
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: CarbonPath
Date: March 16, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
CarbonPath

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; ERC721 token; Token Sale

Platform EVM

Language Solidity

Methodology Link

Website https://www.carbonpath.io/

Changelog 22.02.2023 – Initial Review
16.03.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.carbonpath.io/

Table of contents
Introduction 4
Scope 4
Severity Definitions 5
Executive Summary 6
Checked Items 7
System Overview 10
Findings 12

Critical 12
C01. Requirements Violation 12
C02. Requirements Violation 12

High 12
H01. Highly Permissive Role Access 12
H02. Undocumented Behavior 13

Medium 13
M01. Unscalable Functionality: Check Repetition 13
M02. Unscalable Functionality: Check Repetition 14
M03. Unscalable Functionality: Check Repetition 14
M04. Inefficient Gas Model: SafeMath in Solidity ^0.8.0 14
M05. Contradiction: Redundant Ownable 14
M06. Inconsistent Data: Missing Event for Critical Value Update 15

Low 15
L01. Gas Optimization: Long Error Strings 15
L02. Style Guide Violation 15
L03. Functions that Can Be Declared External 16
L04. Unfinished NatSpec 16
L05. Unclear Use of the Virtual Specifier 17
L06. Missing Zero Address Validation 17
L07. Redundant nonReentrant Modifier 17
L08. Checks-Effects-Interactions Pattern Violation 18
L09. Typo in Comments 18
L10. Redundant Import 18

Disclaimers 20

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by CarbonPath (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope
Repository https://github.com/orgs/carbonpathio/repositories

Commit 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Whitepaper Link

Functional
Requirements

Link

Technical
Requirements

Link

Contracts File: ./contracts/CarbonPathAdmin.sol
SHA3:
e27e4e6b321abf67bed5a885cb09c2857e42b113ca9cfd8a03ae308c77459087

File: ./contracts/CarbonPathNFT.sol
SHA3:
3bcf184946bfa364980a2eefdc3348d519a33125ab854f8821e06fb257fd35d0

File: ./contracts/CarbonPathToken.sol
SHA3:
3511b059224c6569571cd384d491d0b3cb7f0d761d2fd68ff33999da563827ea

Second review scope
Repository https://github.com/orgs/carbonpathio/repositories

Commit 4e406bb3386b583f630e41b9e26bdbf09e70ea4d

Functional
Requirements

https://docs.carbonpath.io/smart_contract.html

Technical
Requirements

https://docs.carbonpath.io/smart_contract_architecture.html

Contracts File: ./contracts/CarbonPathAdmin.sol
SHA3:
885face4ac6f0d0e54f15832aac75881ae940857cbbe7d2a54b1847ffff6fb63

File: ./contracts/CarbonPathNFT.sol

www.hacken.io
4

https://github.com/orgs/carbonpathio/repositories
https://carbon-path-production.s3.us-east-2.amazonaws.com/CarbonPath+Lite+Paper+v0.pdf
https://carbonpath.notion.site/CarbonPath-c8364058a59044d281f14c2e46333b72
https://carbonpath.notion.site/CarbonPath-c8364058a59044d281f14c2e46333b72
https://github.com/orgs/carbonpathio/repositories
https://docs.carbonpath.io/smart_contract.html
https://docs.carbonpath.io/smart_contract_architecture.html

SHA3:
45d387e83d8d768a5797286a243ee31fcc2e9ed4d7df418bb38cfdffa3e3cde5

File: ./contracts/CarbonPathToken.sol
SHA3:
8bd9111a27fce8090b86c36110b1c0a60be6fa9fc0723f58438f420bf2ee7a9c

www.hacken.io
5

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● There are some gaps in the functional requirements (there is no
explanation of the buffer pool and advanced mint amounts of the CPCO2
token).

● Technical requirements are partially provided.
● NatSpec comments are detailed.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Code is well-written and designed.

Test coverage
Code coverage of the project is 100% (branch coverage).

Security score
As a result of the audit, the code contains no issue. The security score is
10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

22 February 2023 10 6 2 2

16 March 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

System Overview

CarbonPath is a system that helps to close old oil and natural gas wells.
Each unique NFT token of the system represents a real-life well and each
fungible token equals a tonne of sequestered carbon emissions. The protocol
is designed to allow users to take part in the retirement of abandoned and
orphaned wells that pollute the environment.

The files in the audit scope:
● CarbonPathAdmin - a contract that handles different interactions with

CarbonPathToken (CPCO2) and CarbonPathNFT and serves as an admin for
both contracts. Users can buy CPC02 tokens and retire them for a
certain well.

● CarbonPathNFT - ERC721 token that bounds to a well. Contains the
geolocation of a well and additional metadata.

● CarbonPathToken - ERC20 mintable and burnable token that represents
locked carbon emission.

Privileged roles
● DefaultAdmin:

○ CarbonPathAdmin: can grant and revoke minter role, set receiver
of CP fee, non-profit address, buffer pool address, seller
address.

