
Customer: Parallax
Date: March 03, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Parallax

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC721 token; Vault; Yield Strategy

Platform EVM

Language Solidity

Methodology Link

Website https://parallaxfinance.org/

Changelog
11.01.2023 – Initial Review
06.02.2023 - Second Review
03.03.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://parallaxfinance.org/

Table of contents
Introduction 5

Scope 5

Severity Definitions 8

Executive Summary 9

Checked Items 10

System Overview 13

Findings 17
Critical 17

C01. Invalid Hardcoded Value 17
High 17

H01. Front-Running Attack 17
H02. Denial of Service 17
H03. Invalid Calculations 18
H04. Checks-Effects-Interactions Pattern Violation 18

Medium 19
M01. Admin Privilege Actions 19
M02. Best Practice Violation - Unchecked Transfer 19
M03. Unscalable Functionality - Bad Struct Naming 20
M04. Contradiction - Documentation Mismatch 20
M06. Unchecked Input Value 20

Low 21
L01. Floating Pragma 21
L02. Missing Require Check 21
L03. Missing NatSpec 21
L04. Style Guide Violation: Order of Functions 22
L05. Functions that Can Be Declared Internal 22
L06. Inconvenient Naming 22
L07. Redundant Code 23
L08. Parameter Name Contradiction 23
L09. Wrong Modifier Usage 23
L10. Constructor Usage 24
L11. Missing Zero Address Validation 24
L12. Functions that Can Be Declared External 24
L13. Readability 25
L14. Typos in Variable Names 25
L15. Gas Optimization 25
L16. Zero Value Check 25
L17. Redundant Code Block 26
L18. Redundant Code Block 26
L19. Zero Valued Transactions 26
L20. Dead Code 26

Findings Of The Customer Team 28
Critical 28

www.hacken.io
3

SC01. Data Inconsistency 28
High 28

SH01. Contradiction 28
Medium 28

SM01. Data Inconsistency 28
SM02. Logic Error 29
SM03. Logic Error 29
SM04. Undocumented Behavior 30

Low 30
SL01. Logic Error 30
SL02. Missing Validation 31

Disclaimers 32

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by Parallax (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://bitbucket.ideasoft.io/projects/PAR/repos/solidity

Commit ce3b18c0ceea7ae75c3170c3452b08d1adf6936f

Functional
Requirements

https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/browse/
docs/docs.pdf

Technical
Requirements

https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/browse/
docs/docs.pdf

Contracts File: ./contracts/extensions/TokensRescuer.sol
SHA3: 246bfb15ae892c4e362f401eed46488e27f3fbdc4f9839752c6d2fafc4f8a42e

File: ./contracts/interfaces/IParallax.sol
SHA3: 840c1f76fade58ea77d7a17bf9eaef15731c67c1fb75795175f36fb6cb03de4c

File: ./contracts/interfaces/IParallaxStrategy.sol
SHA3: 4101d0c193b79e7b523d6a8b43db43b6eb65a1144af5fdaae5d7997aabbdec6b

File: ./contracts/interfaces/ITokensRescuer.sol
SHA3: 3f6271838e43b2ddc72edccc65fb01c674bfcc86ac0638b0e5ce500868f1185b

File: ./contracts/Parallax.sol
SHA3: 62c12caa414ca3144b3e9e402834d1321841dca56fadcd4adb424ea143071e8f

File:
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
SHA3: 5fc73b0a783bcf127635b88ee5507028c71d686924f2765d35ebd6c10bc77dd3

File: ./contracts/strategies/curve-sorbettiere/interfaces/ICurve.sol
SHA3: e05f60ddaea8c751400f222419e2bb198b4dc00121e805b576169f25fa914060

File:
./contracts/strategies/curve-sorbettiere/interfaces/ISorbettiere.sol
SHA3: ceaa566d10d2c17d2708e3e3ef1ac9e0563ac94a8c535bc638f76e0d7bcc2e99

Second review scope
Repository https://bitbucket.ideasoft.io/projects/PAR/repos/solidity

Commit f87b8cae7dbd9970a24276c31885c15f8f7c1bb0

www.hacken.io
5

https://bitbucket.ideasoft.io/projects/PAR/repos/solidity
https://bitbucket.ideasoft.io/projects/PAR/repos/solidity

