
Customer: DinoWars
Date: April 28, 2023



This report may contain confidential information about IT
systems and the intellectual property of the Customer, as well as
information about potential vulnerabilities and methods of their
exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
DinoWars

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OÜ

Type ERC20 token; Vesting

Platform EVM

Language Solidity

Methodology Link

Website dino-wars.com

Changelog

30.01.2023 – Initial Review
22.02.2023 – Second Review
17.03.2023 – Third Review
13.04.2023 – Fourth Review
28.04.2023 – Fifth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://dino-wars.com/


Table of contents
Introduction 5
Scope 5
Severity Definitions 7
Executive Summary 8
Checked Items 10
System Overview 13
Findings 14

Critical 14
C01. EIP Standard Violation 14
C02. Data Consistency & Token Supply Manipulation 14

High 15
H01. Requirement Violation 15
H02. Requirement Violation 15
H03. Invalid Hardcoded Value 15
H04. Highly Permissive Role Access 16
H05. Requirements Violation 16
H06. Requirement Violation 16
H07. Data Consistency & Requirement Violation 17
H08. Requirement Violation & Denial of Service 17
H09. Requirement Violation & Data Consistency 17

Medium 18
M01. Best Practice Violation - Missing Initialization 18
M02. Best Practice Violation - Uninitialized Implementation 18
M03. Contradiction - Documentation Mismatch 18
M04. Unscalable Functionality - Copy-Pasted Functionality 19
M05. Contradiction - Documentation Mismatch 19
M06. Contradiction - Documentation Mismatch 19
M07. Best Practice Violation - Missing Event Emit 19
M08. Contradiction - Documentation Mismatch 20
M09. Best Practice Violation - Immutable Ownership 20
M10. Contradiction - Invalid Calculations 20
M11. Contradiction - Inconsistent Data 21

Low 21
L01. Unconscious Design 21
L02. Floating Pragma 21
L03. Functions that Can Be Declared External 22
L04. Dead Code & Redundant State Variable 22
L05. Redundant Code Block 22
L06. Explicit Size 22
L07. Style Guide Violation 23
L07-1. Style Guide Violation 23
L08. Missing zero value validation 23
L09. Redundant statement 23
L10. Checks-Effects-Interactions Pattern Violation 24
L11. Wrong NatSpecs 24
L12. Wrong Error Message 24

www.hacken.io
3



L13. Redundant Return Parameter 24
L14. Second Lost 25
L15. Wrong NatSpec 25
L14-01. Code Duplication 25

Disclaimers 26

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by DinoWars (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope
Repository https://github.com/QBergSolution/DinoWars-EconomySystem

Commit a5279efb219affc7aac9690e94f44bc17b75c9a8

Whitepaper whitepaper.dino-wars.com

Functional
Requirements

Link

Contracts File: ./DG.sol
SHA3: c36df89b1660c3c493ed14f21148718d43cfe63e43f25afe3a3572e2b32dc44b

File: ./DINW.sol
SHA3: 31ffc8cd40c4c15b16b328144d39de13113bee3c77c49efe68641aeaf489bbc1

Second review scope
Repository https://github.com/QBergSolution/DinoWars-EconomySystem

Commit 6e54bcf418b60c5768f6ff2f37a4752a15290605

Whitepaper whitepaper.dino-wars.com

Functional
Requirements

Link
Contract methods description

Technical
Requirements

Link

Contracts File: ./contracts/DG.sol
SHA3: 5aa62550a3aba76e998271d930fccecb2acdabb0c637ec121d8db686411d71bf

File: ./contracts/DINW.sol
SHA3: fe7d1561473691e61414dffb9ef35a0b5c497c9cc15f9e6bbfae0dbb0a4af475

Third review scope
Repository https://github.com/QBergSolution/DinoWars-EconomySystem

