
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Apartchain
Date: 18 April, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Apartchain

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC1155; Marketplace

Platform EVM

Language Solidity

Methodology Link

Website https://apartchain.io/

Changelog 28.02.2023 – Initial Review
18.04.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://apartchain.io/


Table of contents
Introduction 5
Scope 5
Severity Definitions 7
Executive Summary 8
System Overview 9
Checked Items 10
Findings 13

Critical 13
C01. Requirements Violations 13

High 14
H01. Undocumented Behavior 14
H02. Denial Of Service 14
H03. Funds Lock 15
H04. Denial Of Service 15

Medium 15
M01. Best Practice Violation 15
M02. Contradiction 16
M03. Contradiction 16
M04. Contradiction 16
M05. Insufficient Gas Model 17
M06. Insufficient Gas Model 17
M07. Invalid Calculations 17
M08. Insufficient Gas Model 17
M09. Contradiction 18

Low 18
L01. Floating Pragma 18
L02. Unindexed Events 18
L03. Missing Events 19
L04. Missing Zero Address Validation 19
L05. Empty Contract 19
L06. Redundant Override Keyword 19
L07. Style Guide Violation 20
L08. Redundant Block 20
L09. Inefficient Gas Model 20
L10. Deprecated Function 20
L11. Function That Can Be Declared External 21
L12. Redundant Import 21
L13. Unfinished NatSpec 21
L14. Redundant Block 22
L15. Redundant Pragma 22
L16. Redundant Block 22
L17. Typos In The Comments 22
L18. Missing Error Message 22
L19. Variables Can Be Declared Immutable 23

www.hacken.io
3



L20. Redundant Mapping 23
L21. Best Practice Violation 23
L22. Redundant Require 23
L23. Redundant Timestamp In Events 24
L24. Strict Condition 24

Disclaimers 25

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by Apartchain (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope

Repository https://github.com/apartchain/smartcontracts

Commit da78677e1ff9175c19e3e0fdda98110c9d172855

Technical
Requirements

Technical documentation - Confluence.pdf

Contracts File: ./contracts/Fee.sol
SHA3: 64f88681e6073b6af5c4186fedd55a7e96dbd4a2ade344e867d2e293d323f34a

File: ./contracts/Marketplace.sol
SHA3: ff446d95ee8f27481297f66a7ea6fa5849500670cf0a227835023d1d91f95e29

File: ./contracts/opengsn/Forwarder.sol
SHA3: cfe74c8ea0fd4d541319a1fb6c41651a548fbd0f6c6e77fc3ba85484d5494555

File: ./contracts/opengsn/VerifyingPaymaster.sol
SHA3: e425c12f8b203736b74de8d7c7212f458efda5ef64ee9555b2c8e356f0af2437

File: ./contracts/RealEstate.sol
SHA3: a0d266b6dd43155dc121f4936fc087ce5add10b5e5d2123d42c213065d64d636

File: ./contracts/Referral.sol
SHA3: 5f3f4a3d2b0ee47d22bbec15bb0528f7069b34770981dc86c802d74e8daaaf03

File: ./contracts/Verifier.sol
SHA3: c0796102d6e2ad75708926b461e1bd6a28b2a4457431937bc4aa9a526a34d64e

Second review scope

Repository https://github.com/apartchain/smartcontracts

Commit d46d3c3541ef1241450c2e55327a87369246d212

Functional
Requirements

Aparchain_sc_doc.pdf

Technical
Requirements

Aparchain_sc_doc.pdf

www.hacken.io
5

https://github.com/apartchain/smartcontracts
https://github.com/apartchain/smartcontracts


Contracts File: contracts/Fee.sol
SHA3: 88af0ebc6e696eb8b68078159d37d3e249a92c687d8068f3ea998c0e06b05f20

File: contracts/Forwarder.sol
SHA3: c8f6166c4c643cb0bf66f68e0c02721087932d8ae30d7c17dc1d9300a69d53b0

File: contracts/Marketplace.sol
SHA3: 2c6d7c84252d7ea602a9bdd2f6f9e15288c9def22aa9b9f9f9d22826ab2a5a64

File: contracts/RealEstate.sol
SHA3: c9e3855b30a2964fef2d48f287599c86afe47865a8d4a3430e8cf093f3cf76f2

File: contracts/Referral.sol
SHA3: e6366b135d3abcb0213891b03efd24ca3b6e19b62a0036a30ebe9e73c9cdb1f0

File: contracts/Verifier.sol
SHA3: f352e21ae426fdec0eb1434b94c71abcd5026bfd58813129f7e8a86b70843d1c

www.hacken.io
6



Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● Natspec is present and sufficient.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.