Functional
Requirements

https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/docs/Cu
rve APY calculation.pdf
https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/docs/Do
cumentation.pdf

Technical
Requirements

https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/docs/Cu
rve APY calculation.pdf
https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/docs/Do
cumentation.pdf

Contracts File: ./contracts/ERC721/ERC721UpgradeableParallax.sol
SHA3: f8ef74003134a72c7d0d9ae0586fad2e2c0a27e54947940d685853aa7933c93c

File: ./contracts/extensions/CheckerZeroAddr.sol
SHA3: cba220ed74dad247a08fca1c42bf59e224fb870df8d2563dde9b714203647cda

File: ./contracts/extensions/Timelock.sol
SHA3: 1ff7e0e42b9bf073f4163c87c33d0c8c15c63b8cdb4a25283079e00843629521

File: ./contracts/extensions/TokensRescuer.sol
SHA3: 64c9f6a22a113fa24dc756a1b161905875d25ad95eb662a1809aaeb6a45e51b6

File: ./contracts/interfaces/IERC721UpgradeableParallax.sol
SHA3: cf5a1e58d8995ec3365b18b0297b88fb9c4d2675aca60df46eee17cc6ce72e66

File: ./contracts/interfaces/IFees.sol
SHA3: d578ca8dd568ce2762143f547e9dde41055bdea0efdef48f076f15324fbea673

File: ./contracts/interfaces/IParallax.sol
SHA3: 55c454e22c05101fdae0bf5d448b077136b84b05d7bc7bfc3414b1db5b37c68b

File: ./contracts/interfaces/IParallaxStrategy.sol
SHA3: f6490988308bf7332743f7dface7b886880aaa2df084fbcdfde8db9629acd8d0

File: ./contracts/interfaces/ITokensRescuer.sol
SHA3: a65a0522cb31bd0a3d7d6f84ed990c790a923893936874f9ecb3e3978bd3382c

File: ./contracts/Parallax.sol
SHA3: 8df0a2562cb4d812fcdd2a0e68dffd72f04dc10b268fb8f8781f8851684ab79a

File:
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
SHA3: 182cd00a689e5a96e8e38eeb5b541763527874c86652f33fc64456beb8168e22

File: ./contracts/strategies/curve-sorbettiere/interfaces/ICurve.sol
SHA3: d0010f1c18c1c03ce828b6b77d58c4bd199d5fb8dcf4ff5815bf3fd17a4633c2

File:
./contracts/strategies/curve-sorbettiere/interfaces/ISorbettiere.sol
SHA3: b573b94f9c91e5888d898102f3a8f073c0160760fb143ef83d7acb2ca476b4fb

Third review scope
Repository https://bitbucket.ideasoft.io/projects/PAR/repos/solidity

Commit 8bd4562ece9e838956a0295a1ba10f76b8b5da4a

Functional
Requirements

https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/docs/Cu
rve APY calculation.pdf
https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/docs/Do
cumentation.pdf

www.hacken.io
6

https://bitbucket.ideasoft.io/projects/PAR/repos/solidity

Technical
Requirements

https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/docs/Cu
rve APY calculation.pdf
https://bitbucket.ideasoft.io/projects/PAR/repos/solidity/docs/Do
cumentation.pdf

Contracts File: ./contracts/ERC721/ERC721UpgradeableParallax.sol
SHA3: f8ef74003134a72c7d0d9ae0586fad2e2c0a27e54947940d685853aa7933c93c

File: ./contracts/extensions/CheckerZeroAddr.sol
SHA3: aab073312777d6da58c1e72e94df568dbbd05c70b11c0c2d5b2e096e66c25947

File: ./contracts/extensions/Timelock.sol
SHA3: 5a11d7bd1f22bc331242f62299a77114b9ebbfc9c8d3d6b53d8962f3cf9de18c

File: ./contracts/extensions/TokensRescuer.sol
SHA3: 64c9f6a22a113fa24dc756a1b161905875d25ad95eb662a1809aaeb6a45e51b6

File: ./contracts/interfaces/IERC721UpgradeableParallax.sol
SHA3: cf5a1e58d8995ec3365b18b0297b88fb9c4d2675aca60df46eee17cc6ce72e66

