
Customer: AugmentLabs
Date: February 28, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
AugmentLabs

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; Staking

Platform EVM

Language Solidity

Methodology Link

Website https://augmentlabs.io/

Changelog
20.01.2023 – Initial Review
16.02.2023 – Second Review
28.02.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12
Critical 12

C01. Token Supply Manipulation 12
High 12

H01. Requirements Violation 12
H02. Requirements Violation 12
H03. Requirements Violation 13
H04. Undocumented Behavior 13
H05. Data Inconsistency 13

Medium 14
M01. Dangerous Strict Zero Equality 14
M02. Owner Privilege Actions 14
M03. Undocumented Behavior 14
M04. Undocumented Functionality 14
M05. Missing Functionality 15
M06. Using Block Number Attribute as a Proxy of Time 15
M07. Best Practice Violation - Unchecked Transfer 15

Low 16
L01. Redundant Modifiers 16
L02. Floating Pragma 16
L03. Style Guide Violation - Implicit State Visibility 16
L04. Style Guide Violation - Visibility Modifiers 16
L05. Style Guide Violation - Incorrect Function Order 17
L06. Style Guide Violation - Unused Function Parameters 17
L07. Unfinished NatSpec 17
L08. Missing Zero Address Validation 18
L09. Unindexed Events 18
L10. Unnecessary Code Complication 18
L11. Missing Zero Check - Uint 18
L12. Functions That Can Be Declared External 19
L13. Redundant Code 19
L14. Redundant Use of SafeMath 19
L15. Redundant Imports 20
L16. Style Guide Violation 20

Disclaimers 21

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by AugmentLabs (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope
Repository https://github.com/augmentlabs-io/contracts

Commit 87bbcbe571601c52cc6e9823558fc2f7115d0666

Whitepaper https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCF
A30qq07EW20OjzuUEo/

Functional
Requirements

Business & Technical requirements for the USC stable coin.pdf

Technical
Requirements

Business & Technical requirements for the USC stable coin.pdf

Contracts File: ./contracts/AGC.sol
SHA3:
65a7139b129bba7e7f2bddd4590e1c32c83d0495c12321cdb541338441f058d1

File: ./contracts/Controller.sol
SHA3:
93c239987006d0709bf8394944340b10e479b6ed27cb79d5ba3c742fc09b7dc4

File: ./contracts/MasterChef.sol
SHA3:
6d791a2fb147460b4834433c7b82cbcba8b64aebcc3a790af74d7cab2ac261b4

File: ./contracts/USC.sol
SHA3:
14d8ffbd3049cbc3861138d038aac96bd591ac39b7471b3a9e9ca84e64de2623

Second review scope
Repository https://github.com/augmentlabs-io/contracts

Commit da96194625daae26f54b0b5ca057314ad8ad4038

Whitepaper https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCF
A30qq07EW20OjzuUEo/

Functional
Requirements

https://docs.augmentlabs.io/smart-contracts/
Business & Technical requirements for the USC stable coin.pdf

Technical
Requirements

https://docs.augmentlabs.io/smart-contracts/
Business & Technical requirements for the USC stable coin.pdf

Contracts File: ./contracts/AGC.sol

www.hacken.io
4

https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCFA30qq07EW20OjzuUEo/edit?pli=1
https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCFA30qq07EW20OjzuUEo/edit?pli=1
https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCFA30qq07EW20OjzuUEo/edit?pli=1
https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCFA30qq07EW20OjzuUEo/edit?pli=1
https://docs.augmentlabs.io/smart-contracts/
https://docs.augmentlabs.io/smart-contracts/

SHA3:
df6d0135cd047b8bcbe46fae15840127ae2b33f1a97c5c612d2087f85878fbdb

File: ./contracts/Controller.sol
SHA3:
6faf980461e5fb57c67d32f2719369005593b01b94fa960802231b1a20a1dd9a

File: ./contracts/MasterChef.sol
SHA3:
2da1911975ee9ae463545104bb100fa2ac53f55b692bd38c806f0befac8d8734