Commit ee8bbca4dcfc575b248fba5572d1ee61a6191668

Whitepaper whitepaper.dino-wars.com

Functional
Requirements

Link
Contract methods description

www.hacken.io
5

https://github.com/QBergSolution/DinoWars-EconomySystem
https://whitepaper.dino-wars.com/
https://docs.google.com/document/d/1YdwbfSRdBy0sK34K_ONniXAuGlkpWY8iByzrJblC8yg/edit
https://github.com/QBergSolution/DinoWars-EconomySystem
https://whitepaper.dino-wars.com/
https://docs.google.com/document/d/1YdwbfSRdBy0sK34K_ONniXAuGlkpWY8iByzrJblC8yg/edit
https://github.com/QBergSolution/DinoWars-EconomySystem/tree/6e54bcf418b60c5768f6ff2f37a4752a15290605/docs
https://github.com/QBergSolution/DinoWars-EconomySystem/blob/6e54bcf418b60c5768f6ff2f37a4752a15290605/README.md
https://github.com/QBergSolution/DinoWars-EconomySystem
https://whitepaper.dino-wars.com/
https://docs.google.com/document/d/1YdwbfSRdBy0sK34K_ONniXAuGlkpWY8iByzrJblC8yg/edit
https://github.com/QBergSolution/DinoWars-EconomySystem/tree/ee8bbca4dcfc575b248fba5572d1ee61a6191668/docs


Technical
Requirements

Link

Contracts File: ./contracts/DG.sol
SHA3: c3bd3cdab59f96a1e7bb533709470ef4612101d63955edca5383a7a208812f93

File: ./contracts/DINW.sol
SHA3: df14bf4ed037edca68a59181eb8225d6fec5131b87f83405c79463e5322a72cf

Fourth review scope
Repository https://github.com/QBergSolution/DinoWars-EconomySystem

Commit 767a6cceec41fef03e78da1801515f12b2139be3

Whitepaper whitepaper.dino-wars.com

Functional
Requirements

Link
Contract methods description

Technical
Requirements

Link

Contracts File: ./contracts/DG.sol
SHA3: c3bd3cdab59f96a1e7bb533709470ef4612101d63955edca5383a7a208812f93

File: ./contracts/DINW.sol
SHA3: 1f5aac545f4d849bc08822391199070b8b5213ca8cfd34171876e78b6c635e3f

Fifth review scope
Repository https://github.com/QBergSolution/DinoWars-EconomySystem

Commit 735586b03a08d75bf6c7006e32c2d9b5c6338a17

Whitepaper whitepaper.dino-wars.com

Functional
Requirements

Link
Contract methods description

Technical
Requirements

Link

Contracts File: ./contracts/DG.sol
SHA3: 7b5a85b81fb318847a5bd5e62f5336ee0838febdd3685ec9aa752284a6f64f96

File: ./contracts/DINW.sol
SHA3: f1bf3fefb921eb6bcd463a4d9f6b039a9294fa698fe23ff0370d7d45b717fd50

www.hacken.io
6

https://github.com/QBergSolution/DinoWars-EconomySystem/blob/ee8bbca4dcfc575b248fba5572d1ee61a6191668/README.md
https://github.com/QBergSolution/DinoWars-EconomySystem
https://whitepaper.dino-wars.com/
https://docs.google.com/document/d/1YdwbfSRdBy0sK34K_ONniXAuGlkpWY8iByzrJblC8yg/edit
https://github.com/QBergSolution/DinoWars-EconomySystem/tree/767a6cceec41fef03e78da1801515f12b2139be3/docs
https://github.com/QBergSolution/DinoWars-EconomySystem/blob/767a6cceec41fef03e78da1801515f12b2139be3/README.md
https://github.com/QBergSolution/DinoWars-EconomySystem
https://whitepaper.dino-wars.com/
https://docs.google.com/document/d/1YdwbfSRdBy0sK34K_ONniXAuGlkpWY8iByzrJblC8yg/edit
https://github.com/QBergSolution/DinoWars-EconomySystem/tree/735586b03a08d75bf6c7006e32c2d9b5c6338a17/docs
https://github.com/QBergSolution/DinoWars-EconomySystem/blob/735586b03a08d75bf6c7006e32c2d9b5c6338a17/README.md


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused code
or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality.

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are not finalized:
○ The “change user’s vesting plan” functionality is implemented

but not mentioned in the documentation.
○ NatSpec comments for most of the code objects are incorrect and

do not represent their purposes. Thus, DG.docx and DINW.docx
files contain outdated/misleading information.