File: ./contracts/interfaces/IFees.sol
SHA3: d578ca8dd568ce2762143f547e9dde41055bdea0efdef48f076f15324fbea673

File: ./contracts/interfaces/IParallax.sol
SHA3: 2a20504f74a3521272688528ae271228b2d356166da4cc9ea4d68eb147d5f9e4

File: ./contracts/interfaces/IParallaxStrategy.sol
SHA3: 6228cdd9b0c903bbffedeb1f4ae2f13a616a3977e164fb986f0490a56b74a6f5

File: ./contracts/interfaces/ITokensRescuer.sol
SHA3: a65a0522cb31bd0a3d7d6f84ed990c790a923893936874f9ecb3e3978bd3382c

File: ./contracts/Parallax.sol
SHA3: ec9cfe750dbdf77309a50e8b5209b94781125128ed494d1045cae3a2f4c9aebb

File:
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
SHA3: 4a80149cad715cf50aad7cd8ab9a4aa6f0b55de2ca08d906efe923ac4c1a1ada

File: ./contracts/strategies/curve-sorbettiere/interfaces/ICurve.sol
SHA3: f225a8b5861d7d60905bcb64ceaf9a510158b89d5f10d3f00c7b7806fd1d2186

File:
./contracts/strategies/curve-sorbettiere/interfaces/ISorbettiere.sol
SHA3: fca77ebe07476bf371d274808e11ff6bced247712178c834733b8a5e6ca8799b

www.hacken.io
7

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
8

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are detailed.
● Technical description is precise.
● There is a diagram explaining the flow.
● NatSpec covers most of the code.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● The code is structured and function/contract interactions are clear.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions by several users are tested thoroughly.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

11 January 2023 20 4 4 1

6 February 2023 1 2 1 0

3 March 2023 0 0 0 0

www.hacken.io
9

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12

System Overview

Parallax is a platform that allows different compounding strategies; at the
moment, in the scope of the audit, there is only one,
CurveSorbetteriesStrategy, that allows users to deposit into the
USDC-USDT-MIM LP on curve and auto-compound the rewards.

When a position is created, the user receives an ERC721 that is burned on
complete withdrawal and used to transfer the position to another user.

The files in the scope:

● TokenRescuer.sol - Contract to rescue tokens and native coins
wrongfully sent to parallax and Strategy contracts.

● IParallax.sol - Interface for the parallax contract.
● IParallaxStrategy.sol - Interface for the parallax strategy.
● ITokenRescuer.sol - Interface for the TokenRescuer.
● Parallax.sol - Main contract that allows the owner to add new

strategies and users to deposit, withdraw positions and transfer
NFTs.

● CurveSorbetterieStrategy.sol - First strategy that uses curve as base
layer, compounding the rewards of a LP on curve.

● ICurve.sol - Interface to interact with curve.
● ISorbetterie.sol - Interface for the first strategy.
● Timelock.sol - The contract to handle timelocks in case of state

changes in the contract to give users time to react.
● CheckerZeroAddr.sol - The contract responsible for zero address

checks.
● ERC721UpgradeableParallax.sol - The system NFT that is used for

confirmation of positions.
● IERC721UpgradeableParallax.sol - The interface for

ERC721UpgradeableParallax.sol.
● IFees.sol - The contract to hold the withdrawal fees.

www.hacken.io
13

Flow of the project:

www.hacken.io
14

Privileged roles
Roles defined in the system:

● Owner: The owner of the parallax contract can:
○ Rescue tokens sent wrongfully to the contract parallax and

strategy contracts (both native and non native).
○ Whitelist and unwhitelist a token that can be deposited.
○ Add a strategy and modify its parameters.

● User: The user in the parallax system can:
○ Open positions and do deposits, withdrawals, and token

transfers.

www.hacken.io
15

Risks
● The project relies on external factors:

○ USDT-USDC-MIM peg for the first strategy.
○ Sushiswap.
○ USDT, USDC, MIM liquidity on Sushiswap with themselves and

other ERC20/ETH.
● There are swaps to deposit and withdraw with whitelisted ERC20 and

ETH, which creates a possibility for a race condition where they
could be subject to a sandwich attack or lose a part of the deposit
due to slippage.

