
Customer: Clearpool.finance
Date: April 27, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Clearpool.finance

Approved By Noah Jelich | Lead SC Auditor at Hacken OU

Type Lending Platform

Platform EVM

Language Solidity

Methodology Link

Website https://clearpool.finance/

Changelog 12.04.2023 – Initial Review
27.04.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://clearpool.finance/


Table of contents
Introduction 4
Scope 4
Severity Definitions 6
Executive Summary 7
Risks 8
System Overview 9
Checked Items 11
Findings 14

Critical 14
C01. Non-Finalized Code 14

High 14
H01. Undocumented Behavior; Variable is not limited 14
H02. Data Consistency 14
H03. Requirements Violation 15
H04. Non-Finalized Code 15

Medium 16
M01. Uninitialized implementation 16
M02. Unchecked Transfer or Approve 16

Low 17
L01. Floating Pragma 17
L02. Redundant Code Block 17
L03. NatSpec comments contradiction 17
L04. Use of Redundant Modifier 18
L05. Redundant Import 18

Disclaimers 19

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Clearpool.finance (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project includes review and security analysis of the
following smart contracts from the provided repository:

Initial review scope

Repository https://github.com/clearpool-finance/prime-protocol

Commit 62f5e3e8b694e6c8dd33ef9ba21412d099f41aa9

Whitepaper

Functional
Requirements NatSpec

Technical
Requirements NatSpec

Contracts File: ./protocol/contracts/Pool/IERC20Lite.sol
SHA3: 41d00b31d349e5c803eb96bf76b193d648e01e8e654e924b89fc58093f1b08b2

File: ./protocol/contracts/Pool/IPool.sol
SHA3: ff04607e2221e280aae74001ed4d425aa01a9696f5fa0ff4d36b3c8ad2535540

File: ./protocol/contracts/Pool/IPoolFactory.sol
SHA3: d171d5e33fc3e9de4ea45809a0650254973e2d9db0cc077b675ff6d255365a50

File: ./protocol/contracts/Pool/Pool.sol
SHA3: 0a3628256824a144a0cf462823c49a26236b595439c31d4f5ddae4b9bb97a7cd

File: ./protocol/contracts/Pool/PoolFactory.sol
SHA3: e1250da03d0e6e6be686006a40896a509ddbeb6780a07614cbb0e9a8d2a54015

File: ./protocol/contracts/PrimeMembership/Asset.sol
SHA3: 0381d0c8edf124ea27d713c881451168d594f87a0be10e5f5f3dc11372d74329

File: ./protocol/contracts/PrimeMembership/IPrime.sol
SHA3: 1b7c74af459ff4a8049fcfedcbb1d371263e9379978fa47e313192fd56da0ca2

File: ./protocol/contracts/PrimeMembership/Prime.sol
SHA3: d7e393dec1e4766f0c92548bad4453adf86f70faa8e0b11f164ed8e812efe654

File: ./protocol/contracts/utils/AddressCoder.sol
SHA3: d6dac49d167e22934f85fad19ff2f4724c5b872342dd13074d6595e9e5337872

File: ./protocol/contracts/utils/Counters.sol
SHA3: d0208474e51fb67555ce15cb83753c133f7d8afd87c8521ea96040dd42385aae

File: ./protocol/contracts/utils/NZAGuard.sol

www.hacken.io
4



SHA3: f9292ae80c8f8ec4e2e90a68c4d1976d2517a8e244bcfe183813da1ded191b22

Second review scope

Repository https://github.com/clearpool-finance/prime-protocol

Commit bfdc7947258e3d6200b33e4ed1d80c9d2cd77b05

Whitepaper

Functional
Requirements NatSpec

Technical
Requirements NatSpec

Contracts File: Pool/IPool.sol
SHA3: d39adf1603dc4fd75412af034560299317511ccf3be8305a5736d6edca9ed4a3

File: Pool/IPoolFactory.sol
SHA3: d171d5e33fc3e9de4ea45809a0650254973e2d9db0cc077b675ff6d255365a50

File: Pool/Pool.sol
SHA3: 485a33b74abb416f6693ad4409a12cb2f3c8ad69dd73db42cb952123d17e88e5

File: Pool/PoolFactory.sol
SHA3: a09a2a5c5dc98bea26cbd14e8eaa15f6a8301f267c528ad22bad79a39dc03e9a

File: PrimeMembership/Asset.sol
SHA3: 0381d0c8edf124ea27d713c881451168d594f87a0be10e5f5f3dc11372d74329

File: PrimeMembership/IPrime.sol
SHA3: 3e9d3cd6d60f9520124cf599884c4ea2f22adf10d81c438f941ef111356d3272

File: PrimeMembership/Prime.sol
SHA3: 1bfe6317fcfddea35608368423461700568c9a68a124818523ac4b3723b5edd1

File: utils/AddressCoder.sol
SHA3: c7e99dde24338f80238a07b22664c430877b53543a680c024a795daff379ff9d

File: utils/NZAGuard.sol
SHA3: f9292ae80c8f8ec4e2e90a68c4d1976d2517a8e244bcfe183813da1ded191b22

www.hacken.io
5



Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Technical description is provided.
○ Project overview is detailed.
○ Use cases are described and detailed.
○ NatSpec is sufficient.
○ Run instructions are not provided.