Test coverage
Code coverage of the project is 98.68% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is missing.
● Interactions with several users are not tested thoroughly.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10

Table. The distribution of issues during the audit

Review date Low Medium High Critical

28 February 2023 23 10 4 1

18 April 2023 1 0 0 0

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


System Overview

Apartchain is a Real Estate marketplace. It allows agencies to create
properties (ERC1155), and users to book, buy and fulfill the buy order for
the property.

The project contains the following contracts:

● Fee.sol: used to manage and calculate most of the fees inside the
protocol.

● Marketplace.sol: used to manage the bookings and the orders.
● RealEstate.sol: used to mint and burn the ERC1155 tokens.
● Referral.sol: used for the referral system, users can refer other

users and gain a 0.2% fee on fulfilled orders from referred users.
● Verifier.sol: used to manage the list of whitelisted users and

agencies that can interact with the protocol.

Privileged roles
● MARKETPLACE_MANAGER_ROLE: can cancel the booking, cancel the trade,

fulfill the buy and change the signedAllDoc boolean inside the
Marketplace.sol contract.

● FEE_CHANGER_ROLE: can change various fees in the Fee.sol contract.
● VERIFIER_ROLE: can set a user or agency as verified in the

Verifier.sol contract.
● MARKETPLACE_CONTRACT_ROLE: is the address of the marketplace that can

mint and burn ERC1155 inside the RealEstate.sol contract.
● SERVICE_ROLE: can manage the referral inside the Referral.sol

contract.
● DEFAULT_ADMIN_ROLE: there are 5 different default admin roles, one

for the marketplace, one for the fee contract, one for the real
estate contract, one for the verifier and one for the referral, this
default admin role will be able to manage the various roles inside
the contracts.

Risks
● The project is highly centralized
● The roles have to be setted in the correct way for the protocol to

function properly.
● Certain functionalities are off-chain and the correct execution of

the entire flow cannot be ensured.

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Not Relevant

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not Relevant

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



Findings

Critical

C01. Requirements Violations

There is a significant number of requirements violations.

The technical documentation for the createProperty() function does
not match the code:

● The function createProperty() does not check for
MARKETPLACE_MANAGER_ROLE, as stated in the documentation.

● It does not check if the _seller is a verified user
● It does not use _uri except for the event emission.

The technical documentation for the bookProperty() function does not
match the code:

● The function bookProperty() checks if the isBooked flag is
false, but this is not reflected in the documentation.

The technical documentation for the cancelBooking() function does not
match the code:

● The function cancelBooking() has the
onlyRole(MARKETPLACE_MANAGER_ROLE) modifier, but this is not
reflected in the documentation.

● toUser is not a documented parameter.
● the caller is not checked as explained in the documentation.

The technical documentation for the cancelTrade() function does not
match the code:

● The function cancelTrade() does not burn ERC1155.
● It has the onlyRole(MARKETPLACE_MANAGER_ROLE) modifier instead

of verifying that the caller is a verified agency.
● It does not check isOnSale, but does check if the booking has

been paid.
● isOnSale is set to true and not false.
● The paid boolean is not changed and instead the booked flag is

set to false.

The technical documentation for the buyProperty() function does not
match the code:

● The function buyProperty() does not have _amount as one of the
two input parameters.

● It does not call getReferrer and does not send any fees to the
referrer.

● It does not burn ERC1155.
● It does a lot of require checks that are not documented.

www.hacken.io
13



The technical documentation for the fulfilBuy() function does not
match the code:

● The function fulfilBuy() has the
onlyRole(MARKETPLACE_MANAGER_ROLE) modifier.

● The signedAllDoc variable is not checked.
● It does not check if the caller is a verified user.
● It does not transfer the amount from the buyer to the seller.
● The paid boolean is never set to true.

All of these requirements violations make the scope of the code
unclear.