● The upgradeable nature of the contracts puts the user funds at risk
in case of logic upgrade.

Recommendations
● The system relies on the secureness of the Owner's private keys,

which can impact the execution flow and secureness of the funds. We
recommend this account to be at least ⅗ multi-sig.

www.hacken.io
16

Findings

Critical

C01. Invalid Hardcoded Value

In CurveSorbettiereStrategy.sol contracts’ _harvest() function, there
is a hardcoded route (SPELL, MIM) to be used on Sushiswap on
Arbitrum.

The routes/pairs may not always have desired liquidity and this may
result in all harvest being lost.

Path:
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
: _harvest()

Recommendation: The route (SPELL, WETH, MIM) should be used, or there
should be an admin function that controls the route values in case of
low liquidity.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

High

H01. Front-Running Attack

In the CurveSorbettiereStrategy.sol contract, the parameters for the
compound() -> _harvest() function: swapMimAmountOutMin is driven by
off-chain data and can be manipulated.

This may result in easy front-running attacks on SPELL - MIM swaps
(it can even be done in one transaction without the need to watch the
mempool). An attacker can initiate the attack by calling the
compound() function directly from the Parallax.sol contract.

Path:
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
: compound(), _harvest()

Recommendation: Take the swapping price from an on-chain oracle and
calculate swapMimAmountOutMin according to that value. Or sign the
data to prevent manipulation.

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

H02. Denial of Service

In the CurveSorbettiereStrategy.sol contract, the call
IParallax(PARALLAX).feesReceiver() is used many times without zero
address checks.

Since the safeTransfer() function checks for zero addresses, the
transaction will fail if feesReceiver() returns a zero address and
there will be denial of service.

www.hacken.io
17

Path:
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
: withdrawLPs(), withdrawTokens(), withdrawAndSwapForNativeToken(),
withdrawAndSwapForERC20Token()

Recommendation: Either there should be zero address checks in
CurveSorbettiereStrategy.sol contracts calls or in Parallax.sol,
there should be a requirement so that feesReceiver cannot be zero
address.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

H03. Invalid Calculations

In the CurveSorbettiereStrategy.sol the withdrawTokens() function has
underflow if withdrawalFee is larger than 3333.

This will cause Denial of Service in the withdrawTokens() function.

Path:
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
: withdrawTokens()

Recommendation: There should be a check in every strategy that
extends IParallaxStrategy.sol so that the withdrawalFee or any other
data cannot break its logic.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

H04. Checks-Effects-Interactions Pattern Violation

In the Parallax.sol contract, during the functions execution, some
state variables are updated after the external calls, which is
against best practices.

This may lead to reentrancies, race conditions, and denial of service
vulnerabilities during the implementation of new functionality.

● In _claim() function, rewardToken.safeTransfer() call is made
before doing state changes on position.former.

● In _transferPosition() function, the _claim() function, which
has external calls made inside, is called before doing state
changes on many variables.

● In safeTransferFrom(address from, address to, uint256 tokenId),
and safeTransferFrom(address from, address to, uint256 tokenId,
bytes memory data) _transferPosition() function is called after
external call.

Path:
./contracts/Parallax.sol : _claim(), _transferPosition(),
safeTransferFrom(address from, address to, uint256 tokenId),
safeTransferFrom(address from, address to, uint256 tokenId, bytes
memory data)

www.hacken.io
18

Recommendation: Common best practices should be followed, functions
should be implemented according to the Check-Effect-Interaction
pattern. If not possible, the nonReentrant modifier can be used.

● In _claim() function, position.former variable can be updated
before the rewardToken.safeTransfer() call.

● In _transferPosition() function, the external call depends on
the state variables, so the Checks-Effects-Interactions pattern
cannot be followed. That is why a nonReentrant modifier should
be used.

● In safeTransferFrom(address from, address to, uint256 tokenId),
and safeTransferFrom(address from, address to, uint256 tokenId,
bytes memory data) _transferPosition() function should be
called before external call, or nonReentrant modifier should be
used.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

Medium

M01. Admin Privilege Actions

In the Parallax.sol contract withdrawal functionality, the owner can
set withdrawal fees as much as 100% at any point, change the required
timelocks, and change the reward token at any time.

