Fixed (Review #2)

10. Commented Code Parts

There are commented parts of code. This reduces code quality.

Path:

- contracts/core/Vault.sol:117,409

Recommendation: Remove commented parts of code.

Found At: Review #1

Status: Fixed (Review #2)

11. State Variables Can Be Declared Immutable

Variables value is set in the constructor. This variable can be
declared immutable.

This will lower the Gas taxes.

Paths:

- contracts/core/Vault.sol:vlp,vUSDC
- contracts/core/BetaTrading.sol:vUSDC
- contracts/core/Router.sol:vault,weather
- contracts/core/VaultUtils.sol:vault,vUSDC
- contracts/staking/TokenFarm.sol:vestingDuration,esToken,claimab

leToken
- contracts/tokens/Token.sol:_name,_symbol,_decimals
- contracts/tokens/YieldTracker.sol:yieldToken

Recommendation: Declare mentioned variables as immutable.

Found At: Review #1

Status: Fixed (Review #3)

12. Unused Code

Paths:

- contracts/staking/libraries/Math.sol

www.hacken.io
40

- contracts/tokens/MockToken.sol
- contracts/core/Vault.sol:hasDynamicFees,taxBasisPoints,isCustom

Fees,collateralAmounts,customFeePoints,tokenBalances: unused or
write-only fields

Recommendation: Remove unused code.

Found At: Review #1

Status: Fixed (Review #3)

13. Inconsistent Naming Convention

Most of the internal functions in the project are prefixed by _.
There are examples which do not follow this rule.

Path:

- contracts/Vault.sol

Recommendation: Apply consistent naming rules.

Found At: Review #1

Status: Fixed (Review #2)

14. Style Guide Violation

The provided projects should follow the official guidelines.

Inside each contract, library or interface, use the following order:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Paths:

- contracts/core/Vault.sol
- contracts/staking/TokenFarm.sol
- contracts/tokens/MintableBaseToken.sol
- contracts/tokens/vUSDC.sol

Functions should be grouped according to their visibility and
ordered:

● constructor
● receive function (if exists)
● fallback function (if exists)
● external
● public
● internal
● private

Within a grouping, place the view and pure functions last.
www.hacken.io

41

Some contracts are not formatted correctly.

Paths:

- contracts/core/Vault.sol
- contracts/core/VaultUtils.sol
- contracts/oracle/FastPriceFeed.sol
- contracts/oracle/PriceFeed.sol
- contracts/staking/TokenFarm.sol
- contracts/tokens/BaseToken.sol
- contracts/tokens/Token.sol
- contracts/tokens/vUSDC.sol
- contracts/tokens/YieldToken.sol

Recommendation: Follow the official Solidity guidelines.

Found At: Review #1

Status: Fixed (Review #2)

15. Inappropriate Typing

TokenFarm calls the burn(..) function on the variable _esToken. This
variable is of type IBoringERC20, but this interface does not have
such a function. The call is done through casting to an incompatible
interface.

Path:

- contracts/staking/TokenFarm.sol

Recommendation: Implement appropriate typing.

Found At: Review #1

Status: Reported

16. Boolean Tautology

There are multiple cases like :

pool.enableLock == false || (pool.enableLock == true && user.status
== Status.LOCKED)

which simplifies to

!pool.enableLock || user.status == Status.LOCKED

Boolean constants can be used directly and do not need to be compared
to true or false.

Path:

- contracts/staking/TokenFarm.sol

www.hacken.io
42

Recommendation: Remove boolean equality, and boolean expressions
whose values can be inferred from the context without executing the
code.

Found At: Review #2

Status: Fixed (Review #4.1)

17. Use of Hard-Coded Values

The hardcoded “1” looks dangerous because it is the position of an
element in an array inside a foreign contract. The assumption that
the right pool will always be the second one created (having position
“1”) is perhaps too strong.

Path:

- contracts/core/Vault.sol:512

Recommendation: Avoid hardcoding values that could be not hardcoded.
If the hardcoded value is a known constant - define it as a constant
or use enums.

Found At: Review #2

Status: Fixed (Review #3)

18. Unused Variable

The following variables are never used.