Path:
./contracts/Marketplace.sol

Recommendation: Fix the requirement violations, the documentation
should match the code.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

High

H01. Undocumented Behavior

In the documentation, platformFee is described as a flat fee, but
this is not reflected in the code, platformFee is a result of a
calculation with a variable called factor and the calculation is not
documented.

The number 18 in the for loop is also a magic number.

Path:
./contracts/Fee.sol : getPlatformFee()

Recommendation: Document the calculations inside platformFee or fix
the mismatch in the code.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

H02. Denial Of Service

There is a possibility of a DoS inside the fulfillBuy() function,
when the sellerFee and buyerFee are set to 0 and there is a referral.
The referralFee will be calculated as pt.price * 20 / 10000, the
platformFee will be 0 and when performing the calculation platformFee
-= referralFee there will be an underflow.
At this point the only callable function will be cancelTrade().

www.hacken.io
14



Path:
./contracts/Marketplace.sol : fulFillBuy()

Recommendation: If there is a referral, platformFee should be able to
cover that expense or the referral should not be paid.

Additionally poaFee should be added after the deduction of the
referralFee to avoid taking referralFee from poaFee.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

H03. Funds Lock

If a buyer calls the function buyProperty() with the option to pay
for a POA and then the trade is canceled, poaFee will be locked in
the contract.

Path:
./contracts/Marketplace.sol : cancelTrade()

Recommendation: Allow poaFee to be withdrawn if the trade is
canceled.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

H04. Denial Of Service

In case there is a sellerFee higher than 98% there will be a DoS.
The equation uint256 sellerPart = pt.price - bk.sellerFee -
agencyFee; will revert due to underflow.

Path:
./contracts/Marketplace.sol : fulFillBuy()

Recommendation: Do not allow the sellerFee to be higher than 98%.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

Medium

M01. Best Practice Violation

The functions do not use the SafeERC20 library to check the result of
ERC20 token transfers. Tokens may not follow the ERC20 standard and
return false in case of a transfer failure or not return any value at
all.

www.hacken.io
15



Path:
./contracts/MarketPlace.sol : bookProperty(), cancelBooking(),
cancelTrade(), buyProperty(), fulfilBuy()

Recommendation: Use the SafeERC20 library to interact with tokens
safely.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

M02. Contradiction

The use of ERC2771 for the gasless meta transactions is not
documented.

Path:
./contracts/Marketplace.sol

Recommendation: Remove the functionality or mention it in the
documentation.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

M03. Contradiction

The function signedAllDoc() is not documented.

Path:
./contracts/Marketplace.sol : signedAllDoc()

Recommendation: Remove the functionality or mention it in the
documentation.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

M04. Contradiction

There is no functionality to remove a property from the contract, nor
to put it as not for sale

Path:
./contracts/Marketplace.sol

Recommendation: Add the possibility to remove a property or put it as
not for sale.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

www.hacken.io
16



M05. Insufficient Gas Model

All the fees should be calculated in a single function and there
should only be one request to the fee contract in bookProperty().

Paths:
./contracts/Marketplace.sol : bookProperty()
./contracts/Fee.sol

Recommendation: Remove the redundant calls to the Fee.sol contract
and perform all the fee calculations inside a single function.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

M06. Insufficient Gas Model

In cancelBooking() there is an unnecessary storage operation, the
variable uint256 bookingFee is declared, but the variable bk.fee is
already available.

Path:
./contracts/Marketplace.sol : cancelBooking()

Recommendation: Use the variable bk.fee and remove the newly created
variable bookingFee.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

M07. Invalid Calculations

In cancelBooking() due to a rounding error in percentage
calculations, the agencyFee should be equal to bookingFee - sellerFee
- platformFee.

Path:
./contracts/Marketplace.sol : cancelBooking()

Recommendation: Change the way the agencyFee is calculated.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

M08. Insufficient Gas Model

The mapping(address => bool) private set; is redundant.

Path:
./contracts/Referral.sol

www.hacken.io
17



Recommendation: The !set[_referral] check can be replaced by
referrals[_referral] == address(0).

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

M09. Contradiction

There is a contradiction in the NatSpec of cancelBooking() and
bookProperty(), where the bookingFee is stated as 10%, but the fee
can be different than 10%.

Path:
./contracts/Marketplace.sol : cancelBooking(), bookProperty()

Recommendation: Fix the mismatch.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

Low

L01. Floating Pragma

The project uses floating pragmas ^0.8.9, ^0.8.1, ^0.8.0.

