
Customer: Junkyard
Date: March 1, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Junkyard

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type ERC721 system

Platform EVM

Language Solidity

Methodology Link

Website https://junkyard.wtf/

Changelog
24.11.2022 – Initial Review
01.02.2023 - Second Review
16.02.2023 - Third Review
01.03.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://junkyard.wtf/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 9

System Overview 12

Findings 14

Disclaimers 22

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Junkyard (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/BlackMagicCorp/jkd-contracts

Commit 13d31b439fbc698508954fd1b0b47515736e94dd

Whitepaper Link

Functional Requirements Link

Technical Requirements Link

Contracts File: ./contracts/JKD.sol
SHA3: 90703272b0703a35a63d285d0409e718865c93772c35547cda8dba10f731771d

File: ./contracts/JKDManager.sol
SHA3: d9ec312ab18d7a12d073d474deb780fe1371eb7f13178ef503034a4106e28cb1

Second review scope
Repository https://github.com/BlackMagicCorp/jkd-contracts

Commit a9576b1371919c2f24ead0266f002151d11c269e

Whitepaper Link

Functional Requirements Link

Technical Requirements Link

Contracts File: ./contracts/Junkyard.sol
SHA3: 440a56c0bf34a1488330024004b20a2c44a37dee321c10898da162ee5de1213f

File: ./contracts/JunkyardManager.sol
SHA3: 8bc617de3533a35c63fbe0067f28c6705f21b1bf1cae1201d770131ff4208fd5

File: ./contracts/JunkyardStorage.sol
SHA3: e2ae02dace07664a8a597eefaafaf0588b518aed3fdfa8056d35e133bd656386

www.hacken.io
4

https://junkyard.wtf/junkpaper
https://junkyard.wtf/junkpaper
https://github.com/BlackMagicCorp/jkd-contracts/README.md
https://junkyard.wtf/junkpaper
https://junkyard.wtf/junkpaper
https://github.com/BlackMagicCorp/jkd-contracts/README.md

Third review scope
Repository https://github.com/BlackMagicCorp/jkd-contracts

Commit 8a3fba537baa793ce2cc6f6768284d85e6b0c9e7

Whitepaper Link

Functional Requirements Link

Technical Requirements Link

Contracts File: ./contracts/Junkyard.sol
SHA3: bda079298759757058e442a64fee28fd3d482db25184985ef10e7ec064ad519f

File: ./contracts/JunkyardManager.sol
SHA3: e61252133cda1372d0fa140f91cbb78167308387bc6321fb05eff3e82126697c

File: ./contracts/JunkyardStorage.sol
SHA3: 865a9a1062a7846d85bd924d7dbca5cb9ac1a2ed9252a4bc17b9093575d1290b

Fourth review scope
Repository https://github.com/BlackMagicCorp/jkd-contracts

Commit 7f018433e5e8370913abcabda2fcb89559388231

Whitepaper Link

Functional Requirements Link

Technical Requirements Link

Contracts File: ./contracts/Junkyard.sol
SHA3: bda079298759757058e442a64fee28fd3d482db25184985ef10e7ec064ad519f

File: ./contracts/JunkyardManager.sol
SHA3: e796f1709fe1eea82b2f3785d473aa4b3788ca0e1638b0ceb28f386ff0afc375

File: ./contracts/JunkyardStorage.sol
SHA3: 805302aabe603cc399528e59258378273040c2154a2bd4ab9252594fe9bc5692

www.hacken.io
5

https://junkyard.wtf/junkpaper
https://junkyard.wtf/junkpaper
https://github.com/BlackMagicCorp/jkd-contracts/README.md
https://junkyard.wtf/junkpaper
https://junkyard.wtf/junkpaper
https://github.com/BlackMagicCorp/jkd-contracts/README.md

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to assets loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect the code
quality

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● A lite paper is provided with global functionalities
● Technical description is provided in ReadMe.
● NatSpec should be generated into contract documentation published on

the website.
● The lite paper documents functionalities that are not implemented

(JunkCoin launch, JunkCoin rewards, the Great Burn).

Code quality
The total Code Quality score is 10 out of 10.

● Solidity official style guidelines are followed perfectly.
● The development environment is configured.

Test coverage
Test coverage of the project is 100% (branch coverage).

● The code is well covered with tests.
● Only one negative case coverage is missing.
● Interactions by several users are not tested thoroughly.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

24 November 2022 7 2 5 3

1 February 2023 5 1 2 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

16 February 2023 3 0 1 0

1 March 2023 0 0 0 0

www.hacken.io
8

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Passed

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

www.hacken.io
10

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
11

System Overview

Junkyard is a “dump to earn” platform where users can dump their useless
NFT in exchange for native tokens (Junkcoin).
Users can pay (in ETH) to “fish” one or multiple of these NFT and choose
one of them to claim.
It includes the following contracts:

● Junkyard.sol - A contract where the users can interact to fish and
claim NFT. It will then be bridged to Polygon contracts. This
contract is on Ethereum.