○ The file containsDino Wars. Documentation for economics
unimplemented blurry requirements:

■ A separate pool of tokens for the game - divided into 4
wallets.

■ Commissions - covered by token users.
■ Share of owners - divided into 4 wallets.

○ The file containsDino Wars. Documentation for economics
empty auto-generated fields and markdown formatting in the
“Vesting” section. It is recommended to use native formatting
in Google Documents.

○ The README.md file refers to an unfinalized non-English
file.Копия requirements

○ In the README.md file owner and user as system actors are
mixed.

○ A NatSpec comment for the unlock function refers to an
inexistent availLockedTokens function (should be
availableLockedTokens).

● Technical description is clear.

Correct functionality description could be found in the System Overview
section of the report.

Code quality
The total Code Quality score is 8 out of 10.

● Code is not formatted.
● Revert messages thrown in the same cases are designed in different

ways:
○ Invalid lock amount data ~ Invalid lock user data

● Nondeclarative revert messages are found:
○ Invalid data – The data that is invalid is not defined.

● Code duplication is found.

www.hacken.io
8

https://docs.google.com/document/d/1YdwbfSRdBy0sK34K_ONniXAuGlkpWY8iByzrJblC8yg/edit#
https://docs.google.com/document/d/1YdwbfSRdBy0sK34K_ONniXAuGlkpWY8iByzrJblC8yg/edit#
https://docs.google.com/document/d/1F3Gj2X-kKLhKLF2oACc0qJrxW5PMyZNIQGcSJeIWFsE/edit
https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


● Dynamic length array is checked to have static length.
Static length array usage would be more optimal there.

● A uint40 variable is used as a counter. However, Solidity works
faster operating 32-bytes length (uint256) types.

● Incorrect NatSpecs found.
● It is possible to set locked user balance below the unlocked one (by

providing duplicates in constructor(unlockWallets) or providing low
values in lock(lockAmounts)). This looks inconsistent and is not
mentioned in the documentation.

● The development environment is configured.

Test coverage
Code coverage of the project is 56.25% (branch coverage).

● Negative cases are not tested thoroughly.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the Findings section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.3.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

30 January 2023 7 6 4 1

22 February 2023 7 1 5 0

17 March 2023 5 3 0 1

13 April 2023 6 2 1 0

28 April 2023 1 0 0 0

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Not Relevant

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Not Relevant

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114


Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Not Relevant

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
11

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Token Supply
Manipulation Custom

Tokens can be minted only according to
the rules specified in a whitepaper or
any other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Failed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. The usage of
contracts by multiple users should be
tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



System Overview

DinoWars is a mobile crypto game project which contains the following smart
contracts covered by the audit:

● DG — ERC20 token with the following properties:
○ Name: Dino game
○ Symbol: DG

Additional features:
○ Ability to mint DG tokens (only specific role owners).
○ Ability to burn owned DG tokens (only specific role owners).

● DINW — ERC20 token with the following properties:
○ Name: DINO WARS
○ Symbol: DINW

Additional features:
○ Tokens are initially locked in several wallets and are unlocked

over 40 stages according to the tokenomics defined on contract
deployment.

○ TGE for special wallets happens on deployment.
○ Ability to mint DINW tokens (only specific role owners).
○ Ability to burn owned DINW tokens (only specific role owners).
○ Ability to change/create/remove vesting plans (only specific

role owners).

Privileged roles
DG — DEFAULT_ADMIN_ROLE:

● Set any other roles on the contract.
DG — MINTER_ROLE:

● Mint funds.
● Burn owned funds.

DINW — DEFAULT_ADMIN_ROLE:
● Set any other roles on the contract.

DINW — MINTER_ROLE:
● Change/Create/Remove user vesting plan.

Risks
● According to the documentation, the system contains exchange,

staking, and lottery contracts, which are outside of the audit scope.
The security of these systems should be ensured by an appropriate
audit.

● Owners of MINTER_ROLE on the DINW contract may change users’ vesting
plans to arbitrary ones (for example, revoking vestments at all).