Paths:

- contracts/staking/TokenFarm.sol:stakedAmounts
- contracts/oracle/PriceFeed.sol:decimals
- contracts/oracle/FastPriceFeed.sol:decimals

Recommendation: Remove unused variables.

Found At: Review #3

Status: Reported

19. Commented Code Parts

There are commented parts of the code. This reduces code quality.

Paths:

- contracts/staking/TokenFarm.sol:118-121
- contracts/core/VaultUtils.sol:154,159

Recommendation: Remove commented parts of code.

Found At: Review #3

Status: Fixed (Review #4.1)

20. Misleading Comments

www.hacken.io
43

There are comments in the code that are factually incorrect.

Path:

- contracts/core/VaultUtils.sol:153

Recommendation: Remove or correct the comments.

Found At: Review #3

Status: Fixed (Review #4.1)

21. Use Of Hard-Coded Values

The value is hardcoded, and it is not clear why exactly “1” is
chosen.

Path:

- contracts/core/VaultUtils.sol:159

Recommendation: Do not hardcode values.

Found At: Review #3

Status: Fixed (Review #4.1)

22. Incorrect Logic

The if condition should be:

user.amount >= tierLevels[i]

This off-by-one error is insignificant, because user.amount is
expected to be huge.

Path:

- contracts/staking/TokenFarm.sol:406

Recommendation: Apply the mentioned fix.

Found At: Review #4.1

Status: Fixed (Review #5)

23. Redundant SafeMath

Since Solidity 0.8, the overflow checks are built in, therefore
SafeMath only introduces double overflow checks, makes code less
readable, and increases code size without benefit. In the cases when
an overflow error needs to have a message, that can be added
separately/explicitly.

Paths:

- contracts/core/PriceManager.sol:10
- contracts/core/SettingsManager.sol:16
- contracts/core/Vault.sol:23

www.hacken.io
44

- contracts/core/VaultPriceFeed.sol:12
- contracts/core/VaultUtils.sol:18

Recommendation: Do not use SafeMath in Solidity 0.8 and above.

Found At: Review #4.1

Status: Fixed (Review #5)

24. Inefficient Code

Paths:

- contracts/core/Vault.sol:lastPosId: the field should be turned
into the single global position id counter, instead of
per-account counters; this is cheaper in Gas and achieves the
same result (generation of unique position ids).

- contracts/core/TriggerOrderManager.sol:executeTriggerOrders(..)
: The code only needs to check either SL or TP prices, but it
checks both. Moreover, the loops could exit early once the
amount percent variable has reached 100%.

- contracts/core/TriggerOrderManager.sol:validateTPSLTriggers(..)
: The code only needs to check either SL or TP prices, but it
checks both. Moreover, the loops could exit early once the
amount percent variable is more than 0.

- contracts/core/TriggerOrderManager.sol:validateTriggerOrdersDat
a(..): The code could exit early on the first encountered
violation, but it proceeds until the end despite violations

- contracts/core/TokenFarm.sol:getTier(..): Since tierLevels are
assumed to be sorted, the code could exit early on the first
match between user.amount and an interval in tierLevels

Recommendation: Apply the mentioned optimisations.

Found At: Review #4.1

Status: Fixed (Review #5)

25. Inefficient Code

Paths:

- contracts/core/TriggerOrderManager.sol:executeTriggerOrders(..)
: if the trigger prices were sorted, it would have been
possible to exit the loops early on the first failure to
trigger a price.

- contracts/core/TriggerOrderManager.sol:validateTPSLTriggers(..)
: if the trigger prices were sorted, it would have been
possible to exit the loops early on the first failure to
trigger a price

- contracts/core/ComplexRewardPerSec.sol:onVelaReward(..):
instead of calculating user.rewardDebt on the line 267, the
code could just remember pool.accTokenPerShare in some field
e.g. user.lastAccTokenPerShare, and then calculate pending on

www.hacken.io
45

the line 243 as user.amount * (pool.accTokenPerShare -
user.lastAccTokenPerShare) / ACC_TOKEN_PRECISION

- contracts/core/TokenFarm.sol:_claim(..): lines 316 and 317
could be replaced with a more simple/efficient calculation:

uint256 totalClaimed = cumulativeClaimAmounts[_account];

uint256 amount = totalClaimed - claimedAmounts[_account];

claimedAmounts[_account] = totalClaimed;

Recommendation: Apply the mentioned optimizations.