● JunkYardManager.sol - A contract where all the logic and processes
are done. This contract is on Polygon to reduce costs.

● JunkyardStorage.sol - A contract (on Ethereum) where the NFT are
stored. Users can dump them here and receive them from here.

Privileged roles
● The owner of Junkyard.sol can set new prices, set the manager address

and chain, the storage address and chain, pause/unpause the contract.
● The owner of JunkyardStorage.sol can set the manager address and

chain.
● The owner of JunkyardManager.sol can set Junkyard address and chain,

set storage address and chain, set poop address and chain.
● Tha Admin role of JunkyardManager.sol can register a new token,

register a new fishing attempt and register a collection.

Risks
● Some functionalities depend on out-of-scope off-chain management.

These contracts do not provide any guarantees to users who interact
with them.

● The Junkcoin rewards for NFT dumping functionality described in the
litepaper is not implemented in the code yet. The coin itself is not
implemented yet. There is no insurance that they will be in the
future.

● The “Great Burn” functionality described in the litepaper is not
implemented in the code yet. There is no insurance that it will be in
the future.

● The DAO described in the litepaper is not implemented in the code
yet. There is no insurance that it will be in the future.

● The dump process and the fishing process rely on the junkbot, which
is an off-chain management system. This off-chain system needs to be
audited separately as it is not in the scope of this audit.

● Without the junkbot, this smart contracts system can not work
independently.

● The project uses Axelar as a gateway between Ethereum contracts and
Polygon contracts. However, Axelar contracts are not in the scope of
this audit.

www.hacken.io
12

● The function registerCollection loops on an array provided as a
parameter by the owner. If the size of this array is not handled
correctly, this can lead to a Gas limit excess. The owner should take
it into account when calling this function.

www.hacken.io
13

Findings

Critical

1. Highly Permissive Role Access

When the users use the fishing function, they have to pay, but this
does not give them the possibility to claim their NFT. The owner of
the contract must send them manually through the claimLoot function.

Path: ./contracts/JKD.sol

Recommendation: Owners should not have access to funds that belong to
users.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

2. Requirements Violation

The documentation claims that everything happens on-chain.

“everything happens fully on-chain!”

“it's 100% on-chain fishing.”

This is not the case. Everything is done through off-chain
management. The only thing that the user can do on-chain is to pay
(through the fishing function) and access some getters. Everything
else is in the hands of the owner.

Path: ./contracts/JKD.sol

Recommendation: The code should not violate the requirements provided
by the Customer.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

3. Requirements Violation

“You will earn Junkcoin for each NFT you ditch to the Junkyard, the
rarer the NFT is, the more Junkcoin you will earn.”

According to the documentation, users can send to the contract their
own NFTs and receive as reward Junkcoin. Depending on how rare NFT
is, more Junkcoin will be earned. Contracts do not provide the
specified functionality.

“The first 4000 degens to dump NFTs will be able to mint a rat and
join the Secret Rat Society, a one of a kind alpha group. You will
also be able to stake your rats to earn Junkcoin passively.”

No such system is implemented.

The code should not violate the requirements provided by the
Customer.

Path: ./contracts/JKD.sol

www.hacken.io
14

Recommendation: Implement described functionality or update
documentation.

Status: Mitigated (The first feature will be handled off-chain. The
second one has been removed from the documentation.)

High

1. Highly Permissive Role Access - Requirements Violation

The documentation states that “In 365 days after launch, the Great
Burn will commence and all NFTs left in the Junkyard smart contract
will be burned, lost forever!”. In the contract, there is no time
restriction for the owner to do the great burn (contract self
destruct).

In this case, all not-released chain native coins will be transferred
to the contract owner instead of splitting between initial payees.

Path: ./contracts/JKD.sol

Recommendation: The code should not violate the requirements provided
by the Customer.

Status: Mitigated (The litepaper explains: “The burning mechanism
will be integrated into the smart contracts at a later stage, and the
exact date will be determined by the Secret Rat Society via DAO.”)

2. Requirements Violation

According to the documentation, users can fish from 1 to 60 NFTs.
Contracts have predefined prices only for attempts with quantities
equal to 1, 3, 5, 7, 15, 40 and 60. Owner of the contract can change
the max amount of fished NFTs to any desired number.

