
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: ByTrade Venture Capital
Date: Mar 03, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for ByTrade
Venture Capital

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OU

Type Staking

Platform EVM

Language Solidity

Methodology Link

Website https://bytrade.io/

Changelog 24.02.2023 – Initial Review
03.03.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://bytrade.io/

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

System Overview 7

Checked Items 8

Findings 11
Critical 11
High 11

H01. Funds Lock 11
H02. Insufficient Balance 11

Medium 11
M01. Gas Limit and Loops 11

Low 12
L01. Floating Pragma 12
L02. Boolean Equality 12
L03. Use of Hard-Coded Values 12
L04. Use of Hard-Coded Values 12
L05. Variables that Should Be Declared External 13

Disclaimers 14

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by ByTrade Venture Capital to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/bytradeio/Bytrade-Staking

Commit 00cc24ea2bdbe16a77237b64b9f6b35da0acae00

Whitepaper https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rv
dLQkPIx5E

Functional
Requirements

https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rv
dLQkPIx5E

Technical
Requirements

-

Contracts File: ./contracts/Bytrade_Staking.sol
SHA3:72a70efd80caebc5591dd6f583e2bff4efbb7f9b84e42486f60a295781c3f50b

Second review scope

Repository https://github.com/bytradeio/Bytrade-Staking

Commit a686c324db38d378b45fe758a3a7ad83e8341473

Whitepaper https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rv
dLQkPIx5E

Functional
Requirements

https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rv
dLQkPIx5E

Technical
Requirements

https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rv
dLQkPIx5E

Contracts File: ./contracts/Bytrade_Staking.sol
SHA3:c60b4b5656db4eb2b69c4c6bcc5b1cd90970732c633caab1c1807b402c72774b

Contracts
Addresses

https://bscscan.com/address/0x87a39f76d45378bf995aa89048ae015ffeff477f
#code

www.hacken.io
4

https://github.com/bytradeio/Bytrade-Staking
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://github.com/bytradeio/Bytrade-Staking
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://docs.google.com/document/d/1i6Imuu7W7bHMkh1-LjycnhRpz9QlTzM5rvdLQkPIx5E
https://bscscan.com/address/0x87a39f76d45378bf995aa89048ae015ffeff477f#code
https://bscscan.com/address/0x87a39f76d45378bf995aa89048ae015ffeff477f#code

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Overall system requirements are provided.
● NatSpec is insufficient.
● Run instructions are provided.

Code quality
The total Code Quality score is 8 out of 10.

● Best practice violations.
● Test coverage is insufficient.

Test coverage
Code coverage of the project is 0.00% (branch coverage).

● Code is not covered with tests.

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.4.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

24 Feb 2023 3 1 2 0

03 Mar 2023 2 0 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

System Overview

ByTrade Venture Capital is a system with the following contracts:
● Bytrade_Staking — a contract that rewards users for staking their

tokens. APY depends on the tokens provided by the owner and cannot be
calculated before reward tokens are deposited.

Privileged roles
The contract does not have any privileged roles.

Risks
● The view function returns a dynamic array of unlimited size. It is

theoretically possible that the Gas cost of executing this function
will exceed the Gas limit set in the node.

● Smart contract is available to receive Ether, but it is not necessary
for it to work.

www.hacken.io
7

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

Findings

Critical

No critical severity issues were found.

High

H01. Funds Lock

Function stake(uint,uint) is an external payable function. This means
that the contract can accept native coins to its account, but does
not have any withdrawal mechanisms. It is an inefficient use of Gas
and does not match the technical and functional requirements.

Path: ./contracts/Bytrade_Staking.sol : stake(uint,uint)

Recommendation: Forbid the contract to accept native coins or provide
mechanisms of withdrawal.

Found in: 00cc24ea2bdbe16a77237b64b9f6b35da0acae00

Status: Fixed (Revised commit:
a686c324db38d378b45fe758a3a7ad83e8341473)

H02. Insufficient Balance

The contract operates with some initialBalance value which is
considered as some initial value that should be available on the
contract. Availability of this balance is not guaranteed by the
contract code.

Users' balances can be used for paying rewards that can lead to the
inability to withdraw funds from the contract.

Path: ./contracts/Bytrade_Staking.sol : stake(uint,uint)

Recommendation: Ensure that the initialBalance is really available on
the contract before allowing to stake.

Found in: 00cc24ea2bdbe16a77237b64b9f6b35da0acae00

Status: Fixed (Revised commit:
a686c324db38d378b45fe758a3a7ad83e8341473)

Medium

M01. Gas Limit and Loops

Function getUserDeposits(address) returns a value depending on the
amount of data stored in the smart contract. It is possible to
increase the cost of the transaction so that it will not be executed.

Path: ./contracts/Bytrade_Staking.sol : getUserDeposits(address)

Recommendation: Return constant size data.
www.hacken.io

11

Found in: 00cc24ea2bdbe16a77237b64b9f6b35da0acae00

Status: Fixed (Revised commit: 2ba351c)

Low

L01. Floating Pragma

The smart contract uses floating pragma ^0.8.4.

Path: ./contracts/Bytrade_Staking.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 00cc24ea2bdbe16a77237b64b9f6b35da0acae00

Status: Fixed (Revised commit:
a686c324db38d378b45fe758a3a7ad83e8341473)

L02. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Path: ./contracts/Bytrade_Staking.sol : stake(uint,uint),
unstake(uint,uint)

Recommendation: Remove boolean equality.

Found in: 00cc24ea2bdbe16a77237b64b9f6b35da0acae00

Status: Fixed (Revised commit:
a686c324db38d378b45fe758a3a7ad83e8341473)

L03. Use of Hard-Coded Values

The following lines of code contain values that can be replaced with
const variables: 63, 69, 88, 172, 173, 193.

Path: ./contracts/Bytrade_Staking.sol

Recommendation: It is recommended to use const variables instead of
hardcoding values in the code.

Found in: 00cc24ea2bdbe16a77237b64b9f6b35da0acae00

Status: Fixed (Revised commit:
a686c324db38d378b45fe758a3a7ad83e8341473).

L04. Use of Hard-Coded Values

The following lines of code contain values that can be replaced with
const variables: 62, 186, 211.

Path: ./contracts/Bytrade_Staking.sol

www.hacken.io
12

Recommendation: It is recommended to use const variables instead of
hardcoding values in the code.

Found in: a686c324db38d378b45fe758a3a7ad83e8341473

Status:New

L05. Variables that Should Be Declared External

The state variable that does not change its month value should be
declared constant to save Gas.

Path: ./contracts/Bytrade_Staking.sol

Recommendation: Declare the above-mentioned variables as constants.

Found in: a686c324db38d378b45fe758a3a7ad83e8341473

Status: New

www.hacken.io
13

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
14