○ CarbonPathToken: can grant and revoke minter role
● Owner:

○ CarbonPathNFT: can set admin address
● Admin:

○ CarbonPathNFT: can set metadata and URI for a specific token,
mint new tokens, and increase the amount of retired CPCO2
tokens

● Minter:
○ CarbonPathAdmin: can mint new tokens, update token URI and

metadata
○ CarbonPathToken: can mint, burn tokens

Risks
● The system is not adequately documented. It is difficult to determine

compliance with requirements due to gaps in the requirements.
● The system describes the sellerAddress (single address) used in the

CarbonPathAdmin contract as the CarbonPath Wallets; the security of
the CarbonPath Wallets functionality is not part of this audit.

www.hacken.io
11

Recommendations
● The system relies on the security of the privileged roles’ private

keys, which can impact the execution flow and security of the funds.
We recommend those accounts to be at least ⅗ multi-sig.

www.hacken.io
12

Findings

Critical

C01. Requirements Violation

The cpFeeAddress, bufferPoolAddress, and nonProfitAddress variables
are not explicitly set in the constructor and have a default value of
address(0). In such a case, during the call of the mint() function,
the fees and buffer tokens will be transferred to address(0).

Path:
./contracts/CarbonPathAdmin.sol

Recommendation: Set the cpFeeAddress, bufferPoolAddress,
nonProfitAddress values in the constructor.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

C02. Requirements Violation

The name of the internal function _isAdminOrOwner() contradicts its
functionality, which also allows approved addresses to perform the
same operations.

It also contradicts the require error message:

"CarbonPathNFT: must be an admin or an owner"

Path:
./contracts/CarbonPathAdmin.sol : _isAdminOrOwner()

Recommendation: Consider updating the code to comply with the
documentation.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

High

H01. Highly Permissive Role Access

The CarbonPathNFT has URI and Metadata that can be changed by the
owner of the token or the admin of the system.

This can lead to unwanted changes to the state of the NFT.

Path:
./contracts/CarbonPathNFT.sol : setMetadata(), setTokenURI()

Recommendation: Reconsider whether the user can change their token
data, or make this functionality available only to the admin. The

www.hacken.io
13

second option requires a publicly available document with a
description of such functionality for the users.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Mitigated (The data URI and Metadata can be changed only by
the Admin role. And the option to change the URI or the Metadata is
required by the system. This functionality is documented in the
provided documentation as:

“NOTE: CarbonPath may update the metadata and well files even after
the well is minted”.)

H02. Undocumented Behavior

The system uses different CarbonPathToken distributions during the
function calls, which are not documented in the requirements.

Path:
./contracts/CarbonPathAdmin.sol : mint()

Recommendation: Add documentation about funds flow and the
distribution of tokens.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Mitigated (Documentation was updated with the description of
the funds flow:

“During minting, CPCO2 Tokens are airdropped to the following
recipients:

● cpFeeAddress will receive advancedAmount * cpFeePercentage of
CPCO2 Tokens.

● operatorAddress will receive advancedAmount * (100% -
cpFeePercentage) of CPCO2 Tokens.

● bufferPoolAddress will receive bufferPoolAmount * 95% of CPCO2
Tokens.

● nonProfitAddress will receive bufferPoolAmount * 5% of CPCO2
Tokens.

”.)

Medium

M01. Unscalable Functionality: Check Repetition

The same check require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()))
used in several functions overwhelms the code and makes further
development difficult.

Path:
./contracts/CarbonPathAdmin.sol

Recommendation: Move the check to special modifiers.

www.hacken.io
14

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

M02. Unscalable Functionality: Check Repetition

The same check require(_address != address(0)) used in several
functions overwhelms the code and makes further development
difficult.

Path:
./contracts/CarbonPathAdmin.sol

Recommendation: Move the check to special modifiers.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

M03. Unscalable Functionality: Check Repetition

The check require(amount > 0) used in several functions overwhelms
code and makes further development difficult.

Path:
./contracts/CarbonPathAdmin.sol

Recommendation: Move the check to special modifiers.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

M04. Inefficient Gas Model: SafeMath in Solidity ^0.8.0

Starting with Solidity ^0.8.0, SafeMath functions are built-in. This
makes the library redundant.

Paths:
./contracts/CarbonPathAdmin.sol
./contracts/CarbonPathNFT.sol

Recommendation: Remove the SafeMath library.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

M05. Contradiction: Redundant Ownable

The Ownable in CarbonPathAdmin is inherited but not used and
contradicts the usage of the AccessControl contract.

Path:
./contracts/CarbonPathAdmin.sol

Recommendation: Remove inheritance from the Ownable contract.

www.hacken.io
15

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

M06. Inconsistent Data: Missing Event for Critical Value Update

The _adminAddress is updated in the constructor() and in
setAdminAddress() but the corresponding event is not emitted.