This may result in users losing all their assets in case of maximum
fee, indefinite lock of their funds in case of constant timelock
manipulation, and change in their expected reward token. Since these
changes can be made after users deposit tokens.

Path:
./contracts/Parallax.sol : setFees(), setTimelock(), setRewardToken()

Recommendation: Consider using timelocks for state changes in these
functions so that users can respond to the changes. Additionally,
consider adding capped limits.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

M02. Best Practice Violation - Unchecked Transfer

In TokenRescuer.sol contracts’ rescueERC20Token() function,
IERC20Upgradeable(token).transfer() call is made.

The transfer call can cause unwanted results if the receiver is an
address that is not compatible with ERC20 tokens.

Path:
./contracts/extensions/TokensRescuer.sol : rescueERC20Token()

Recommendation: safeTransfer() should be used instead of transfer()

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

www.hacken.io
19

M03. Unscalable Functionality - Bad Struct Naming

The Deposit0..3 and Withdraw0..3 functions are non-declarative, in
contrast to the IParallaxStrategy struct names, which are
declarative.

Path:
./contracts/interfaces/IParallax.sol

Recommendation: Struct names should be more declarative.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

M04. Contradiction - Documentation Mismatch

In documentation it is stated that the view function tokenURI()
returns a URI for a token by its ID and can be called by anyone.

This function will only return an empty string "" as _baseUri is not
overridden in Parallax and there is no option to set baseUri.

This behavior contradicts the documentation.

Path:
./contracts/Parallax.sol : tokenURI()

Recommendation: The _baseUri should be overridden so that there is a
URI returned for every tokenURI() call, or documentation should be
updated.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

M06. Unchecked Input Value

In the CurveSorbettiereStrategy.sol contract, many functions use the
params.path parameter, which is a user input. This parameter is not
checked whether it is the right path or not.

The first and last item in the path should match the expected tokens.
The lack of check may lead to unexpected behavior and the loss of
user funds.

Path:
./contracts\strategies\curve-sorbettiere\CurveSorbettiereStrategy.sol
: swapNativeTokenAndDeposit, swapERC20TokenAndDeposit,
withdrawAndSwapForNativeToken, withdrawAndSwapForERC20Token

Recommendation: Add a check for the first and last items in path to
match the expected tokens.

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

www.hacken.io
20

Low

L01. Floating Pragma

In every Solidity file in the scope, the expression of pragma
solidity ^0.8.15 is used while specifying the pragma version.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively.

Paths:
./contracts/extensions/TokensRescuer.sol
./contracts/interfaces/IParallax.sol
./contracts/interfaces/IParallaxStrategy.sol
./contracts/interfaces/ITokensRescuer.sol
./contracts/Parallax.sol
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
./contracts/strategies/curve-sorbettiere/interfaces/ICurve.sol
./contracts/strategies/curve-sorbettiere/interfaces/ISorbettiere.sol

Recommendation: Lock the pragma version and consider known bugs
(https://github.com/ethereum/solidity/releases) for the compiler
version that is chosen.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L02. Missing Require Check

In Parallax.sol contracts’ getUsers() and getUsersByStrategy()
functions, the cursor input parameter is not checked.

If the cursor parameter is given as 0, there will be underflow at
result[i - 1] expression.

Path:
./contracts/Parallax.sol : getUsers(), getUsersByStrategy()

Recommendation: Add a requirement check so that the cursor is at
least given as 1.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0) (There is
an error message typo in _cursorIsLessThanOne(uint256 cursor)
function.)

L03. Missing NatSpec

There are code explanations in the documentation; however, NatSpec in
code is missing.

It is best practice to use NatSpec in the code.

