
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: ByTrade Venture Capital
Date: February 23, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
ByTrade Venture Capital

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website https://www.bytrade.io

Changelog 09.02.2023 – Initial Review
23.02.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11
Critical 11
High 11

H01. Requirements Violation 11
H02. BEP Standard Violation 11

Medium 11
M01. Unscalable Functionality: Repeated Checks in Functions 11
M02. Unscalable Functionality: Copy of Well-Known Contracts 12
M03. SafeMath in ^0.8.0 12

Low 12
L01. Floating Pragma 12
L02. Style Guide: Order of Functions 13
L03. Outdated Solidity Version 13
L04. Outdated OpenZeppelin Version 13
L05. Missing Error Message 14
L06. Functions that Can Be Declared External 14
L07. NatSpec Typo 15
L08. Missing NatSpec 15
L09. Undocumented Literals 15
L10. Unscalable Functionality: Missing Events Arguments 15
L11. Redundant Initialization of Default Values 16
L12. Unused Parameters 16

Disclaimers 17

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by ByTrade Venture Capital (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository Not Provided

Commit Not Provided

Whitepaper https://bytrade.io/src/assets/white_paper_btt_v1.0.pdf

Functional
Requirements

Bytrade Token Technical Documentation

Technical
Requirements

Bytrade Token Technical Documentation

Contracts
Addresses

https://bscscan.com/token/0xfdcb304bef77b5d4b70381b0a1812c43814
fb87b#code

Contracts File: ByTradeToken.sol
SHA3:22b0611170f995d3a94d4abfc9e553a4018e378414b08714e5068c66acc1bc60

Second review scope
Repository https://github.com/bytradeio/Bytrade-ERC20Token

Commit 510e568774ecfef28ab21ca6bf759fbcffdfd3cd

Functional
Requirements

Bytrade-Doc.pdf

Technical
Requirements

Bytrade-Doc.pdf

Contracts
Addresses

https://bscscan.com/token/0xe8bd1ca97f8a0582335407b40b0576df64
1fa94c#code

Contracts File: ./contracts/BytradeToken.sol
SHA3:f4aaf5d2b9ea0cf14f6fbb4711f755212b4bdb351b76a0f92aea5ccce676b29b

www.hacken.io
4

https://github.com/bytradeio/Bytrade-ERC20Token

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are provided.
● Technical description is not sufficient:

○ Test coverage and running instructions are not provided.
○ Development environment is not configured.

Code quality
The total Code Quality score is 5 out of 10.

● Style Guide and Best practices are not followed.
● The development environment is not configured.
● Not all issues are fixed.
● Presence of unused parameters and contracts.

Test coverage
Code coverage of the project is 0% (branch coverage).

Security score
As a result of the audit, the code contains 2 medium and 9 low severity
issues. The security score is 8 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 7.3.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

9 February 2023 11 1 2 0

23 February 2023 9 2 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Failed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not Relevant

Style Guide
Violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Failed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9

System Overview

The Bytrade token meets the ERC20 standard, and is extended with the
following functionalities (restricted to the contract owner):

● Ability to pause/unpause transactions
● Ability to renounce ownership
● Ability to transfer ownership

Privileged roles.
● The owner can pause the contract, blocking the possibility for any

user to perform a token transfer or allowance modification.

Risks
● Token can be paused/unpaused by the owner at any time.
● The defined token in ByTradeToken uses the symbol BTT, which is

already used by the BitTorrent token.
● The contract ByTradeToken implements a renounceOwnership()

functionality, which will remove the contract ownership. Since the
contract implements several functions that can only be called by the
owner pause(), unpause(). Removing the owner will lock said
functions. If renounceOwnership() is called when the contract is
paused, the consequence is a Denial of Service for transfer(),
transferFrom(), approve(), increaseAllowance() and
decreaseAllowance().

www.hacken.io
10

https://www.bittorrent.com/token/btt

Findings

Critical

No critical severity issues were found.

High

H01. Requirements Violation

In the functional documentation of the project, the contract
ByTradeToken is said to meet the ERC20 standard. However, the code
refers to the BEP20 standard instead, which follows a different
standard.