● Functional requirements:
○ Overall system requirements are provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Code follows the Solidity style guide.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions with several users are tested.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

12 April 2023 5 2 4 1

27 April 2023 0 0 0 0

Risks

● Contracts are upgradeable and are subject to future modification.
● Any prime member, regardless of their risk score, is allowed to

create pools.
● Borrowers that fail to pay principal and/or interest by the agreed

due date will be provided 72 hours to settle all outstanding payments
with the lenders. If a lender changes the loan classification from
“Overdue” to “Default”, all loans in the pool will be classified as
such. Upon classification of a loan to “Default”, interest will stop
accruing, and the legal process begins.
Once the default process has been triggered, the pool can be removed
from the protocol and the lenders, as legal creditors, may pursue the
borrower according to the terms of the lending agreement.
The above procedures apply to loans with both bullet repayments and
monthly repayments.

● The security of the funds in the system depends on the out-of-scope
legal process.

www.hacken.io
8



System Overview

Clearpool Prime is an EVM-compatible protocol that matches peer-to-peer
orders for its whitelisted participants. The participants, suppliers and
borrowers of an asset, interact directly with the protocol’s smart
contracts, earning (and paying) fixed interest rates without the
requirement for collateral, custody or intermediary. All activities within
the protocol are transparent and publicly inspectable.
Clearpool Prime enables vetted and verified institutions to borrow USDC (or
other ERC-20 assets) from one or more pools of lenders, selected by the
borrower, for a fixed time period and interest rate.
The files in the scope:

● Prime.sol - a contract for control of the Clearpool Prime membership
database.

● IPrime.sol - interface of the Prime membership contract.
● PoolFactory.sol - a contract responsible for creating new pools.
● IPoolFactory.sol - interface of the PoolFactory contract.
● Pool.sol - is the settlement venue for borrowing in the Clearpool

Prime protocol.
● IPool.sol - interface of the Pool contract.
● Asset.sol - a library which provides a simple utility for managing a

collection of unique asset addresses.
● AddressCoder.sol - a library which contains utility functions for

encoding and decoding arrays of addresses into bytes and vice versa.
● NZAGuard.sol - contains modifiers to check inputs for a non-zero

address, non-zero value, non-same address, non-same value, and
none-more-than-one.

Privileged roles
● Prime:

○ owner: can whitelist, blacklist members, update member risk
score, can change the spread rate, the origination fee rate,
the rolling increment fee rate, penalty rate per year and
update the treasury address.

○ onlyPrime: The role of onlyPrime in the Prime contract is to
grant the authority to engage in token lending, request and
cancel callbacks, and accept rollover requests from Borrowers.

● PoolFactory:
○ owner: can mark the pools as defaulted, can change the prime

contract address and the pool beacon address.
○ prime member: can create new pools.

● Pool:
○ borrower: can whitelist, blacklist lenders, change pool from

private to public and vice versa, can repay lenders with the

www.hacken.io
9



principal and interest, can request the roll, close pools and
mark pools as defaulted.

○ prime lender: can lend funds to the pool and accept the roll,
can create or cancel the callback.

www.hacken.io
10



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Not Relevant

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
12

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
13



Findings

Critical

C01. Non-Finalized Code

In the Clearpool Prime membership contract, there is a function
called whitelistMemberTestnet. This function allows any user to add
any address as a whitelisted prime member. As a result, unauthorized
users can potentially add addresses to the prime member list without
proper validation or permission, compromising the integrity of the
membership system and potentially allowing unauthorized access to
exclusive prime member features.

The production code should not contain any functions or variables
that are used solely in the test environment. This will allow
malicious parties to manipulate the code or users to trigger them
accidentally.

Path: ./protocol/contracts/PrimeMembership/Prime.sol :
whitelistMemberTestnet(), isMember()

Recommendation: remove the testing functionality from the production
code.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

High

H01. Undocumented Behavior; Variable is not limited

In the current implementation, the Prime contract owner can update
the penalty rate at any time for all pools without any limitations.
This unrestricted control over penalty rate adjustments could lead to
unexpectedly high penalties for pools, potentially causing issues for
borrowers and undermining trust in the system.