● There is no maximum total supply of DG and DINW tokens. Tokens could
be infinitely inflated by the system owners.

www.hacken.io
13



Findings

Critical

C01. EIP Standard Violation

According to the ERC20 standard, the totalSupply function should
return the sum of all user balances. However, during the
initialization, some user balances are set and the _totalSupply is
not.

This may lead to unexpected assumptions for the total cap size.

The standard violation may lead to an integer underflow/overflow
during calls to the _burn/_mint functions.

Path:
./DINW.sol: initialize()

Recommendation: process the _totalSupply variable value consciously.

Status: Fixed (second scope)

C02. Data Consistency & Token Supply Manipulation

The lock function implementation contradicts requirements.

The algorithm is corrupted:

● The source unlocked balance is not taken into account.
● The function mints tokens to the Gateway address and increases

the _unlocked_balances[Gateway] variable value independently of
the _locked_balances[Gateway] value.

● The function increases the _locked_balances[target] value in
proportion to the source address vesting plan. However, the
_locked_balances[source] value is not changed.

● The function emits an Unlocked(source, amount) event. However,
nothing was unlocked for the source address.

This may lead to:

● Duplication of already withdrawn tokens from the source to the
target address.

● Unexpected double minting (to the Gateway and the target
address).

● Unexpected _unlocked_balances[Gateway] value.
● Unexpected wallet balances after execution (Gateway receives

tokens, target receives locked tokens, source does not lose
tokens).

● Wrong assumptions on user unlocked amount.

Path:
./contracts/DINW.sol: lock()

www.hacken.io
14



Recommendation: implement the algorithm according to
the requirements.

Status: Fixed (fourth scope)

High

H01. Requirement Violation

According to the documentation, system owners of the contract should
be able to mint/burn the asset. However, the functionality is not
implemented.

Path:
./DINW.sol

Recommendation: make the documentation and code consistent with each
other.

Status: Mitigated (on behalf of H05)

H02. Requirement Violation

According to the documentation, TGE amounts should be distributed at
launch. However, the functionality is not implemented.

Instead, amounts that should be distributed after 1 month are
distributed at launch and the total vesting length decreases to 39
months (a 40-month length is expected).

Path:
./DINW.sol

Recommendation: make the documentation and code consistent with each
other.

Status: Fixed (second scope)

H03. Invalid Hardcoded Value

According to the documentation, the data stored in the _unlock
mapping should be consistent with the project’s Tokenomics.

However, it is not right for several cases:
_unlock[REWARDS_WALLET][23] = 12973333 (should be 12973333e18)
_unlock[MARKETING_WALLET][20] = 1250000e18 (should be 1500000e18)
_unlock[MARKETING_WALLET][21] = 1375000e18 (should be 1500000e18)
_unlock[MARKETING_WALLET][30] = 1250000e18 (should be 1500000e18)
_unlock[MARKETING_WALLET][31] = 1375000e18 (should be 1500000e18)

This may lead to a temporary DoS state for certain users due to an
integer underflow in the unlock function.

Path:
./DINW.sol: _unlock, unlock()

Recommendation: copy the values to the code carefully or implement a
corresponding calculation algorithm.

www.hacken.io
15



Status: Fixed (second scope)

H04. Highly Permissive Role Access

Owners should not have access to funds that belong to users.

In order to keep the funds flow clear any actions with other users’
funds should be authorized with allowances.

Path:
./DG.sol: burn()

Recommendation: remove the ability to burn other users’ funds, use an
ERC20Burnable pattern from OpenZeppelin to implement burning funds
using allowances.

Status: Fixed (second scope)

H05. Requirements Violation

The doc files are outdated / contain contradictory information.

● A lock for user functionality is implemented but not mentioned
in the general overview.

● In the DINW.docx document the lock function description
contains documentation for the avail_locked_tokens function.

● In the DINW.docx document it is stated that the constructor has
no parameters. However, it has some.

● The general overview file states that the token name is “Dino
game”. However, “Dino Game” is implemented.

● The general overview file states that contract owners are able
to mint/burn tokens. However, the functionality is not
implemented.

