
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Millix Foundation
Date: March 1, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Millix Foundation

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website https://millix.org/

Changelog 14.02.2023 – Initial Review
1.03.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://millix.org/

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11
Critical 11
High 11

H01. Requirements Violation 11
H02. Highly Permissive Role Access 11

Medium 11
M01. Contradiction 11
M02. Tautology 12
M03. Best Practice Violation 12
M04. Missing Events 12
M05. Best Practice Violation 12

Low 13
L01. Floating Pragma 13
L02. Missing Empty String Check 13

Disclaimers 14

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Millix Foundation (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/millix/millix-bridge-contract

Commit 76f8469c97c0052a7217cb29e42d80dbc4806e52

Whitepaper Link

Functional
Requirements

Link

Technical Requirements Link

Contracts File: ./contracts/WrappedMillix.sol
SHA3:
80156cb39d46faff08ccfddb654bf87bebabfd4a28d36229bcbcd7572dbc046d

Second review scope
Repository https://github.com/millix/millix-bridge-contract

Commit 76a2dc84776e9881423bde9033f6f03fad385518

Whitepaper Link

Functional
Requirements

Link

Technical Requirements Link

Contracts File: ./contracts/interfaces/IMillixBridge.sol
SHA3:
c617e2c1f1bef7ed99493a2ba63f30d78659e43dbeeb0ab2739ee232b97ff4c2

File: ./contracts/WrappedMillix.sol
SHA3:
e4fd1f9a2220126802ec4d5698288dac573b0e804f4723dbca21c7db558760cb

www.hacken.io
4

https://millix.org/whitepaper.html
https://github.com/millix/millix-bridge-contract/blob/main/README.md
https://github.com/millix/millix-bridge-contract/blob/main/README.md
https://millix.org/whitepaper.html
https://github.com/millix/millix-bridge-contract/blob/main/README.md
https://github.com/millix/millix-bridge-contract/blob/main/README.md

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● The code follows the Solidity style guides.

Test coverage
Code coverage of the project is 66.67% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Interactions by several users are not tested thoroughly.
● Negative cases coverage is missed.

Security score
As a result of the audit, the code does not contain issues. The security
score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

14 February 2023 2 5 2 0

1 March 2023 0 0 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility levels
should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows and
underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent version of
the Solidity compiler. Passed

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have
been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call should be

checked. Passed

Access Control
& Authorization CWE-284

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be self-destructible

while it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Passed

Assert
Violation SWC-110 Properly functioning code should never reach

a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should never
be used. Passed

Delegatecall to
Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state unless
required.

Passed

www.hacken.io
7

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race Conditions SWC-114 Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values as
a proxy for
time

SWC-116
Block numbers should not be used for time
calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a unique
id. A transaction hash should not be used as
a unique id. Chain identifiers should always
be used. All parameters from the signature
should be used in signer recovery. EIP-712
should be followed during a signer
verification.

Not Relevant

Shadowing State
Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources of
Randomness SWC-120 Random values should never be generated from

Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical functions,
a developer should carefully specify
inheritance in the correct order.

Passed

Calls Only to
Trusted
Addresses

EEA-Leve
l-2

SWC-126

All external calls should be performed only
to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused variables
if this is not justified by design. Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be withdrawn
without proper permissions or be locked on
the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data
Consistency Custom Smart contract data should be consistent all

over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source and
not be vulnerable to short-term rate changes
that can be achieved by using flash loans.
Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract. There should not be
any cases when execution fails due to the
block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should be

followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit tests.
Test coverage should be sufficient, with
both negative and positive cases covered.
Usage of contracts by multiple users should
be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9

System Overview

Millix is a ERC20 token with the following contract:
● WrappedMillix — simple ERC-20 token with additional features,

including pause and resume, minting and burning, and vesting
restrictions.
It has the following attributes:

○ Name: WrappedMillix
○ Symbol: WMLX
○ Decimals: 1
○ Total supply: 9,000,000,000,000,000 WMLX (nine quadrillion)

tokens.

Privileged roles
● The owner of the WrappedMillix contract can pause, unpause the

contract, and stop transfer, burn, mint processes for specific
address or for all addresses.

www.hacken.io
10

Findings

Critical

No critical severity issues were found.

High

H01. Requirements Violation

It is possible that the user may inadvertently pay a higher burn fee
than the current _burnFees amount. This can occur as a result of the
use of the >= operator.

This can lead to users to pay more fees than required.

Path: ./contracts/WrappedMillix.sol : unwrap()

Recommendation: Either return the excessive amount to the user or use
a strict equals for fees.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

H02. Highly Permissive Role Access

The owner can stop the token transfers at any time via the
setVestingState function for any specific address or all addresses
via pause function. Owners should not have an access to funds that
belongs to users.

Path: ./contracts/WrappedMillix.sol : pause(), setVestingState()

Recommendation: In the public documentation, mention the access
privileges associated with the owner role for the users.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

Medium

M01. Contradiction

The functions NatSpecs, the param statement is not followed by
function parameter name.

Path: ./contracts/WrappedMillix.sol : mint(), setBurnFees(),
burnFees(), isVested(), setVestingState(), unwrap()

Recommendation: According to the Solidity documents, after the param
statement function parameter name should be followed.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

www.hacken.io
11

https://docs.soliditylang.org/en/v0.8.17/natspec-format.html

M02. Tautology

The setBurnFees() function has a requirement that contains a
tautology. Specifically, the requirement that fees >= 0 is in
conflict with the definition of the fees variable as a uint. By
definition, variables of type uint are always equal to or greater
than zero.

Path: ./contracts/WrappedMillix.sol : setBurnFees()

Recommendation: Remove related require statement.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

M03. Best Practice Violation

The built-in transfer and send functions process hard-coded amount of
Gas. In case of receiver is a contract with receive or fallback
function, the transfer may fail due to the “out of Gas” exception.

Path: ./contracts/WrappedMillix.sol : unwrap()

Recommendation: Replace transfer and send functions with call or
provide special mechanism for interacting with a smart contract.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

M04. Missing Events

The functions do not emit events on change of important values.

Path: ./contracts/WrappedMillix.sol : setBurnFees(),
setVestingState()

Recommendation: Emit events on critical state changes.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

M05. Best Practice Violation

The unwrap() function deducts a fixed fee from the user, regardless
of the token amount of burn.

Path: ./contracts/WrappedMillix.sol : unwrap()

Recommendation: Either explain the functionality and inform the users
in the public documentation or implement different fee logic which
accounts percentage of the amount to be burned.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

www.hacken.io
12

Low

L01. Floating Pragma

The project uses floating pragmas ^0.8.9

Path: ./contracts/WrappedMillix.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

L02. Missing Empty String Check

The mint functions emit events according to the input parameters, it
can be given as empty. This may lead to empty event emitting, which
can lead to unnecessary Gas consumption.

Path: ./contracts/WrappedMillix.sol: mint(), unwrap()

Recommendation: Implement empty string checks.

Status: Fixed (Revised commit:
76a2dc84776e9881423bde9033f6f03fad385518)

www.hacken.io
13

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
14