Paths:
./contracts/Marketplace.sol
./contracts/Verifier.sol
./contracts/Fee.sol
./contracts/RealEstate.sol
./contracts/Referral.sol
./contracts/Forwarder.sol
./contracts/VerifyingPaymaster.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

L02. Unindexed Events

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

Paths:
./contracts/Marketplace.sol
./contracts/Verifier.sol

Recommendation: Use the “indexed” keyword for relevant, trackable
event parameters.

www.hacken.io
18



Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

L03. Missing Events

Events for critical state changes should be emitted for tracking
things off-chain.

Path:
./contracts/VerifyingPaymaster.sol : setSigner()

Recommendation: Create and emit related events.

Found in: da78677

Status: Mitigated (The contract VerifyingPaymaster is out of scope in
the second review)

L04. Missing Zero Address Validation

Address parameters are used without checking against the possibility
of 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./contracts/Marketplace.sol : constructor()
./contracts/VerifyingPaymaster.sol : setSigner()

Recommendation: Implement zero address checks.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

L05. Empty Contract

The contract Forwarder.sol is empty.

Path:
./contracts/Forwarder.sol

Recommendation: Remove the contract or implement it.

Found in: da78677

Status: Fixed (Revised commit: d46d3c3)

L06. Redundant Override Keyword

Since solidity 0.8.8, a function that overrides only a single
interface function does not require the override specifier.

Path:
./contracts/Marketplace.sol : onERC1155Received(),
onERC1155BatchReceived()

www.hacken.io
19



Recommendation: Remove redundant code.

Status: Fixed (Revised commit: d46d3c3)

L07. Style Guide Violation

The provided projects should follow the official guidelines.

Paths:
./contracts/Marketplace.sol
./contracts/Fee.sol
./contracts/RealEstate.sol
./contracts/Referral.sol
./contracts/Verifier.sol

Recommendation: Follow the official Solidity guidelines.

Status: Fixed (Revised commit: d46d3c3)

L08. Redundant Block

The usage of bk.buyer = sender is unnecessary for the contract, the
check require(bk.buyer == sender, "not your booking") already made
sure that the bk.buyer is equal to the sender.

Path:
./contracts/Marketplace.sol : buyProperty()

Recommendation: Remove the redundant code block.

Status: Fixed (Revised commit: d46d3c3)

L09. Inefficient Gas Model

Inside the declaration of the struct Booking changing the order of
the variable would save gas.

Packing variables in a 32 byte block would allow the contract to save
gas.

Path:
./contracts/Marketplace.sol

Recommendation: Change the order of the variables inside the struct
Booking.

Status: Fixed (Revised commit: d46d3c3)

L10. Deprecated Function

The function _setupRole() has been deprecated in favor of
_grantRole().

Paths:
./contracts/Verifier.sol : constructor(), setVerifier()
./contracts/Referral.sol : constructor(), setService()

www.hacken.io
20

https://docs.soliditylang.org/en/v0.8.19/style-guide.html


./contracts/RealEstate.sol : constructor(), setMarketplaceContract()

./contracts/Marketplace.sol : setMarketplace()

./contracts/Fee.sol : constructor(), setFeeChanger()

Recommendation: Change the instances where _setupRole() is used.

Status: Fixed (Revised commit: d46d3c3)

L11. Function That Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./contracts/Verifier.sol : isVerifiedUser(), isVerifiedAgency(),
setVerifier(), setVerificationAgency(), setVerificationUser()
./contracts/Referral.sol : getReferrer(), setService(), setReferral()
./contracts/Fee.sol : getBuyerFee(), getSellerFee(), getPoaFee(),
getBookingFee(), setFeeChanger()
./contracts/RealEstate.sol : setMarketplaceContract()

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (Revised commit: d46d3c3)

L12. Redundant Import

The usage of @opengsn/contracts/src/forwarder/IForwarder.sol is
unnecessary for the contract.

Paths:
./contracts/opengsn/VerifyingPaymaster.sol

Recommendation: Remove the redundant import.

Status: Mitigated (The contract VerifyingPaymaster is out of scope in
the second review)

L13. Unfinished NatSpec

In most contracts the NatSpec is missing, in the Marketplace.sol
contract it is insufficient.