Paths:
./contracts/extensions/TokensRescuer.sol
./contracts/interfaces/IParallax.sol

www.hacken.io
21

https://github.com/ethereum/solidity/releases

./contracts/interfaces/IParallaxStrategy.sol

./contracts/interfaces/ITokensRescuer.sol

./contracts/Parallax.sol

./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol

./contracts/strategies/curve-sorbettiere/interfaces/ICurve.sol

./contracts/strategies/curve-sorbettiere/interfaces/ISorbettiere.sol

Recommendation: NatSpec should be added to the code.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L04. Style Guide Violation: Order of Functions

The provided projects should follow the official guidelines.
Functions should be grouped according to their visibility and
ordered:

1. Constructor
2. Receive function (if exists)
3. Fallback function (if exists)
4. External
5. Public
6. Internal
7. Private

Paths:
./contracts/Parallax.sol
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol

Recommendation: Follow the official Solidity guidelines.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L05. Functions that Can Be Declared Internal

The initialize function should be called only once and it is already
called in the __CurveSorbettiereStrategy_init and __Parallax_init.

Paths:
./contracts/Parallax.sol : __Parallax_init_unchained;
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
: __CurveSorbettiereStrategy_init_unchained;

Recommendation: Change the visibility of the initialize functions.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L06. Inconvenient Naming

In Parallax.sol contracts’ Strategy struct, the lastUpdate variable
name can be misleading as it looks like a timestamp.

Path:
./contracts/Parallax.sol

Recommendation: Consider adding Block to the name.

www.hacken.io
22

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L07. Redundant Code

In Parallax.sol contracts’ __Parallax_init() function calling
__Context_init_unchained() and __TokensRescuer_init_unchained() are
redundant.

In CurveSorbettiereStrategy.sol contracts’
__CurveSorbettiereStrategy_init() function calling
__Context_init_unchained() and __TokensRescuer_init_unchained() are
redundant.

Paths:
./contracts/Parallax.sol : __Parallax_init()
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
: __CurveSorbettiereStrategy_init()

Recommendation: Consider removing redundant code.

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

L08. Parameter Name Contradiction

In Parallax.sol contracts’ onlyContract() modifier, parameter named
’address strategy’; contradicts with modifier name as it can be not
only strategy but any contract.

Path:
./contracts/Parallax.sol : onlyContract()

Recommendation: Give more general naming to ‘strategy’

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L09. Wrong Modifier Usage

In CurveSorbettiereStrategy.sol contracts’
__CurveSorbettiereStrategy_init_unchained() function, the initializer
modifier is used incorrectly.

In Parallax.sol contracts’ __Parallax_init_unchained() function, the
initializer modifier is used incorrectly.

In TokenRescuer.sol contracts’ __TokensRescuer_init_unchained()
function, the initializer modifier is used incorrectly.

Openzeppellin has just added mitigation for this mistake.

Paths:
./contracts/Parallax.sol : __Parallax_init_unchained()
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
: __CurveSorbettiereStrategy_init_unchained()

www.hacken.io
23

./contracts/extensions/TokensRescuer.sol :
__TokensRescuer_init_unchained()

Recommendation: onlyInitializing modifier should be used.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L10. Constructor Usage

In Parallax.sol and CurveSorbettiereStrategy.sol contracts,
recommended _disableInitializers() call should be added to
constructors.

Paths:
./contracts/Parallax.sol : constructor()
./contracts/strategies/curve-sorbettiere/CurveSorbettiereStrategy.sol
: constructor()

Recommendation: Consider adding constructor with
_disableInitializers() call.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L11. Missing Zero Address Validation

Address parameters are used without checking against the possibility
of being 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./contracts/Parallax.sol : __Parallax_init_unchained(),
rescueNativeToken(), rescueERC20Token(), addToken()
./contracts/extensions/TokensRescuer.sol : rescueNativeToken(),
rescueERC20Token()

Recommendation: Implement zero address validations.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L12. Functions that Can Be Declared External

There are some functions that can be declared external.

External functions consume less Gas.

Paths:
./contracts/Parallax.sol : rescueNativeToken(), rescueERC20Token()
./contracts/extensions/TokensRescuer.sol : rescueNativeToken(),
rescueERC20Token()

Recommendation: Use the external attribute for functions that are
never called from the contract.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

www.hacken.io
24

L13. Readability

In the Parallax.sol contracts’ _claim() function the:

if (value == 0) {} else if (

can be converted to guard:

if(value == 0) return;

+ if statement for readability.