Found At: Review #4.1

Status: Reported

26. Precision Loss Due To Division

Division is performed too early or too many times (e.g. a/b/c instead
of a/(b*c)). Division leads to loss of precision; therefore, it
should be avoided or deferred as much as possible.

Paths:

- contracts/core/Vault.sol:342
- contracts/core/Vault.sol:454

Recommendation: Eliminate or defer division as much as possible.

Found At: Review #4.1

Status: Fixed (Review #5)

27. Default Visibility

Paths:

- contracts/core/BetaTrading.sol:betaExpiration
- contracts/core/PriceManager.sol:priceFeed
- contracts/core/TriggerOrderManager.sol:vault
- contracts/core/Vault.sol:priceFeed
- contracts/core/Vault.sol:vlp
- contracts/core/Vault.sol:vUSDC

Recommendation: Add explicit visibility modifier.

Found At: Review #4.1

Status: Fixed (Review #5)

28. Redundant Code

Paths:

www.hacken.io
46

- contracts/staking/interfaces/IFarmDistributor.sol:totalAllocPoi
nt(..): unused function, not implemented anywhere in the
codebase.

- contracts/core/SettingsManager.sol:validatePosition(..): the
return value is unused.

- contracts/core/Vault.sol:UserInfo:lastFeeReserves: the field is
unused.

- contracts/core/VaultUtils.sol:317,319-323: dead code.
- contracts/core/SettingsManager.sol:18-32: the constants are

duplicated in multiple contracts.
- contracts/oracle/PriceFeed.sol: the file is almost completely

identical to contracts/oracle/FastPriceFeed.sol.
- _getPositionKey(..): function is duplicated in multiple

contracts.
- contracts/core/Vault.sol: unused imports.
- contracts/core/VaultUtils.sol: unused imports.
- contracts/staking/TokenFarm.sol: unused imports.
- contracts/core/TriggerOrderManager.sol:executeTriggerOrders(..)

: the code that processes TP prices is almost identical to the
code that processes SL prices, yet it is duplicated for both TP
and SL prices.

- contracts/core/TriggerOrderManager.sol:validateTPSLTriggers(..)
: the code that processes TP prices is almost identical to the
code that processes SL prices, yet it is duplicated for both TP
and SL prices.

- contracts/core/TriggerOrderManager.sol:validateTriggerOrdersDat
a(..): the code that processes TP prices is almost identical to
the code that processes SL prices, yet it is duplicated for
both TP and SL prices.

- contracts/core/VaultUtils.sol:distributeFee(..),takeVUSDIn(..),
takeVUSDOut(..): the methods have the same code pattern that is
duplicated.

- contracts/staking/ComplexRewardPerSec.sol: the transfer pattern
that decides on isNative is duplicated many times.

Recommendation: Eliminate the redundancies.

Found At: Review #4.1

Status: Fixed (Review #5)

29. Dangling Comment

Comments refer to something that does not exist in the code.

Paths:

- contracts/core/PriceManager.sol:26. Fixed (Review #5)
- contracts/core/Vault.sol:275
- contracts/staking/TokenFarm.sol:101

Recommendation: Remove dangling comments.

Found At: Review #4.1
www.hacken.io

47

Status: Fixed (Review #5)

30. Commented Code Parts

Commented-out code may mislead a reader.

Paths:

- contracts/core/Vault.sol:49
- contracts/core/Vault.sol:435

Recommendation: Remove commented-out code.

Found At: Review #4.1

Status: Fixed (Review #5)

31. Inappropriate Naming

Code members are named in a way that does not well represent their
meaning/purpose.

