
Customer: Hyperlane
Date: Apr 03, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Hyperlane

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Interchain messaging

Platform EVM

Language Solidity

Methodology Link

Website hyperlane

Changelog 28.01.2023 – Initial Review
03.04.2023 – Second Review

www.hacken.io

2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.hyperlane.xyz/


Table of contents
Introduction 4
Scope 4
Severity Definitions 10
Executive Summary 10
Checked Items 12
System Overview 15
Findings 18

Critical 18
High 18

H02. Upgradeability Errors 18
H03. Upgradeability Errors 18
H05. Data Inconsistency 18
H07. Compilation Error 19

Medium 19
M02. Missing SafeERC20 19
M03. Best Practice Violation 20
M04. Unfinalized code 20
M05. Copy of well-known contract 20
M08. Data Consistency 21
M09. Best Practices 21
M10. Upgradeability Errors 22

Low 22
L01. Inefficient Gas Model 22
L02. Unemitted Events 23
L03. Function Visibility 23
L04. Boolean Equality 23
L06. Floating Pragma 24
L07. Outdated Solidity Version 24
L08. Misleading Require Message 24
L09. Empty Constructor 24
L10. Missing zero address validation 25
L11. Style Guide Violation 25

Disclaimers 26

www.hacken.io

3



Introduction

Hacken OÜ (Consultant) was contracted by Hyperlane (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope
Repository https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/audit-

v2/solidity/contracts
https://github.com/hyperlane-xyz/hyperlane-token/tree/main/cont
racts

Commit b450181c7fc255149ce86551f21dacd7ab47d5f5
ca7bb745a6fb9f21ec727a1a41a55c800d2f453a

Whitepaper Link

Functional
Requirements

Link

Contracts File: ./solidity/contracts/Call.sol
SHA3: 93dbcebdbbf479563e3c43ba33e392a17df3513073fd6df69edb1461f5d7780d

File: ./solidity/contracts/HyperlaneConnectionClient.sol
SHA3: 146bc2a168ff2752e01a317d7c09ea581ca91567edc48eb4b80d9d0f099ec771

File: ./solidity/contracts/InterchainGasPaymaster.sol
SHA3: 694e10520d18dbb217d52b62d0461b4c16c8a528490ff8ff610fe0f8d6aad91c

File: ./solidity/contracts/isms/MultisigIsm.sol
SHA3:cf9b43321dfc90f3914fc81ebb1ba78916ed828573146935a7f5e79e26bc30a7

File: ./solidity/contracts/libs/EnumerableMapExtended.sol
SHA3: c4115c2ce6f2a0efc48c63e5869464eda34f8b5cfee9fc42eba149d74d23ef7c

File: ./solidity/contracts/libs/Merkle.sol
SHA3: 26bda8009ee094c60b3c0c10ec454bc3bfffbc74d45c49fd1ed50d696aed7751

File: ./solidity/contracts/libs/Message.sol
SHA3: f9ff058e169c9d5ff5a869293fdba1a8531a1e0db5c61a7b8885a26deda95b64

File: ./solidity/contracts/libs/MinimalProxy.sol
SHA3: 510914afe4a147b567a630146199b8fe3c17d1f5834698c47f1ad097f39797f9

File: ./solidity/contracts/libs/MultisigIsmMetadata.sol
SHA3: 3fcd0f0657d0e9568ad90367a63cd6f39e90849c4396e2fe6e7d9ddd570f0689

File: ./solidity/contracts/libs/TypeCasts.sol
SHA3: a6aba3f1569a897fef473a4a05d632db8b111eb41fe48f8c36c27a7d382a028a

www.hacken.io

4

https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/audit-v2/solidity/contracts
https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/audit-v2/solidity/contracts
https://github.com/hyperlane-xyz/hyperlane-token/tree/main/contracts
https://github.com/hyperlane-xyz/hyperlane-token/tree/main/contracts
http://docs.hyperlane.xyz/
https://docs.hyperlane.xyz/docs/introduction/readme


File: ./solidity/contracts/Mailbox.sol
SHA3: fb168497e3a11a0915c11b7a870db5d9b58ed64575d5c37adae097129d23c8ca

File: ./solidity/contracts/middleware/InterchainAccountRouter.sol
SHA3: 2ace30bb884683fa36e49efa2509b7921ad14bb1c34df25708faf65a644768de