File: ./contracts/USC.sol
SHA3:
7d6a8ac0a59db90fc7956929433fa98498fb28254e2cf8edf899f418e681d9af

Third review scope
Repository https://github.com/augmentlabs-io/contracts

Commit 03cbb1160c9d6681db6883adfb007245b2600799

Whitepaper https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCF
A30qq07EW20OjzuUEo/

Functional
Requirements

https://docs.augmentlabs.io/smart-contracts/
Business & Technical requirements for the USC stable coin.pdf

Technical
Requirements

https://docs.augmentlabs.io/smart-contracts/
Business & Technical requirements for the USC stable coin.pdf

Contracts File: ./contracts/AGC.sol
SHA3:
d8f91e7ace14027d888c58e9d6912806f6861ec2a4e67b2595a91cc35ac4dcfe

File: ./contracts/Controller.sol
SHA3:
10178e61671f4b19e3cb70be7f362322df0ef7da44f63bb8fc8312ea0d269140

File: ./contracts/MasterChef.sol
SHA3:
b865503cb8b1844af196147882935412e07f21329ede94d45f6c9b0b469b7581

File: ./contracts/USC.sol
SHA3:
7d6a8ac0a59db90fc7956929433fa98498fb28254e2cf8edf899f418e681d9af

www.hacken.io
5

https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCFA30qq07EW20OjzuUEo/edit?pli=1
https://docs.google.com/document/d/1pavVjJp_lrMJAarWTSNr44wCFA30qq07EW20OjzuUEo/edit?pli=1
https://docs.augmentlabs.io/smart-contracts/
https://docs.augmentlabs.io/smart-contracts/

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● A White Paper is provided.
● NatSpec is included in the code.
● Technical description and functional requirements are provided.

Code quality
The total Code Quality score is 9 out of 10.

● The development environment is configured.
● 5 out of 103 tests are failing.

Test coverage
Code coverage of the project is 84.94% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.3.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

20 January 2023 13 7 5 1

16 February 2023 4 0 0 1

28 February 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Passed

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Not Relevant

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not Relevant

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

System Overview

AugmentLabs is a mixed-purpose ERC20/Stacking system with the following
contracts:

● AGC — upgradable ERC-20 token that mints all initial supply to a
deployer. Minting and burning is allowed by the Minter on demand.
It has the following attributes:

○ Name: AGC
○ Symbol: AGC
○ Differences from the ERC20 standard: the token is not

transferable.
● USC — upgradable ERC-20 token that mints all initial supply to a

deployer. Minting is allowed by the Minter on demand.
It has the following attributes:

○ Name: USC
○ Symbol: USC
○ Other parameters are default for the ERC20 standard

● TokenController — an upgradable smart contract that will have
MINTER_ROLE of AGC & USC to perform the redeem functionality between
AGC/USC.

○ Has a safety switch.
○ Role-based authentication.
○ Can burn USC and mint AGC to a specific user address.
○ Can burn AGC and mint USC to a specific user address.

● MasterChef — an upgradable smart contract that allows users to stake
USDT and get USC rewards at a specified ROI/year.

○ Has a safety switch.
○ Can mint USC to yield rewards to pool stakers.

Privileged roles
● The MasterChef contact has a single owner role.
● The TokenController contract has PAUSER_ROLE, UPGRADER_ROLE and

REDEEMER_ROLE roles and must take the MINTER_ROLE of USC and AGC.
● The MINTER_ROLE of AGC and USC can mint tokens on demand without any

restrictions. The burn functions in USC are unprotected.

Risks
● No substantial risks were identified.

Recommendations
● The system relies on the security of the privileged roles’ private

keys, which can impact the execution flow and security of the funds.
We recommend those accounts to be at least ⅗ multi-sig.

www.hacken.io
11

Findings

Critical

C01. Token Supply Manipulation

There is no check/update of the user's `lastRewardBlock`, and there
is no mechanism to passively store user-earned yield when the user
performs the deposit() function call.

An attacker can deposit small amounts into the pool from multiple
addresses and wait to accumulate the time delta. Afterwards, they can
use, for example, a FlashLoan to multiply the attack and make a large
second deposit (for example, $1 million).

