
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Bloqhouse Technologies
Date: March 24, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Bloqhouse
Technologies

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC721 token

Platform EVM

Language Solidity

Methodology Link

Website www.bloqhouse.com

Changelog 13.03.2023 – Initial Review
24.03.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
http://www.bloqhouse.com


Table of contents
Introduction 4
Scope 4
Severity Definitions 5
Executive Summary 6
Risks 7
System Overview 8
Checked Items 10
Findings 13

Critical 13
High 13

H01. EIP Standard Violation 13
H02. Data Consistency 13
H03. Double-Spending 13

Medium 14
M01. Contradiction 14

Low 14
L01. Floating Pragma 14
L02. Shadowing State Variable 15
L03. Unindexed Events 15

Disclaimers 16

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Bloqhouse Technologies (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project includes review and security analysis of the
following smart contracts from the provided repository:

Initial review scope
Repository https://bitbucket.org/alfredpersson/token-shares-solidity/src/master

Commit e6f6102b0d869590193143f07850d894a84125f9

Functional
Requirements

https://bitbucket.org/alfredpersson/token-shares-solidity/src/master/d
ocs/Documentation.pdf

Technical
Requirements

https://bitbucket.org/alfredpersson/token-shares-solidity/src/master/d
ocs/Documentation.pdf

Contracts File: ./contracts/RWAT.sol
SHA3:79ff9f8c3676e39c2709c1a47d60bff94e5c0d5ae94f825edd9370a3661872f1

File: ./interfaces/ICNR.sol
SHA3 5257f637e1343d2aee061fd404ab50d78c45666ab12c4b69d148e7beb33f4af0

Second review scope

Repository https://bitbucket.org/alfredpersson/token-shares-solidity/src/master

Commit cbdc7c0d6162346b96cf62cb2ff93c15f416819e

Contracts File: ./contracts/RWAT.sol
SHA3: 81970eff160e050def2296aadf17d4b3b566ce8933800fecf79711fa434d0e5a

File: ./interfaces/ICNR.sol
SHA3: 60e1bcae2996ee150eac9903a8dfcefc181f9409e08c787f9694d7da671bbb74

www.hacken.io
4

https://bitbucket.org/alfredpersson/token-shares-solidity/src/master
https://bitbucket.org/alfredpersson/token-shares-solidity/src/master/docs/Documentation.pdf
https://bitbucket.org/alfredpersson/token-shares-solidity/src/master/docs/Documentation.pdf
https://bitbucket.org/alfredpersson/token-shares-solidity/src/master/docs/Documentation.pdf
https://bitbucket.org/alfredpersson/token-shares-solidity/src/master/docs/Documentation.pdf
https://bitbucket.org/alfredpersson/token-shares-solidity/src/master


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are comprehensive.
● Technical description is detailed.
● NatSpec is consistent.

Code quality
The total Code Quality score is 10 out of 10.

● Solidity best practices are followed.
● Style guides are followed.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions with several users are tested thoroughly.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

13 March 2023 3 1 3 0

24 March 2023 0 0 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The admin has comprehensive rights to user funds which makes the
project centralized. These rights include forcing funds out of
wallets without a user's permission, pausing transfers, changing
name, symbol, and asset caps.

● The contracts are upgradable and the current audit covers only the
implementation at the time of the review. Any further implementations
are not covered by this audit.

www.hacken.io
7



System Overview

The project is a real world asset tokenization protocol, which aims to
enable asset providers to fractionalize assets such as, but not limited to,
real estate, land, property, on the blockchain as NFTs.

RWATP (Real World Asset Tokenization Protocol) is an ERC721 based
tokenization protocol. One instance of RWATP can have multiple assets, this
enables one asset provider to handle several assets in one contract. An
asset is a set of NFTs, one NFT represents a share of the asset. E.g if an
asset consists of 100 NFTs then one NFT represents 1% of the asset.

The contract admin (asset provider or someone else) can decide how to mint
and distribute the NFTs, either through minting the NFTs to the asset
provider, to a user, or delegating the minting to a separate contract that
can then add additional logic to the distribution process, for example
crypto payment.

The supply of an asset is not fixed, but controlled by the contract admin.
The contract enables issuance of new NFTs for an asset, thus diluting the
supply, at their discretion. Likewise the admin can enable burning of NFTs,
concentrating the supply. However, these features can be locked in
perpetuity to ensure a constant number of NFTs for an asset.

The admin of the contract has rights to the funds such as burning, minting,
pausing transfers, setting whitelist functionality(only allowing
whitelisted addresses to transfer their tokens), and transferring them from
users. This functionality can be locked by the admin to never be enabled
again.

The files in the scope:
● RWAT.sol: The ERC721 contract that represents the assets. Can be

controlled by the admin.
● ISNR.sol: The interface for obtaining the Token URI.

Privileged roles
● DEFAULT_ADMIN_ROLE: The DEFAULT_ADMIN_ROLE is inherited from the

OpenZeppelin AccessControl.sol contract. It is the role that can
grant or revoke all other roles. Presumably this should be given to a
secure multisig and not used for anything other than
granting/revoking the other roles.