The code should not violate requirements provided by the Customer
since it can lead to misinformation for users, as well as lack of
transparency and their derived issues.

Paths:
./contracts/ByTradeToken
./contracts/BEP20
./contracts/IBEP20

Recommendation: The code should meet the functional requirements.

Status: Fixed (Revised commit: 510e568)

H02. BEP Standard Violation

The code refers to the BEP20 standard, but it does not meet its
requirements.

Not following standards can lead to misinterpretation, unexpected
behavior and integration issues with other systems.

Paths:
./contracts/ByTradeToken
./contracts/BEP20
./contracts/IBEP20

Recommendation: Token standards should follow the official sources.

Status: Fixed (Revised commit: 510e568)

Medium

M01. Unscalable Functionality: Repeated Checks in Functions

In ByTradeToken, the functions transfer(), transferFrom(), approve(),
increaseAllowance() and decreaseAllowance() implement a require() to
make sure none of the addresses involved in the transaction are
blacklisted.

This check is done calling isBlacklisted() twice at each of the
mentioned functions, resulting in a repetitive code. Instead, a new

www.hacken.io
11

https://github.com/bnb-chain/BEPs/blob/master/BEP20.md

modifier can be created, which includes these checks, increasing the
code readability, debugging and upgrades.

Path:
./contracts/ByTradeToken: transfer(), transferFrom(), approve(),
increaseAllowance(), decreaseAllowance()

Recommendation: It is recommended to create a new modifier to
implement the checks.

Status: Fixed (Revised commit: 510e568)

M02. Unscalable Functionality: Copy of Well-Known Contracts

Well-known contracts from projects like OpenZeppelin should be
imported directly from the source as the projects are in development
and may update the contracts in future.

Paths:
./contracts/Context
./contracts/IERC20
./contracts/SafeMath
./contracts/Address
./contracts/ERC20
./contracts/Ownable

Recommendation: Import the contracts directly from the source instead
of copying them into the main file.

Status: New

M03. SafeMath in ^0.8.0

The SafeMath library is integrated and implemented into the project.
However, SafeMath is already integrated from Solidity 0.8.0 and its
use is redundant.

Path:
./contracts/SafeMath

Recommendation: Remove the implementation of SafeMath.

Status: New

Low

L01. Floating Pragma

Contracts should be deployed with the same compiler version and flags
that they have been tested with thoroughly. Locking the pragma helps
to ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Path:
./contracts/ByTradeToken

www.hacken.io
12

Recommendation: It is recommended to lock the Solidity pragma
version. See more: SWC-103.

Status: Reported

L02. Style Guide: Order of Functions

The provided projects should follow the official guidelines.
Functions should be grouped according to their visibility and
ordered:

1. Constructor
2. Receive function (if exists)
3. Fallback function (if exists)
4. External
5. Public
6. Internal
7. Private

Path:
./contracts/ByTradeToken

Recommendation: Follow the official Solidity guidelines.

Status: Reported

L03. Outdated Solidity Version

Using an outdated compiler version can be problematic, especially if
there are publicly disclosed bugs and issues that affect the current
compiler version.

Using the current version of Solidity is generally considered best
practice because it includes the latest updates and bug fixes. Newer
versions address security vulnerabilities that may have been
discovered in previous versions, making them more secure to use.
Additionally, newer versions include new features and improvements
that make writing and deploying smart contracts easier and more
efficient. Using an outdated version of Solidity may expose contracts
to potential security risks and make it more difficult to take
advantage of newer features and capabilities.

Path:
./contracts/ByTradeToken

Recommendation: Use an up-to-date compiler version. See more:
SWC-102.