Path: ./protocol/contracts/PrimeMembership/Prime.sol :
updatePenaltyRatePerYear()

Recommendation: add a penaltyRate variable to the pool contract and
set the penalty rate during pool creation. Limit max penaltyRate in
the Prime contract.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

H02. Data Consistency

The current implementation of the blacklisting functionality in the
lending pool smart contract has inconsistencies.

www.hacken.io
14



Specifically, when a lender is blacklisted in a public pool, they can
still lend assets due to the absence of a check for blacklisted
addresses in public pools.

This allows blacklisted lenders to bypass the intended access control
mechanism.

Path: ./protocol/contracts/Pool/Pool.sol : blacklistLenders()

Recommendation: allow blacklisting of lenders only if the pool is
private or add the possibility to blacklist specified lenders in
public pools.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

H03. Requirements Violation

The documentation states that the interest calculation in the lending
pool smart contract will be performed on a per-block basis.

However, the current implementation calculates interest using
timestamps.

This discrepancy between the intended behavior and the actual
implementation could lead to unexpected outcomes.

Path: ./protocol/contracts/Pool/Pool.sol

Recommendation: update the documentation to accurately reflect the
current implementation. If the requirement to calculate interest on a
block basis is essential, modify the smart contract implementation to
use block numbers instead of timestamps.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

H04. Non-Finalized Code

The code contains a comment stating "TODO: implement check for
riskScore" but this check has not been implemented. The code should
not contain TODO comments. Otherwise, it means that the code is not
finalized and additional changes will be introduced in the future.

Path: ./protocol/contracts/PrimeMembership/Prime.sol : isMember()

Recommendation: remove the TODO comments.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

www.hacken.io
15



Medium

M01. Uninitialized implementation

In the current Prime.sol and PoolFactory.sol contracts
implementation, the base implementation contract is left
uninitialized.

This could potentially lead to unintended usage or vulnerabilities if
someone manages to interact with the uninitialized implementation
contract directly.

To prevent this, it is recommended to lock the contract and disable
its initializer functions upon deployment.

In the __Prime_init function the _unchained function of
OwnableUpgradeable.sol is used directly. This is not recommended
because it can cause initialization issues when upgrading or when
inheriting from multiple upgradeable contracts.

If you call _unchained functions directly, you risk bypassing any
additional code that may be added in future versions, which could
lead to compatibility issues and unexpected behavior.

Path: ./protocol/contracts/PrimeMembership/Prime.sol

./protocol/contracts/Pool/PoolFactory.sol

Recommendation: invoke the _disableInitializers function in the
constructor of the implementation contract. This will automatically
lock the contract and disable its initializer functions when it is
deployed, ensuring that the contract cannot be misused or compromised
due to uninitialized state. Call the non-unchained initialization
functions in the main initialization function.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

M02. Unchecked Transfer or Approve

The functions _lend, _repayTo and _repayInterestTo do not use the
SafeERC20 library for checking the result of ERC20 token transfers.
Tokens may not follow the ERC20 standard and return a false in case
of transfer failure or not return any value at all.

Path: ./protocol/contracts/Pool/Pool.sol : _lend(), _repayTo(),
_repayInterestTo()

Recommendation: use the SafeERC20 library to interact with tokens
safely.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

www.hacken.io
16



Low

L01. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Path: ./protocol/contracts/utils/Counters.sol

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

L02. Redundant Code Block

Solidity 0.8.0 and later versions have ABI coder v2 enabled by
default, providing efficient and safe ABI encoding and decoding
functionality.

There is no need to specify it explicitly.

Path: ./protocol/contracts/utils/AddressCoder.sol

Recommendation: remove redundant code parts.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

L03. NatSpec comments contradiction

The NatSpec comments of the function __Prime_init declare that
function as internal.

The NatSpec comments of the function changeSpreadRate declare that
the parameter spreadRate_ as the new fee collector address.

The NatSpec comments of the library Counters state that it provides
counters that can only be incremented, decremented or reset.

This can lead to the wrong assumptions about the code's purpose.

Path: ./protocol/contracts/PrimeMembership/Prime.sol

./protocol/contracts/utils/Counters.sol

Recommendation: fix the mismatch.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

www.hacken.io
17



L04. Use of Redundant Modifier

The internal function _repayInterest uses modifiers onlyBorrower
nonDefaulted. This function can be called only internally by the
external function repayInterest.

The use of unnecessary modifiers will increase Gas consumption of the
code. Thus they should be removed from the code.

Path: ./protocol/contracts/Pool/Pool.sol

Recommendation: remove the redundant modifiers.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

L05. Redundant Import

The functionality of OwnableUpgradeable.sol is unused in the Pool
contract.

Unused imports should be removed from the contracts. Unused imports
are allowed in Solidity and do not pose a direct security issue.
However, it is best practice to avoid them as they can decrease
readability.

Path: ./protocol/contracts/Pool/Pool.sol

Recommendation: remove the redundant import.

Found in: 62f5e3e

Status: Fixed (Revised commit: bfdc794)

www.hacken.io
18



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
19