Path:
./contracts/Parallax.sol : _claim()

Recommendation: This conversion can be made.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L14. Typos in Variable Names

There are some typos in naming, such as fromUserPosistion,
toUserPosistion, witdrawalAmount, usdcAmoutOutMin.

Paths:
./contracts/Parallax.sol : fromUserPosistion, toUserPosistion
./contracts/extensions/TokensRescuer.sol : witdrawalAmount,
usdcAmoutOutMin

Recommendation: Spellings should be fixed.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L15. Gas Optimization

In the Parallax.sol contracts’ _getStakedBySharesAmount() there is a
double read from storage on the variable
strategies[strategyId].totalStaked.

Path:
./contracts/Parallax.sol : _getStakedBySharesAmount(),

Recommendation: Use a memory variable to read from storage only once.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L16. Zero Value Check

In the Parallax.sol contract, there is no check for
strategies[strategyId].totalShares == 0 in _getEarnedBySharesAmount()
function and this may result in division by 0.

Path:
./contracts/Parallax.sol : _getEarnedBySharesAmount(),

Recommendation: Consider adding a zero-value check.
www.hacken.io

25

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L17. Redundant Code Block

uint256[50] private __gap at the end of the Parallax and
CurveSorbettiereStrategy are redundant; there is no need to reserve
storage slots in top-level contracts.

Paths:
./contracts/Parallax.sol;
./contracts/strategies/curve-sorbetterie/CurveSorbetterieStrategy.sol

Recommendation: Remove the redundant code block.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L18. Redundant Code Block

Override specifier is not needed when only overriding interface
declaration starting from Solidity 0.8.8.

Paths:
./contracts/Parallax.sol
./contracts/strategies/curve-sorbetterie/CurveSorbetterieStrategy.sol

Recommendation: Consider removing redundant override specifiers to
clarify what really needs to be overridden.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L19. Zero Valued Transactions

Best practice is to check and transfer funds when the amount is > 0.
In the CurveSorbettiereStrategy, in case the fee == 0, there are
redundant transfer operations.

Path:
./contracts/strategies/curve-sorbetterie/CurveSorbetterieStrategy.sol

Recommendation: Implement conditional checks for the zero-valued
transaction.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

L20. Dead Code

The function _toDynamicArray(uint256[3] memory input) is declared
private but never used.

Path:
./contracts/strategies/curve-sorbetterie/CurveSorbetterieStrategy.sol
: _toDynamicArray(uint256[3] memory input)

www.hacken.io
26

Recommendation: Remove the dead code.

Status: Fixed
(Revised commit: f87b8cae7dbd9970a24276c31885c15f8f7c1bb0)

www.hacken.io
27

Findings Of The Customer Team

These Findings were found by the Parallax development team during the
internal testing process.

Critical

SC01. Data Inconsistency

In the Parallax.sol contracts _withdraw() function, when a position
is closed, the positionCount parameter is decreased.

However, if the closed position is not the last position in the
array, the next deposit with a zero positionId replenished the last
position and a new position is not created.

Path:
./contracts/Parallax.sol : _withdraw()

Fix: A different parameter named positionsIndex is being incremented
with every new position and used to create new positions. The
positionsCount parameter is not used to create new positions anymore.

Found in: ce3b18c0ceea7ae75c3170c3452b08d1adf6936f

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

High

SH01. Contradiction

In the _transferPosition() function of the Parallax.sol contract, the
_claim call is made for the msg.sender instead of from which is the
user which the position is being transferred from.

This can lead to funds losses of the “from” user.

Path:
./contracts/Parallax.sol : _transferPosition()

Fix: The msg.sender is now converted to from parameter.

Found in: ce3b18c0ceea7ae75c3170c3452b08d1adf6936f

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

Medium

SM01. Data Inconsistency

In the _transferPosition() function of the Parallax.sol contract, the
user migrations were not checked like a new position or last
position.

This was creating inconsistencies with the data flow when a user
deposits directly or gets transferred a position from someone else.

www.hacken.io
28

Path: ./contracts/Parallax.sol : _transferPosition()

Fix: Two new functions are introduced which are named
_addNewUserIfNeeded() and _deleteUserIfNeeded(). These functions
implement the addition of a new user if the user is new and the
removal of a user if the position is the last position that the user
withdraws/transfers. These functions are called every time a deposit
or withdrawal is made. These are also called on position transfers
which solves the data inconsistency issue.