Status: Fixed (Revised commit: 510e568)

L04. Outdated OpenZeppelin Version

Using an outdated OpenZeppelin version can be problematic, especially
if there are publicly disclosed bugs and issues that affect the
current compiler version.

www.hacken.io
13

https://swcregistry.io/docs/SWC-103
https://docs.soliditylang.org/en/v0.8.17/style-guide.html
https://swcregistry.io/docs/SWC-102

Using the current version of OpenZeppelin is generally considered
best practice because it includes the latest updates and bug fixes.
Newer versions address security vulnerabilities that may have been
discovered in previous versions, making them more secure to use.
Additionally, newer versions include new features and improvements
that make writing and deploying smart contracts easier and more
efficient. Using an outdated version of OpenZeppelin may expose
contracts to potential security risks and make it more difficult to
take advantage of newer features and capabilities.

Path:
./contracts/ByTradeToken

Recommendation: Use an up-to-date OpenZeppelin version. Read more
about OpenZeppelin versions.

Status: Reported

L05. Missing Error Message

In ByTradeToken, the modifier whenNotPaused() does not provide an
error message in the require() check.

Error messages are intended to notify users about failing conditions,
and should provide enough information so that the appropriate
corrections needed to interact with the system can be applied.
Uninformative error messages greatly damage the overall user
experience, thus lowering the system’s quality.

If the mentioned require statement fails the checked condition, the
transaction will revert silently without an informative error
message.

Path:
./contracts/ByTradeToken: whenNotPaused()

Recommendation: It is recommended to add an appropriate error message
in the modifier whenNotPaused().

Status: Reported

L06. Functions that Can Be Declared External

In order to save Gas, public functions that are never called from the
same contract should be declared as external.

Path:
./contracts/ByTradeToken: pause(), unpause(), addToBlacklist(),
removeFromBlacklist(), transfer(), transferFrom(), approve(),
increaseAllowance(), decreaseAllowance()

Recommendation: Use the external attribute for functions that are
never called from the contract.

Status: Reported

www.hacken.io
14

https://github.com/OpenZeppelin/openzeppelin-contracts/releases

L07. NatSpec Typo

The NatSpec comments line in ByTradeToken’s function addToBlacklist()
refers to “addess” instead of “address”.

Path:
./contracts/ByTradeToken

Recommendation: Correct the terminology in the comments line.

Status: Fixed (Revised commit: 510e568)

L08. Missing NatSpec

The provided contracts include NatSpec comments, although not enough
for a proper understanding of every last detail: many functions do
not have any NatSpec comment, as well as several variables.

Path:
./contracts/ByTradeToken

Recommendation: Provide NatSpec for all contracts’ components.

Status: Fixed (Revised commit: 510e568)

L09. Undocumented Literals

The constructor() sets 10 billion tokens to mint as
10*(10**9)*10**18.

It is advised to use named constants instead of literals when
important functionality is performed (e.g. MINT_AMOUNT). The function
decimals() can also be used instead of 10**18.

Path:
./contracts/ByTradeToken: constructor()

Recommendation: Consider replacing literals with named constants in
the contract.

Status: Reported

L10. Unscalable Functionality: Missing Events Arguments

The contract ByTradeToken defines the events Pause() and Unpause()
with no arguments.

Since the contract has an ownership transference functionality, it is
recommended to track the address of the pausable functions’ calls.

Path:
./contracts/ByTradeToken

Recommendation: It is recommended to provide the msg.sender data in
the Pause() and Unpause() events.

Status: Reported

www.hacken.io
15

L11. Redundant Initialization of Default Values

The constructor() in ByTradeToken initializes the state variable
paused = false. Uninitialized bools are set as false, so it is
redundant to set said variable to false.

Accessing storage variables is expensive in terms of Gas, and should
therefore be minimized.

Path:
./contracts/ByTradeToken: constructor().

Recommendation: Avoid unnecessary variable initializations.

Status: Reported

L12. Unused Parameters

Unused variables are allowed in Solidity and do not pose a direct
security issue. However, it is best practice to avoid them as they
can cause an increase in computations (and unnecessary Gas
consumption) and decrease readability.

Path:
./contracts/ByTradeToken.sol: blacklist, AddedToBlacklist(),
RemovedFromBlacklist().

Recommendation: Any unused parameter should be removed from the code.

Status: New

www.hacken.io
16

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
17