As the "lastRewardBlock" variable was not updated and rewards were
not passively stored for the user, rewards will be calculated from
the current large deposit and the accumulated time. The attacker can
then withdraw the deposit and rewards (20% APR from $1 million)
without having to actively stake such an amount of funds.

Path:
./contracts/MasterChef.sol : deposit()

Recommendation: Consider updating the reward system with mechanisms
that prevent such manipulations.

Reference: https://solidity-by-example.org/defi/staking-rewards/

Status: Fixed
(revised commit: 03cbb1160c9d6681db6883adfb007245b2600799)

High

H01. Requirements Violation

The business requirements documents state that “only AFG multisig
address or whitelisted addresses” are allowed to burn USC tokens,
however the `burn()` function is inherited from
ERC20BurnableUpgradeable.sol by default and is unprotected. Also
users can burn their own token at will in both USC and AGC tokens.

This may lead to data inconsistency since the sum of user balances
will stop being equal to the company’s balance.

Path:
./contracts/AGC.sol

Recommendation: The `burn()` function should be overridden and always
revert. `burnFrom()` should be protected by access control.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

H02. Requirements Violation

The business requirements documents state that “Users can’t transfer
AGC to any other users”, but the `transfer()` and `transferFrom()`

www.hacken.io
12

functions are inherited from ERC20BurnableUpgradeable.sol by default.
This may lead to data inconsistency since the sum of user balances
will stop being equal to the company’s balance.

Path:
./contracts/AGC.sol

Recommendation: Replace content of the `_beforeTokenTransfer()`
function with `revert()`.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

H03. Requirements Violation

An incorrect event is emitted at the end of the `redeemUSC()`
function.

Path:
./contracts/Controller.sol : redeemUSC()

Recommendation: replace emitting the `AGCRedeemed` event with
`USCRedeemed` in the function.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

H04. Undocumented Behavior

The burning of USC tokens from the company’s address instead of the
user’s when calling the `redeemUSC()` is undocumented and may be an
error.

Path:
./contracts/Controller.sol : redeemUSC()

Recommendation: Check if the behavior of the function is correct and
fix it or add the supporting documentation.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

H05. Data Inconsistency

The crucial invariant that the balance of the company should be equal
to the sum of user balances can be broken if the company address
calls the `mint()` function. As the company is not implied to be one
of the users, then the equation balanceOf(companyAddress) ==
_userBalance may stop being true.

Path:
./contracts/AGC.sol : mint()

Recommendation: Check that `require(userAddress != companyAddress,
“Company cannot update its own userBalance”)`.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

www.hacken.io
13

Medium

M01. Dangerous Strict Zero Equality

The value `rewardAmount` is derived based on complex calculations
which can lead to non-strict zero values due to binary number
representation inside the EVM. This can potentially lead to a value
which should be logically equal to zero actually being higher than
zero.

Path:
./contracts/MasterChef.sol : tryPayUSC()

Recommendation: Implement a check against “epsilon” (maximum allowed
fault) instead of a strict zero check.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

M02. Owner Privilege Actions

The owner of the `MasterChef` contract can change `ROIPerYear` on
demand. This can adversely affect the users’ trust, as the owner can
lower their expected gain at any time or block withdrawing altogether
by setting setROIPerYear to 0.

Path:
./contracts/MasterChef.sol : setROIPerYear()

Recommendation: Implement a `rewardPerTokenStored` system instead.
Reference: https://solidity-by-example.org/defi/staking-rewards/

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

M03. Undocumented Behavior

The owner of the `MasterChef` contract can change `pool.multiplier`
on demand. This can lead to a trust issue with users.

Path:
./contracts/MasterChef.sol : set()

Recommendation: Remove the possibility of modifying the
`pool.multiplier` after pool creation or mention this possibility in
the “stacking” paragraph of the documentation.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

M04. Undocumented Functionality

The owner of the `MasterChef` contract can change
`pool.rewardLockupBlock` on demand. This can lead to an infinite lock
in the stacking contract.