Found in: ce3b18c0ceea7ae75c3170c3452b08d1adf6936f

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

SM02. Logic Error

In the Parallax.sol contracts’ getUsers() and getUsersByStrategy()
functions the expressions result[i-1] = users[i]; and result[i-1] =
strategy.users[i]; were errors since i is starting from the cursor
value but the results arrays should be addressing indexing starting
from 0 to howMany parameter.

Path: ./contracts/Parallax.sol : getUsers(), getUsersByStrategy()

Fix: There is now a new variable j which starts from 0 and iterates
through the result array by being incremented by 1 at the end of the
for loop. The new expressions are the following:

result[j] = users[i];
++j;

and

result[j] = strategy.users[i];
++j;

Found in: ce3b18c0ceea7ae75c3170c3452b08d1adf6936f

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

SM03. Logic Error

In the CurveSorbettiereStrategy.sol contract, the _swapETHForTokens()
and _swapTokensForETH() functions have checks to see if the
path.length is equal to zero.

If the path.length is zero, the function return 0 as its value; this
is incorrect.

If the user mistakenly provides a path of zero length, the return
value from the function call used in deposits and withdrawals will be
zero, resulting in the user's funds being locked in the contract
until token rescuing functionality is used.

www.hacken.io
29

Path:
./contracts\strategies\curve-sorbettiere\CurveSorbettiereStrategy.sol
: _swapETHForTokens, _swapTokensForETH

Fix: The functions were modified so that in case of path.length == 0,
the functions would not return 0 but revert through the swapping
protocol. The manual check was removed.

Found in: ce3b18c0ceea7ae75c3170c3452b08d1adf6936f

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

SM04. Undocumented Behavior

When using the method withdrawTokens() the withdrawal proportion
could have been different and this led to an incorrect calculation of
the fees and rewards.

This was an undocumented behavior of the withdrawTokens() function;
it was expected to work in the same way as the depositTokens()
function that takes as an input the tokens in the same proportion.

Path:
./contracts\strategies\curve-sorbettiere\CurveSorbettiereStrategy.sol
: withdrawTokens()

Fix: The function calculates the fees and transfers a percentage of
the LP instead of transferring one of the tokens.

Also, the other functions for the withdrawal of the liquidity have
been changed.

Found in: ce3b18c0ceea7ae75c3170c3452b08d1adf6936f

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

Low

SL01. Logic Error

In the Parallax.sol contracts’ getClaimableRewards() function if the
rewards token is set as zero address, the accumulated rewards are
shown incorrectly as if there is a non zero token address.

This would happen if the accrual of rewards is stopped by setting the
token address to zero address instead of setting rewardsPerBlock to
0.

Setting rewardToken to address(0) should not be considered as a
proper way of stopping the rewards occurrence. As this also creates a
DoS issue within claim() and _transferPossition() functions. Only
valid way should be to set rewardPerBlock = 0.

Path: ./contracts/Parallax.sol : getClaimableRewards()

www.hacken.io
30

Fix: There is now a check so that if the rewardsPerBlock is larger
than 0, the rewardToken cannot be a zero address. Also when setting
rewardToken after the first set, it cannot be set as zero address.

Found in: ce3b18c0ceea7ae75c3170c3452b08d1adf6936f

Status: Fixed
(Revised commit: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a)

SL02. Missing Validation

If the compoundMinAmount value is set to 0, or a small value compared
to the liquidity present in the liquidity pool that is being used,
every deposit, withdraw or compound will revert with this error
message UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT.

Path:
./contracts/Parallax.sol : setCompoundMinAmount()
./contracts/strategies/CurveSorbetterieStrategy.sol :
setCompoundMinAmount(), __CurveSorbetterieStrategy_init_unchained()

Found in: 8bd4562ece9e838956a0295a1ba10f76b8b5da4a

Status: Mitigated (It is advised that the compoundMinAmount should be
set correctly by the Parallax team to prevent the situation of DoS
resulting from too small swap amounts, or to implement a validation
for the compoundMinAmount and initialCompoundMinAmount.)

www.hacken.io
31

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
32