The code should not violate the requirements provided by the
Customer.

Path: ./contracts/JKD.sol : function fishing()

Recommendation: Update data in the contract and limit max NFTs able
to fish in one time or update documentation.

Status: Mitigated (we offer 1, 3, 7, 15, 40 and 60 and not all
numbers from 1-60)

3. Data Consistency

It is possible to register new tokens with already existing hashes or
Id in functions registerNewToken and registerCollection.
Additionally, it is possible to use duplicate _registrationTx and _id
in the function registerNewFishingAttempt.

This can bring many practical problems at the application level,
making the system untrustworthy to the outside world.

Path: ./contracts/JKDManager.sol : functions registerNewToken(),
registerCollection(), registerNewFishingAttempt()

www.hacken.io
15

Recommendation: Add additional sanity checks for function parameters.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

4. Data Consistency

The same token from toWinTokens[] can be pushed several times to
request.wonTokens[].

Path: ./contracts/JKDManager.sol : function fulfillRandomWords()

Recommendation: Remove the token from the source array when it
becomes part of claimable tokens. Then, put it back in the source
array if the user chooses another token.

Status: Fixed (8a3fba537baa793ce2cc6f6768284d85e6b0c9e7)

5. Highly Permissive Role Access

The JKDManager contract owner can change the VRFCoordinator address.
In case of updating VRFCoordinator, it cannot be validated if the
response came from a trusted source.

Path: ./contracts/JKD.sol

Recommendation: Remove the possibility of changing VRFCoordinator.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

6. Data Consistency - Denial Of Service

The function fulfillRandomWords pushes a certain amount of tokens in
the wonTokens array. These tokens are taken from the availableTokens
array. However, if there are not enough tokens available, the
function will run an infinite loop until reaching an out of Gas
exception.

Path: ./contracts/JunkYardManager.sol : function fulfillRandomWords()

Recommendation: Either verify that there are enough tokens available
or exit the loop when there is no more token available.

Status: Fixed (7f018433e5e8370913abcabda2fcb89559388231)

Medium

1. Best Practice Violation - Unchecked Transfer

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

Using the transferFrom function does not check if the contract
recipients are aware of the ERC721 protocol to prevent tokens from
being forever locked.

Path: ./contracts/JKD.sol : function claimLoot()

Recommendation: Follow common best practices, use safeTransferFrom
function.

www.hacken.io
16

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

2. Missing Event for Critical Value Updation

Critical state changes should emit events for tracking things
off-chain.

The functions setPrice, pause, unpause from JKD.sol contract and
functions registerNewToken, setSubscriptionId, setCoordinator,
setKeyhash, setRequestConfirmation, registerCollection does not emit
events on change of important values.

This can lead to inability of users to subscribe events and check
what is going on with the project.

Paths: ./contracts/JKD.sol : functions setPrice(), pause(), unpause()

./contracts/JKDManager.sol : functions registerNewToken(),
setSubscriptionId(), setCoordinator(), setKeyhash(),
setRequestConfirmation(), registerCollection()

Recommendation: Emit events on critical state changes.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

3. Missing Event for Critical Value Updation

Critical state changes should emit events for tracking things
off-chain.

The functions setManagerAddress, setManagerChain, setStorageAddress,
setStorageChain from Junkyard.sol contract, functions
setJunkyardAddress, setJunkyardChain, setStorageAddress,
setStorageChain, setPoopAddress, setPoopChain from
JunkyardManager.sol, functions setManagerChain, setManagerAddress
from JunkyardStorage.sol contract does not emit events on change of
important values.

This can lead to inability of users to subscribe events and check
what is going on with the project.

Paths: ./contracts/Junkyard.sol : functions setManagerAddress(),
setManagerChain(), setStorageAddress(), setStorageChain()

./contracts/JunkyardManager.sol : functions setJunkyardAddress(),
setJunkyardChain(), setStorageAddress(), setStorageChain(),
setPoopAddress(), setPoopChain()

./contracts/JunkyardStorage.sol : functions setManagerChain(),
setManagerAddress()

Recommendation: Emit events on critical state changes.

Status: Fixed (8a3fba537baa793ce2cc6f6768284d85e6b0c9e7)

Low

1. State Variables Default Visibility
www.hacken.io

17

Variables toWinTokens, subscriptionId, callbackGasLimit,
requestConfirmations, COORDINATOR and keyHash visibility are not
specified. Specifying state variables’ visibility helps to catch
incorrect assumptions about who can access the variable.

This makes the contract`s code quality and readability higher.

Path: ./contracts/JKDManager.sol

Recommendation: Specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

2. Variables that Should Be Declared Constant

State variables that do not change their value (callbackGasLimit)
should be declared constant to save Gas.