● Admin: The ADMIN role controls all issuance, burning and settings of
the contract.

● Handler: HANDLER can be given to a separate contract adding
additional logic to the minting process. This role can only control
the minting of new NFTs.

www.hacken.io
8



● Whitelister: There is one role for adding users to the whitelist,
this is separate from the admin role to add an extra level of
security.

● User: A user has no special privileges unless the whitelist is
enabled, then the user must be on the whitelist in order to do
anything other than holding the NFT.

Recommendations
● Consider using a multisig wallet for admin functionality to introduce

a safer form of centralization for the users.
● Using the same internalNonce mapping to check the signature in the

userMintUnits() and claimUnits() functions may lead to invalid
signatures if the functions were configured for the same user address
with the same nonce parameters. This would cause the owner to create
a new signature. Consider using different mappings for the two
functions.

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Not Relevant

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



Findings

Critical

No critical severity issues were found.

High

H01. EIP Standard Violation

Signatures do not include chain-specific parameters like chain id as
stated in the EIP-712 standard.

This may lead to signature replay attacks if the contract is deployed
multiple times and the verifier address is the same.

Path: ./contracts/RWAT.sol : userMintUnits(), claimUnits()

Recommendation: follow the EIP-712 standard when creating and
verifying signatures.

Found in: e6f6102b0d869590193143f07850d894a84125f9

Status: Fixed (Revised commit: cbdc7c0)

H02. Data Consistency

The project uses the tokens for every asset to determine the
percentage of the asset the token holder holds. The contract RWAT.sol
allocates 1.000.000.000 ids for every asset. The _tokenCap is not
checked according to this allocation.

If the _tokenCap is larger than the max allocation of 1.000.000.000,
the tokenIds might override the next asset allocation.

Path: ./contracts/RWAT.sol : createAsset(), updateAssetCap()

Recommendation: verify that the _tokenCap is smaller than
1.000.000.000 when setting or updating asset caps.

Found in: e6f6102b0d869590193143f07850d894a84125f9

Status: Fixed (Revised commit: cbdc7c0)

H03. Double-Spending

In the claimUnits() function, there is no internal nonce check for
the signature verification.

In the scenario that:

● the reclaimUnitsDisabled parameter is true,
● The admin gets all tokens back (specifically the ones that were

claimed previously), and transfers them back into the contract;

www.hacken.io
13

https://eips.ethereum.org/EIPS/eip-712


the user can successfully call the claimUnits() function with the
same signature and transfer the tokens to their address again.

This would lead to fund loss since the admin cannot reclaim the
tokens.

Path: ./contracts/RWAT.sol : claimUnits()

Recommendation: add a nonce mechanism for this function specific for
the claiming users into the signature and increment it after the call
so that the same signature cannot be used.

Found in: e6f6102b0d869590193143f07850d894a84125f9

Status: Fixed (Revised commit: cbdc7c0)

Medium

M01. Contradiction

The project intends to override the ERC721 _name and _symbol
parameters; however since it is using different names which are name_
and symbol_ for RWAT.sol, the parameters are not actually
overwritten. The functions to view them are overwritten, which
handles the issue but the function setNameAndSymbol() should be
called before it is actually active.

This function is not called in the initializer() of the contract,
only the ERC721Upgradeable parameters are set. This will cause the
contract to be initialized without any name or symbol.

Path: ./contracts/RWAT.sol : initialize()

Recommendation: call the setNameAndSymbol() function in the
initializer().

Found in: e6f6102b0d869590193143f07850d894a84125f9

Status: Fixed (Revised commit: cbdc7c0)

Low

L01. Floating Pragma

The project uses floating pragma ^0.8.4 in contracts RWAT.sol and
ICNR.sol.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively.

Paths: ./contracts/RWAT.sol

./interfaces/ICNR.sol

www.hacken.io
14



Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: e6f6102b0d869590193143f07850d894a84125f9

Status: Fixed (Revised commit: cbdc7c0)

L02. Shadowing State Variable

In RWA.sol contracts’ initialize(), setTransfersPaused(),
setAssetTransfersPaused(), and the setNameAndSymbol() function,
variables _name, _symbol, and _paused are shadowed from the
ERC721Upgradeable contract.

Path: ./contracts/RWAT.sol : initialize(), setTransfersPaused(),
setAssetTransfersPaused(), setNameAndSymbol()

Recommendation: Rename related variables/arguments.

Found in: e6f6102b0d869590193143f07850d894a84125f9

Status: Fixed (Revised commit: cbdc7c0)

L03. Unindexed Events

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

Path: ./contracts/RWAT.sol: UnitsClaimed()

Recommendation: Use the “indexed” keyword to the event parameters

Found in: e6f6102b0d869590193143f07850d894a84125f9

Status: Fixed (Revised commit: cbdc7c0)

www.hacken.io
15

https://github.com/ethereum/solidity/releases


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
16