Paths:
./contracts/Marketplace.sol
./contracts/Fee.sol
./contracts/Referral.sol
./contracts/RealEstate.sol
./contracts/Verifier.sol

Recommendation: Add a meaningful NatSpec.

Status: Fixed (Revised commit: d46d3c3)

www.hacken.io
21



L14. Redundant Block

In the checkPercentage() modifier there is a check for the fee to be
>= 0, this is redundant since the fee is a uint256.

Paths:
./contracts/Fee.sol : checkPercentage()

Recommendation: Remove the redundant piece of code.

Status: Fixed (Revised commit: d46d3c3)

L15. Redundant Pragma

pragma experimental ABIEncoderV2; is the default for the solidity
version 0.8.0.

Paths:
./contracts/opengsn/VerifyingPaymaster.sol

Recommendation: Remove the redundant pragma.

Status: Mitigated (The contract VerifyingPaymaster is out of scope in
the second review)

L16. Redundant Block

In many top level functions there is still a virtual modifier.

Paths:
./contracts/RealEstate.sol : supportsInterface()
./contracts/Marketplace.sol : _msgSender(), _msgData(),
supportsInterface()
./contracts/oepngsn/VerifyingPaymaster.sol : preRelayedCall(),
postRelayedCall(), versionPaymaster();

Recommendation: Remove the redundant piece of code.

Status: Fixed (Revised commit: d46d3c3)

L17. Typos In The Comments

There are various typos in the comments.

Paths:
./contracts/Referral.sol
./contracts/Marketplace.sol

Recommendation: Change setted with set, USDc with USDC, usdC with
USDC, transfering with transferring and reffered with referred.

Status: Fixed (Revised commit: d46d3c3)

L18. Missing Error Message

Some require statements are missing error messages.

www.hacken.io
22



This makes the code harder to test and debug.

Paths:
./contracts/RealEstate.sol : setMarketplaceContract()

Recommendation: Add error messages to require conditions.

Status: Mitigated (The require statements have been removed)

L19. Variables Can Be Declared Immutable

The following variables’ values are set in the constructor:
realEstate, verifier, fee, usdC, platform. These variables can be
declared as immutable.

This will lower the Gas cost.

Paths:
./contracts/Marketplace.sol

Recommendation: Declare mentioned variables as immutable.

Status: Fixed (Revised commit: d46d3c3)

L20. Redundant Mapping

In the mapping(address => mapping(uint256 => Property)) public
properties, the address => mapping section is redundant.

Paths:
./contracts/Marketplace.sol

Recommendation: Remove the redundant piece of code.

Status: Fixed (Revised commit: d46d3c3)

L21. Best Practice Violation

There are many CEI pattern violations mitigated with the noReentrant
modifier, the CEI could be followed and the modifier could be dropped
to save gas.

Path:
./contracts/Marketplace.sol : bookProperty(), cancelBooking(),
cancelTrade(), buyProperty(), fulfillBuy()

Recommendation: Remove the modifier and follow the CEI pattern.

Status: Fixed (Revised commit: d46d3c3)

L22. Redundant Require

require(usdC.allowance(sender, address(this)) >= bookingFee, “not
enough allowance”); is redundant because it is already checked in the
transferFrom() function.

www.hacken.io
23



Path:
./contracts/Marketplace.sol : bookProperty(), buyProperty()

Recommendation: Remove the redundant piece of code.

Status: Fixed (Revised commit: d46d3c3)

L23. Redundant Timestamp In Events

The timestamp in events increases gas cost, and can be omitted as it
can be retrieved off-chain from the block with an extra off-chain
operation.

Paths:
./contracts/Marketplace.sol
./contracts/Fee.sol

Recommendation: Remove the timestamp from the events.

Status: Fixed (Revised commit: d46d3c3)

L24. Strict Condition

In the fulfillBuy() function there is an `if` statement that checks
if there is a referrer and if the plaformFee is higher than the
referralFee, this is done to avoid a DoS in case the referralFee is
higher, but there could be a cases where the platformFee is equal to
the referralFee, and since this checks only passes if the plaformFee
is strictly higher, then the referrer doesn’t get paid.

Path:
./contracts/Marketplace.sol : fulfillBuy()

Recommendation: Add the equal sign in the if check.

Found in: d46d3c3

Status: New

www.hacken.io
24



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
25