● The NatSpec comment on the lock function does not describe what
it should do.

● The technical description contains a screenshot of successfully
running tests. However, some of the tests/contracts are not
present in the repository.

Recommendation: update the documentation and resolve contradictions.

Status: Fixed (third scope)

H06. Requirement Violation

The avail_locked_tokens function relies on unlock_plan[x] <=
unlock_plan[x+1]. However, the fact is not validated during the
setup.

The avail_locked_tokens function relies on _locked_balances[w][x] <=
_locked_balances[w] [x+1]. However, it is not checked during the
setup.

This may lead to:

● the contract receiving a broken vesting plan
● users unable to receive locked funds

www.hacken.io
16



● avail_locked_tokens unexpected behavior

Path:
./contracts/DINW.sol: constructor()

Recommendation: process input data carefully.

Status: Fixed (third scope)

H07. Data Consistency & Requirement Violation

The _unlock function relies on _unlocked_balances[w] + amount <=
_locked_balances[w][last_acceptable]. However, the fact is not
validated. The function may be called without pre-validation from the
lock function.

This may lead to unexpected behavior of the lock and unlock
functions.

Path:
./contracts/DINW.sol: _unlock(), lock(), unlock()

Recommendation: process input data carefully.

Status: Mitigated (on behalf of C02)

H08. Requirement Violation & Denial of Service

According to the documentation it should be possible for the owner to
call the setGateway function. However, it is not.

The zero-check is broken as it checks the state variable, not the
incoming parameter. As _gateway equals 0x0 by default, the function
is inaccessible.

This may lead to an inability to use the lock function.

Path:
./contracts/DINW.sol: setGateway()

Recommendation: fix the zero-check.

Status: Fixed (third scope)

H09. Requirement Violation & Data Consistency

The lock function implementation contradicts requirements.

It is possible to withdraw most of the locked funds before the
vesting period ends.

The initial tokens holder is able to unlock funds up to the current
period and then transfer (using the lock function) the least funds to
another address. There the funds are distributed through the vesting
period and it is possible to unlock some funds up to the current
period again. After a continuous number of iterations, most of the
locked funds would be unlocked.

www.hacken.io
17



This may lead to users being able to unlock funds
before the vesting period ends.

Path:
./contracts/DINW.sol: lock()

Recommendation: rework the logic, prevent target users from being
able to unlock more funds than the source address is able to.

Status: Fixed (fifth scope)

Medium

M01. Best Practice Violation - Missing Initialization

According to the upgradable contracts pattern documentation, all
inherited contracts should be initialized by a corresponding
initializer. However, the AccessControlUpgradeable contract’s
initialization is missing.

Path:
./DG.sol: initialize()

Recommendation: invoke the __AccessControl_init method.

Status: Fixed (second scope)

M02. Best Practice Violation - Uninitialized Implementation

According to the upgradable contracts pattern documentation, it is
recommended to disable the possibility of initialization on the logic
contract.

It may be done by adding the constructor to the target code.

constructor() {
_disableInitializers();

}

Paths:
./DG.sol
./DINW.sol

Recommendation: add the constructor to the target code to prevent
logic contracts from being overtaken.

Status: Fixed (second scope)

M03. Contradiction - Documentation Mismatch

According to the documentation, tokens should be unlocked once a
month. The month length is defined in the code as 30 days. However,
the average month length is ~30.437 days.

This may lead to a full unlock 17 days earlier than expected.

Path:
./DINW.sol

www.hacken.io
18



Recommendation: consider the approximate month length
in the documentation or implement more accurate
calculations in the code.

Status: Fixed (second scope)

M04. Unscalable Functionality - Copy-Pasted Functionality

The contract contains copy-pasted functionality of the OpenZeppelin
ERC20 contract.

This may lead to unexpected issues during further development (such
as C01 and L03).

Path:
./DINW.sol

Recommendation: import the ERC20 contract from the source and inherit
the target contract with it.

Status: Fixed (second scope)

M05. Contradiction - Documentation Mismatch

According to the documentation, the token Name property should be
equal to “Dino game”. However, in the code, it is “Dino Game”.