Path:
./contracts/CarbonPathNFT.sol

Recommendation: Emit the event whenever the corresponding action
happens.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

Low

L01. Gas Optimization: Long Error Strings

The error strings in require statements are longer than 32 bytes.

This increases contract size and Gas usage.

Paths:
./contracts/CarbonPathAdmin.sol
./contracts/CarbonPathNFT.sol
./contracts/CarbonPathToken.sol

Recommendation: Use shorter error strings.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L02. Style Guide Violation

The project should follow the official code style guidelines.
Inside each contract, library, or interface, use the following order:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be grouped according to their visibility and
ordered:

● constructor
● receive function (if exists)
● fallback function (if exists)
● external
● public

www.hacken.io
16

● internal
● private

Within a grouping, place the view and pure functions at the end.

Paths:
./contracts/CarbonPathAdmin.sol
./contracts/CarbonPathNFT.sol
./contracts/CarbonPathToken.sol

Recommendation: The official Solidity style guidelines should be
followed.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L03. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./contracts/CarbonPathAdmin.sol : grantMinter(), revokeMinter(),
setCpFeeAddress(), setSellerAddress(), mint(), updateTokenURI(),
updateMetadata(), retire(), sell(), withdraw(), buy()
./contracts/CarbonPathNFT.sol : getAdminAddress(), getAdvancedEAVs(),
getBufferPoolEAVs(), getRetiredEAVs(), getGeoJson(), getMetadata(),
setAdminAddress(), setMetadata(), setTokenURI(), mint(),
updateRetiredEAVs()
./contracts/CarbonPathToken.sol : grantMinter(), revokeMinter(),
mint(), burn(), burnFrom()

Recommendation: Use the external attribute for functions that are
never called from the contract.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L04. Unfinished NatSpec

It is recommended that the code should be kept clean and properly
documented with NatSpec. There are multiple functions, structs, and
public storage variables that do not have proper NatSpec
documentation.

Paths:
./contracts/CarbonPathAdmin.sol
./contracts/CarbonPathNFT.sol
./contracts/CarbonPathToken.sol

Recommendation: NatSpec documentation best practices should be
followed. For reference:

www.hacken.io
17

https://docs.soliditylang.org/en/v0.8.18/natspec-format.html#document
ation-example
https://dev.to/perelynsama/natspec-the-right-way-to-comment-ethereum-
smart-contracts-1b0c

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L05. Unclear Use of the Virtual Specifier

There are functions in the contracts that are declared with the
virtual specifier. These functions are not expected to be overridden,
so the use of the virtual specifier is redundant.

Paths:
./contracts/CarbonPathAdmin.sol : mint(), updateTokenURI(),
updateMetadata(), retire(), sell(), withdraw(), buy()
./contracts/CarbonPathNFT.sol : mint(), updateRetiredEAVs()
./contracts/CarbonPathToken.sol : burn(), burnFrom()

Recommendation: Remove the `virtual` modifier from functions of
top-level contracts.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L06. Missing Zero Address Validation

Address parameters are used without checking against the possibility
of being 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./contracts/CarbonPathAdmin.sol : grantMinter()
./contracts/CarbonPathToken.sol : grantMinter()

Recommendation: Implement zero address validations.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L07. Redundant nonReentrant Modifier

In all functions (with one small exception), the CEI pattern is
followed, thus reducing the risk of reentrancy.

The use of the nonReentrant modifier in all functions looks
redundant.

This makes the import of ReentrancyGuard and inherit from it as
unnecessary.

www.hacken.io
18

Paths:
./contracts/CarbonPathAdmin.sol : setSellerAddress(), mint(),
retire(), sell(), withdraw(), buy()
./contracts/CarbonPathNFT.sol : mint()

Recommendation: Consider removing redundant code.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L08. Checks-Effects-Interactions Pattern Violation

During the setSellerAddress() function execution, the sellerAddress
state variable is updated after the external calls.

There is no direct risk involved, but it is best practice to always
follow the CEI pattern.

Path:
./contracts/CarbonPathAdmin.sol : setSellerAddress()

Recommendation: Common best practices should be followed, update the
state variable before the external contract call.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L09. Typo in Comments

There are multiple spelling errors in the comments:

receipients -> recipients
Tranfer -> Transfer
tranferred -> transferred
CarbonpathAdmin -> CarbonPathAdmin

Path:
./contracts/CarbonPathAdmin.sol

Recommendation: Spellings should be fixed.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

L10. Redundant Import

In the CarbonPathToken contract, the Pausable contract is imported
but never used.

The use of unnecessary imports will increase the Gas consumption of
the code. Thus, they should be removed from the code.

Redundant imports decrease code readability.

www.hacken.io
19

Path:
./contracts/CarbonPathToken.sol

Recommendation: Consider removing redundant code.

Found in: 13a77bc72f4ec5a318031c2aa543a216039ae0d2

Status: Fixed (Revised commit: 4e406bb)

www.hacken.io
20

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
21