Path:
./contracts/MasterChef.sol : set()

www.hacken.io
14

Recommendation: Remove the `_lockupBlock` parameter in the function
and line `poolInfo[_pid].rewardLockupBlock = _lockupBlock;`.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

M05. Missing Functionality

There is an option to change the `companyAddress` in the `Controller`
contract, but there is no option to change the `companyAddress` in
`AGC`.

Path:
./contracts/AGC.sol

Recommendation: If this is intended then the documentation should be
updated. If not then proper migration functionality should be
implemented which will involve moving the tokens to the new address.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

M06. Using Block Number Attribute as a Proxy of Time

The contract takes a constructor parameter `blocksPerYear` and
calculates rewards based on this value. Blocks per year is not a
constant value and can lead to a serious fault if used as a time
reference.

Path:
./contracts/MasterChef.sol

Recommendation: Drop block number usage for business logic as a time
reference in favor of `block.timestamp`. Assume that a year is 365
days instead (and mention that in the document to avoid ambiguity).

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

M07. Best Practice Violation - Unchecked Transfer

It is considered following best practices to avoid unchecked transfer
functions, which can potentially lead to DoS vulnerabilities.

Path:
./contracts/MasterChef.sol : withdraw(), safeUSCTransfer()

Recommendation: Follow common best practices: use the OpenZeppelin’s
`SafeERC20.sol` library and replace `transfer()` calls with
`safeTransfer()` and `transferFrom()` with `safeTransferFrom()`.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

www.hacken.io
15

Low

L01. Redundant Modifiers

The `virtual` modifier is superfluous in the functions of the top
level contracts.

Paths:
./contracts/AGC.sol
./contracts/Controller.sol
./contracts/MasterChef.sol
./contracts/USC.sol

Recommendation: Remove the `virtual` modifier from functions of top
level contracts.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L02. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths:
./contracts/AGC.sol
./contracts/Controller.sol
./contracts/MasterChef.sol
./contracts/USC.sol

Recommendation: Use strict pragma settings.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L03. Style Guide Violation - Implicit State Visibility

State variables visibility should be explicit.

Paths:
./contracts/AGC.sol : companyAddress, _userBalance
./contracts/Controller.sol : AGCToken, USCToken

Recommendation: Use explicit visibility modifiers.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L04. Style Guide Violation - Visibility Modifiers

Visibility modifiers should be first in the list of function
modifiers.

Paths:
./contracts/AGC.sol : initialize()
./contracts/Controller.sol : initialize()
./contracts/MasterChef.sol : initialize()
./contracts/USC.sol: initialize()

www.hacken.io
16

Recommendation: It is best practice to put visibility modifiers first
in the list of function modifiers.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L05. Style Guide Violation - Incorrect Function Order

Public functions should not be declared after public view functions.

Paths:
./contracts/AGC.sol
./contracts/Controller.sol
./contracts/MasterChef.sol

Recommendation: Rearrange functions to comply with official Solidity
style guidelines.

Reference:
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-fu
nctions

Status: Fixed
(revised commit: 03cbb1160c9d6681db6883adfb007245b2600799)

L06. Style Guide Violation - Unused Function Parameters

The code contains an overridden function with unused, yet named
parameters.

Paths:
./contracts/AGC.sol : _authorizeUpgrade()
./contracts/Controller.sol : _authorizeUpgrade()
./contracts/MasterChef.sol : _authorizeUpgrade()

Recommendation: Remove the names of the parameters to show explicitly
that the parameters are not going to be used and are only intended to
override an inherited function. For reference:

https://docs.soliditylang.org/en/v0.8.17/contracts.html#function-para
meters

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L07. Unfinished NatSpec

NatSpec is not complete - some Smart Contract members are
undocumented.

Paths:
./contracts/AGC.sol
./contracts/Controller.sol
./contracts/MasterChef.sol
./contracts/USC.sol

Recommendation: Add NatSpec to undocumented members of the Smart
Contracts.

www.hacken.io
17

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L08. Missing Zero Address Validation

Address parameters are used without checking against the possibility
of 0x0. This can lead to unwanted external calls to 0x0.