Path:
./DG.sol: initialize()

Recommendation: update the documentation according to the code or
implement the code according to the requirements.

Status: Mitigated (on behalf of H05)

M06. Contradiction - Documentation Mismatch

According to the documentation, users should be able to unlock
distributed funds. However, there is no possibility for a user to get
an available amount to unlock.

This may lead to high Gas waste while guessing the available unlock
amount.

Path:
./DINW.sol: _balances, _locked_balances, _unlocked_balances

Recommendation: implement functionality to check the available unlock
amount.

Status: Fixed (second scope)

M07. Best Practice Violation - Missing Event Emit

According to the documentation, a GatewayChanged event should be
emitted on _gateway variable changes. However, the event is not
emitted.

www.hacken.io
19



Path:
./contracts/DINW.sol: setGateway()

Recommendation: emit the event as required.

Status: Fixed (third scope)

M08. Contradiction - Documentation Mismatch

The function returns 0 for timestamp < block.timestamp. However,
according to requirements, it should return the value available at
the timestamp moment.

This may lead to users receiving incorrect data.

Path:
./contracts/DINW.sol: availableLockedTokens()

Recommendation: implement code according to the requirements or
update documentation on the function purpose.

Status: Fixed (fourth scope)

M09. Best Practice Violation - Immutable Ownership

The contract is designed in a way that ownership cannot be
transferred.

This may lead to the impossibility to update the owner in critical
situations.

Path:
./contracts/DINW.sol

Recommendation: implement an ability to transfer the contract owner.

Status: Fixed (fourth scope)

M10. Contradiction - Invalid Calculations

In the lock() function, there is a possibility of an invalid
calculation due to a rounding error.

As the denominator is rounded down, the fraction result (lock_amount)
may be greater than expected.

This may lead to the target address receiving more funds than the
amount value.

As the lock_amount > amount may happen, the statement lock_amount +
_unlocked[w] <= _locked[w][39] may not be true and a Token Supply
Manipulation issue may appear.

Path:
./contracts/DINW.sol: lock()

www.hacken.io
20



Recommendation: remove the denominator variable and
calculate the fraction correctly (put all multiplications at the
start and divisions at the end).

Status: Fixed (fifth scope)

M11. Contradiction - Inconsistent Data

During deployment it is possible to provide duplicates in the
unlockWallets parameter. This may lead to the check being bypassed
_locked[w][0] < _unlocked[w] as the require check implemented does
not consider the _unlocked value.

This may lead to incorrect behavior of the lock function if a
previously overfunded wallet is provided as the target.

Path:
./contracts/DINW.sol: constructor()

Recommendation: consider _unlocked variable value during the
“overfund” check.

Status: Fixed (fifth scope)

Low

L01. Unconscious Design

ERC20 token contracts are considered to have an unlimited life cycle.
Vesting contracts with hardcoded receivers and a limited distribution
amount are considered to have a limited life cycle.

Uniting the patterns may lead to additional Gas waste and obsolete
dead code in a live contract.

Path:
./contracts/DINW.sol

Recommendation: separate the logic across different contracts or make
the vesting functionality renewable.

Status: Mitigated (according to the requirements, the functionality
should be implemented on the same contract)

L02. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

The project uses floating pragmas ^0.8.17.

Paths:
./contracts/DG.sol
./contracts/DINW.sol

www.hacken.io
21



Recommendation: consider locking the pragma version
whenever possible and avoid using a floating pragma in
the final deployment.

Status: Fixed (third scope)

L03. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./DG.sol: initialize()
./DINW.sol: initialize(), decimals(), decreaseAllowance()

Recommendation: use the external attribute for functions never called
from the contract.

Status: Fixed (second scope)

L04. Dead Code & Redundant State Variable

The functionality is redundant as it is never used.

Path:
./DINW.sol: _mint(), _burn(), contract_wallets

Recommendation: get rid of unused functionality or finalize it.

Status: Fixed (second scope)

L05. Redundant Code Block

There is no need to reserve storage slots in top-level contracts.

uint256[...] private __gap at the end of the DG and DINW is
redundant.

Paths:
./DG.sol: __gap
./DINW.sol: __gap

Recommendation: get rid of the redundant functionality.