Path: ./contracts/JKDManager.sol

Recommendation: Declare the above-mentioned variable as constants.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

3. Floating Pragma

The project uses floating pragma ^0.8.4.

Paths: ./contracts/JKD.sol

./contracts/JKDManager.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

4. Style Guide Violation

In JKD.sol and JKDManager.sol, the events should be placed after the
state variables and before the constructor.

In JKDManager.sol, the external function should be before the public
one. The internal function should be after public ones. The public
view functions should be placed after the public non-view functions.

Event names should be in CapWords.

COORDINATOR should be in mixedCase.

Paths: ./contracts/JKD.sol

./contracts/JKDManager.sol

Recommendation: Follow the official Solidity guidelines.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

5. Commented Code Parts
www.hacken.io

18

In the contract JKDManager.sol line 38 is a commented part of code.

Path: ./contracts/JKDManager.sol

Recommendation: Remove commented parts of code.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

6. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths: ./contracts/JKD.sol : functions fishing(), claimLoot(),
setPrice(), pause(), unpause(), theGreatBurn()

./contracts/JKDManager.sol : functions registerNewToken(),
registerNewFishingAttempt(), claim(), getToken(), getRequestStatus(),
getTotalTokenToWin(), setSubscriptionId(), setCoordinator(),
setKeyhash(), setRequestConfirmation(), registerCollection()

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

7. Variable Shadowing

Constructor arguments _payees, _shares shadows corresponding
variables from PaymentSplitter.sol

This makes the contract`s code quality and readability higher.

Path: ./contracts/JKD.sol

Recommendation: Rename related variables/arguments.

Status: Fixed (a9576b1371919c2f24ead0266f002151d11c269e)

8. State Variables Can Be Declared Immutable

In the contract JunkyardManager.sol, variables COORDINATOR and
subscriptionId values are set in the constructor. These variables can
be declared immutable.

This will lower the Gas taxes.

Path: ./contracts/JunkyardManager.sol

Recommendation: Declare mentioned variables as immutable.

Status: Fixed (8a3fba537baa793ce2cc6f6768284d85e6b0c9e7)

9. Unindexed Events

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

www.hacken.io
19

Paths: ./contracts/Junkyard.sol : NewFishingEntry, NewClaim

./contracts/JunkyardManager.sol : TokenRegistred, CollectionRegistred

./contracts/JunkyardStorage.sol : TokenSended

Recommendation: Use the “indexed” keyword to the event parameters.

Status: Fixed (8a3fba537baa793ce2cc6f6768284d85e6b0c9e7)

10. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths: ./contracts/Junkyard.sol : constructor()

./contracts/JunkyardManager.sol : constructor(), registerNewToken(),
registerNewFishingAttempt(), registerCollection()

./contracts/JunkyardStorage.sol : constructor()

Recommendation: Implement zero address checks.

Status: Fixed (8a3fba537baa793ce2cc6f6768284d85e6b0c9e7)

11. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Path: ./contracts/JunkyardStorage.sol : setManagerChain(),
setManagerAddress()

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (8a3fba537baa793ce2cc6f6768284d85e6b0c9e7)

12. Unused ERROR

Unused libraries/imports/functions/arguments/errors should be removed
from the contracts. This will help lower the Gas cost.

Path: ./contracts/Junkyard.sol : error NotEnoughValueForGas

Recommendation: Remove the redundant error or use it.

Status: Fixed (8a3fba537baa793ce2cc6f6768284d85e6b0c9e7)

13. Redundant Use

The use of the variable “nonce” is not needed. randomWords[i] can be
incremented directly.

www.hacken.io
20

Creating this unnecessary variable will increase Gas cost.

Path: ./contracts/JunkyardManager.sol : uint256 nonce

Recommendation: Remove the unnecessary variable.

Status: Fixed (7f018433e5e8370913abcabda2fcb89559388231)

14. Inconsistent Data

The event TokenRegistred is not indexed by the correct parameter.

Path: ./contracts/JunkyardManager.sol : TokenRegistred

Recommendation: Put the “indexed” keyword for the address.

Status: Fixed (7f018433e5e8370913abcabda2fcb89559388231)

15. Inconsistent Data

The first parameter of the event is supposed to be “value name” and
the second one “new value”. The new value is assigned to the two
parameters.

Path: ./contracts/JunkyardStorage.sol : functions setManagerChain(),
setManagerAddress()

Recommendation: Assign the value name for the first parameter.

Status: Fixed (7f018433e5e8370913abcabda2fcb89559388231)

www.hacken.io
21

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
22