Paths:
./contracts/AGC.sol : initialize();
./contracts/Controller.sol : initialize(), setCompanyAddress()
./contracts/MasterChef.sol : initialize()

Recommendation: Implement zero address checks.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L09. Unindexed Events

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

Path:
./contracts/Controller.sol : CompanyAddressUpdated

Recommendation: Use the “indexed” keyword for the event parameters.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L10. Unnecessary Code Complication

The functions contain checks against a boolean literal. Functions
which return a boolean variable are recommended to be checked
directly on their return value for the sake of code simplicity.

Path:
./contracts/MasterChef.sol : getPoolIdForLpToken(),
getPoolIdForLpToken()

Recommendation: Replace `poolExistence[_lpToken] != false` to
`poolExistence[_lpToken]` and `poolExistence[_lpToken] == false` to
`!poolExistence[_lpToken]`.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L11. Missing Zero Check - Uint

The functions can receive a zero `_amount` parameter which will still
trigger further code execution and Gas usage without any practical
effects. It is advisable to immediately halt the execution in case of
invalid or non-effective parameters.

Path:
./contracts/MasterChef.sol : withdraw()

www.hacken.io
18

Recommendation: Implement a zero check at the beginning of function
execution e.g. `require(_amount > 0, “amount can not be equal to
zero”)`.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L12. Functions That Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./contracts/AGC.sol : mint(), pause(), unpause()
./contracts/Controller.sol : initialize(), pause(), unpause(),
redeemAGC(), redeemUSC()
contracts/MasterChef.sol : initialize(), pause(), unpause(),
setROIPerYear(), add(), set(), withdraw(), deactivatePool(),
activatePool(), deposit(), getReward()
./contracts/USC.sol : initialize(), pause(), unpause(), mint()

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed
(revised commit: 03cbb1160c9d6681db6883adfb007245b2600799)

L13. Redundant Code

The function `safeUSCTransfer()` is redundant. There is no apparent
option for a rounding error. Tokens can be transferred directly from
`address(this)` to `msg.sender` by minting first and then
transferring the amount.

Path:
./contracts/MasterChef.sol : safeUSCTransfer()

Recommendation: Remove the redundant function and instead implement
direct transfer inside the `withdraw()` function.

Status: Fixed
(revised commit: 921bd8ff6bfa2d09e0a8063f7583e4b5e19804a4)

L14. Redundant Use of SafeMath

Since Solidity v0.8.0, the overflow/underflow check is implemented
via ABIEncoderV2 on the language level - it adds the validation to
the bytecode during compilation.
There is no need to use the SafeMath library.

Path:
./contracts/MasterChef.sol

Recommendation: Remove the SafeMath library.

Status: Fixed
(revised commit: da96194625daae26f54b0b5ca057314ad8ad4038)

www.hacken.io
19

L15. Redundant Imports

The use of unnecessary imports will increase the Gas consumption of
the code. Thus, they should be removed from the code.

Redundant imports decrease code readability.

Paths:
./contracts/MasterChef.sol : IERC20Upgradeable, USC

Recommendation: Consider removing redundant code.

Status: Fixed
(revised commit: 03cbb1160c9d6681db6883adfb007245b2600799)

L16. Style Guide Violation

State variables and local variables should never begin with a capital
letter (except constants, which are written in all-capital letters).
State variables such as `ROIPerYear`, `USCToken`, `USDTToken`,
`AGCToken`, `USCToken` violate this convention. This can lead to
confusion whether the developer is dealing with a variable or a type.

Paths:
./contracts/MasterChef.sol
./contracts/Controller.sol

Recommendation: Follow the official Solidity Style Guide:
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#local-and-s
tate-variable-names. Consider renaming variables by pattern
`USCToken` -> `uscToken` etc.

Status: Fixed
(revised commit: 03cbb1160c9d6681db6883adfb007245b2600799)

www.hacken.io
20

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#local-and-state-variable-names
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#local-and-state-variable-names

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
21