Path:

- contracts/core/Vault.sol:UserInfo:amount: a better name would
be ‘vlpAmount’

- contracts/core/Vault.sol:lastAddedAt: a better name would be
‘lastStakedAt’

- contracts/core/Vault.sol:_increaseTotalUSD(..): a better name
would be ‘_accountDeltaAndFeeIntoTotalUSDC’

- contracts/staking/TokenFarm.sol:totalVestingSupply: a better
name would be ‘totalLockedVestingAmount’

- contracts/staking/TokenFarm.sol:cumulativeClaimAmounts: a
better name would be ‘unlockedVestingAmounts’

- contracts/staking/TokenFarm.sol:lastVestingTimes: a better name
would be ‘lastVestingUpdateTimes’

- contracts/staking/TokenFarm.sol:vestingBalances: a better name
would be ‘lockedVestingAmounts’

- contracts/staking/TokenFarm.sol:_burn(..): a better name would
be ‘_decreaseLockedVestingAmount’

Recommendation: Give the members names that correspond to their
purpose.

Found At: Review #4.1

Status: Fixed (Review #5)

32. Inconsistent Code Formatting

Code formatting is not applied or differs across the codebase.

Path:

- contracts/

Recommendation: Format the code using a tool.

www.hacken.io
48

Found At: Review #4.1

Status: Fixed (Review #5)

33. Redundant Code

Paths:

- contracts/core/Multicall.sol: a copy-pasted library code that
is not used in the other contracts.

- contracts/core/SettingsManager.sol:customFeePoints: the field
is never read in the contracts, only written.

- contracts/tokens/BaseToken.sol:admins: the field is unused.
- contracts/staking/ComplexRewarderPerSec.sol:RewardInfo:startTim

estamp: the field is never read in the contracts, only written;
it can be computed as either pool.startTimestamp or the
previous reward endTimestamp.

- contracts/staking/TokenFarm.sol:totalLockedUpRewards: the field
is unused.

- contracts/staking/TokenFarm.sol:ACC_TOKEN_PRECISION: the field
is unused.

- contracts/oracle/FastPriceFeed.sol:aggregator: the field is
unused.

- contracts/oracle/FastPriceFeed.sol:description: the field is
never read in the contracts, only written.

- contracts/oracle/FastPriceFeed.sol:answers: the field is never
read in the contracts, only written.

- contracts/oracle/FastPriceFeed.sol:latestAts: the field is
never read in the contracts, only written.

- contracts/staking/ComplexRewardPerSec.sol:emergencyRewardWithdr
aw(..): nonReentrant modifier is excessive, because the access
is already controlled with onlyOwner modifier.

- contracts/staking/ComplexRewardPerSec.sol:emergencyWithdraw(..)
: nonReentrant modifier is excessive, because the access is
already controlled with onlyOwner modifier.

- contracts/staking/ComplexRewardPerSec.sol:onVelaReward(..):
nonReentrant modifier is excessive, because the access is
already controlled with onlyDistributor modifier.

- contracts/staking/ComplexRewardPerSec.sol:onVelaReward(..):
nonReentrant modifier is excessive, because the access is
already controlled with onlyDistributor modifier.

- contracts/staking/TokenFarm.sol:336: the code makes an ERC-20
transfer to a beneficiary B, and then measures the difference
between the balance of B after the transfer and before it,
instead of just using the very amount that’s been transferred.

- contracts/core/SettingsManager.sol: unused imports.
- contracts/core/SettingsManager.sol:updateCumulativeFundingRate(

..): duplicate map lookups.
- contracts/core/SettingsManager.sol:validatePosition(..):

duplicate mapping lookups.
- contracts/core/SettingsManager.sol:getNextFundingRate(..):

duplicate mapping lookups.
www.hacken.io

49

- contracts/core/Vault.sol: every time _increasePosition(..) is
called, _collectMarginFees(..) is called right before it, and
then one more time inside it with the same parameters.

- contracts/core/VaultUtils.sol:validatePosData(..): the same
code pattern is repeated for _isLong, and !_isLong.

- contracts/core/VaultUtils.sol:validateTrailingStopInputData(..)
: the same code pattern is repeated for _isLong, and !_isLong.

- contracts/core/VaultUtils.sol:validateTrailingStopPrice(..):
the same code pattern is repeated for _isLong, and !_isLong.