Status: Fixed (second scope)

L06. Explicit Size

Across the contracts, uint type is sometimes used for uint256
variables.

Using uint256 improves the readability and consistency of the code.

Mixing uint256 and uint types makes code messy.

Paths:
./DINW.sol
./DG.sol

www.hacken.io
22



Recommendation: rename uint to uint256.

Status: Fixed (third scope)

L07. Style Guide Violation

The variables and functions are not implemented in the mixed case.

It is considered best practice to start private or internal objects
with the “_” symbol and external or public objects with a lowercase
letter.

Path:
./contracts/DINW.sol: unlock_plan, _locked_balances,
_unlocked_balances, avail_locked_tokens(), _locked_balances(),
_unlocked_balances(), unlock_plan(), constructor(lock_wallets,
lock_amounts, unlock_wallets, unlock_amounts)

Recommendation: follow the official Solidity guidelines.

Status: Fixed (third scope)

L07-1. Style Guide Violation

The variables and functions are not implemented in the mixed case.

It is considered best practice to use mixedCase for variable names
and start private or internal objects with the “_” symbol.

Path:
./contracts/DINW.sol: _locked_balances, _unlocked_balances,
lock(lock_amount)

Recommendation: follow the official Solidity guidelines naming
convention.

Status: Fixed (fifth scope)

L08. Missing zero value validation

The function accepts any value for the amount parameter. However,
only a positive value is reasonable.

This may lead to the DG token being deployed with zero total supply.

Path:
./contracts/DG.sol: constructor(amount)

Recommendation: check if the mint amount is not 0.

Status: Fixed (third scope)

L09. Redundant statement

The require(uint40[40] == 40, ...) statement is redundant as it is
always true.

www.hacken.io
23



Path:
./contracts/DINW.sol: constructor()

Recommendation: get rid of redundant statements.

Status: Fixed (third scope)

L10. Checks-Effects-Interactions Pattern Violation

During the call, some sanity checks are performed after storage
writes.

This may lead to additional Gas waste on provided wrong input data.

Path:
./contracts/DINW.sol: constructor()

Recommendation: move compare array lengths check to the start of the
function.

Status: Fixed (third scope)

L11. Wrong NatSpecs

The NatSpec comments of the state variables are outdated. The
variables are private so the Returns ... statements make no sense.

Path:
./contracts/DINW.sol: _locked_balances, _unlocked_balances

Recommendation: provide comments consciously.

Status: Mitigated (on behalf of Documentation Quality)

L12. Wrong Error Message

The revert message is Incorrect caller. However, a zero address check
is performed there.

Path:
./contracts/DINW.sol: setGateway()

Recommendation: provide error messages consciously.

Status: Fixed (fourth scope)

L13. Redundant Return Parameter

The amount return parameter is declared, but it is never used in the
code as the function ends with an explicit return statement.

Path:
./contracts/DINW.sol: availableLockedTokens(amount)

Recommendation: remove the redundant variable.

Status: Fixed (fifth scope)

www.hacken.io
24



L14. Second Lost

The function should return available funds for the wallet at the
moment in time. However, a strict timestamp > unlockPlan[t] check is
used, so the wrong value would be returned if the provided timestamp
equals one of the unlockPlan elements.

Path:
./contracts/DINW.sol: availableLockedTokens()

Recommendation: make the comparison non-strict.

Status: Fixed (fifth scope)

L15. Wrong NatSpec

The NatSpec states that the function emits an {Unlocked} event
indicating the unlocked balance `amount` for `source`. However, it is
not true.

Path:
./contracts/DINW.sol: lock()

Recommendation: remove the wrong statement.

Status: Mitigated (on behalf of Documentation Quality)

L14-01. Code Duplication

The pattern is implemented twice in the function.

if (_locked[w][t] < _unlocked[w]) return 0;
return _locked[w][t] - _unlocked[w];

Path:
./contracts/DINW.sol: availableLockedTokens()

Recommendation: make the t > 0 comparison non-strict and remove the
pattern duplication after the for cycle body.

Status: Reported

www.hacken.io
25



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
26