- contracts/core/VaultUtils.sol:validateTrigger(..): the same
code pattern is repeated for _isLong, and !_isLong.

- contracts/staking/ComplexRewardPerSec.sol: the reward formula
calculation is duplicated.

- contracts/staking/TokenFarm.sol:withdraw(..),emergencyWithdraw(
..),_deposit(..): the methods have the same code pattern that
is duplicated.

- contracts/core/Vault.sol: inheriting Ownable is redundant.
- contracts/core/VaultUtils.sol: inheriting Governable is

redundant.

Recommendation: Eliminate the redundancies.

Found At: Review #4.1

Status: Reported

34. Default Visibility

Path:

- contracts/core/VaultUtils.sol:settingsManager

Recommendation: Add explicit visibility modifier.

Found At: Review #4.1

Status: Reported

35. Field Not Marked Constant

Paths:

- contracts/tokens/BaseToken.sol:name: should be constant due to
ERC-20

- contracts/tokens/BaseToken.sol:symbol: should be constant due
to ERC-20

- contracts/tokens/VELA.sol:_maxSupply: field value is hardcoded,
never modified

Recommendation: Add constant modifier to the fields.

Found At: Review #4.1

Status: Reported

36. Field Not Marked Immutable

www.hacken.io
50

Paths:

- contracts/core/VaultUtils.sol:priceManager
- contracts/core/VaultUtils.sol:settingsManager
- contracts/tokens/VELA.sol:_trustedForwarder

Recommendation: Add immutable modifier to the fields.

Found At: Review #4.1

Status: Reported

37. Redundant Logical Expressions

bool foo;

if (someBool) {

foo = true;

} else {

foo = false;

}

is the same as

bool foo = someBool;

Another example:

bool foo;

if (someBool) {

foo = true;

} else {

foo = false;

}

return foo;

is the same as

if (someBool) {

return true;

}

return false;

Or even more simply:

www.hacken.io
51

return someBool;

This category includes boolean expressions, which contain terms whose
value can be inferred from the context. The following code has some
of the described kinds of redundancy.

Paths:

- contracts/core/VaultUtils.sol:validateConfirmDelay(..)
- contracts/core/VaultUtils.sol:validateDecreasePosition(..)
- contracts/core/VaultUtils.sol:validatePosData(..)
- contracts/core/VaultUtils.sol:validateTrailingStopPrice(..)
- contracts/core/VaultUtils.sol:validateTrigger(..): note that

statusFlag is effectively boolean.
- contracts/core/VaultUtils.sol:validateSizeCollateralAmount(..).

Fixed (Review #5)

Recommendation: Eliminate the redundancies.

Found At: Review #4.1

Status: Reported

38. Double Inheritance

The same contract is inherited more than once when it is easy to
avoid.

Path:

- contracts/token/VELA.sol: ERC20 does not need to be an explicit
superclass, because it already comes from ERC20Permit.

Recommendation: Remove double inheritance.

Found At: Review #4.1

Status: Reported

39. Inappropriate Typing

Solidity type system is not used correctly, which reduces the
compiler’s ability to rule out mistakes in the code early.

Paths:

- contracts/oracle/FastPriceFeed.sol:answer: the field’s type
admits negative values, whereas the concept the field
represents does not allow negative values. Fixed (Review #5)

- contracts/staking/TokenFarm.sol: TokenFarm is used as
IFarmDistributor in other contracts, yet it does not implement
the interface explicitly.

Recommendation: Apply the mentioned per-item suggestions.

Found At: Review #4.1

Status: Reported
www.hacken.io

52

40. Solidity Style Guidelines Violation

The guidelines are described at:
https://docsiditylang.org/en/v0.8.17/style-guide.html

Paths:

- contracts/staking/ComplexRewarderPerSec.sol: structs should go
before fields.

- contracts/staking/ComplexRewarderPerSec.sol:ACC_TOKEN_PRECISION
: the field is named like a constant, but it is not one.

Recommendation: Fix the inconsistencies with the guidelines.

Found At: Review #4.1

Status: Reported

www.hacken.io
53

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
54