File: ./solidity/contracts/middleware/InterchainQueryRouter.sol
SHA3: dc5f3899c2dee5eec6fb58a6167036f2277b58de81e3e3f4cae0eefd6481a298

File:
./solidity/contracts/middleware/liquidity-layer/adapters/CircleBridgeA
dapter.sol
SHA3: 641fbcbfc6fa305e58fac7862e705b23ea92c43e66c2a662abe4257dfe207cd8

File:
./solidity/contracts/middleware/liquidity-layer/interfaces/circle/ICir
cleBridge.sol
SHA3: 21d6baf6b1c2573cdc496920e4a6e69cbebc53dbbd26b7ebbb60fb883efb50f0

File:
./solidity/contracts/middleware/liquidity-layer/interfaces/circle/ICir
cleMessageTransmitter.sol
SHA3: 16239fdf7eb2cdba4972b61bd3200626d8116d52152fdb618788df78a6698f13

File:
./solidity/contracts/middleware/liquidity-layer/interfaces/ILiquidityL
ayerAdapter.sol
SHA3: 8fb04b2bdb660334756796dc3168ea0518ac537257b3bf59db0b8b9321099d8d

File:
./solidity/contracts/middleware/liquidity-layer/LiquidityLayerRouter.s
ol
SHA3: 45c016018f1bb69881744038a496febebbe590943197d8f4aba3e45d620f32a5

File: ./solidity/contracts/OwnableMulticall.sol
SHA3: 7366a1ce357c857421b952c35c9d5a253af8a178c883a42f891b9b0b6154c1cb

File: ./solidity/contracts/PausableReentrancyGuard.sol
SHA3: f21a36f320243422aaf896d1127d7a2ad44c9e04610ba79bc23ac68ddaacf849

File: ./solidity/contracts/Router.sol
SHA3: 6b8d3ffaeff8d2935b893a74e4705341c5b317771b8496246094781078adafc0

File: ./solidity/contracts/upgrade/Versioned.sol
SHA3: 7b1e8357094ec9676a04cf8b6b6e022155c12f9949688dd9a6479e5640716a60

File: ./solidity/interfaces/IInterchainAccountRouter.sol
SHA3: bd6fa3bc80ec1faec01f41f744cae3323ee14d469ecd537995f457da4aa07ddf

File: ./solidity/interfaces/IInterchainGasPaymaster.sol
SHA3: 2684fb8703fc8b29c3e7ad6c8e617322c8912eaadb400aad88255781a2621024

File: ./solidity/interfaces/IInterchainQueryRouter.sol
SHA3: 42283382b3e8a82969972b25334d486d91edbed4e5bfa44c0adfbadf8d634984

File: ./solidity/interfaces/IInterchainSecurityModule.sol
SHA3: abd2e0879ec812a8ae5f1975977128ca1dd19f7a2af239682096b05e82ea7f4f

File: ./solidity/interfaces/ILiquidityLayerMessageRecipient.sol
SHA3: 2c4b4723e71a016152f7ddd66ab55cea8ab6beca88d9f39c885f4c2e97bb177c

www.hacken.io

5



File: ./solidity/interfaces/ILiquidityLayerRouter.sol
SHA3: 5dc89eab3cf04fe17e3d56c24d860935e8e62294d329e296e423ea46e46d25bd

File: ./solidity/interfaces/IMailbox.sol
SHA3: c75094d68ec0a1ad5d92d62629c77e37c555995a35b16311309099c3f59e1329

File: ./solidity/interfaces/IMessageRecipient.sol
SHA3: df770d6ff439c2300c4ba039ecdc5eb5757db06d8df98d64a47659204c4bfd1b

File: ./solidity/interfaces/IMultisigIsm.sol
SHA3: 2e3e81056b2987fd8a206897d21a91868d2e3ec48960ce457f0b14e56d54fda2

File: ./contracts/extensions/HypERC721URICollateral.sol
SHA3: 6949190f1a83296434106aae00399bf5dad21048a5469bdac99ca09165706dd0

File: ./contracts/extensions/HypERC721URIStorage.sol
SHA3: 53c59911b31de8aad9331f029d0a321f1332fcdc9b462d1cd5e9c113484b5a82

File: ./contracts/HypERC20.sol
SHA3: cd2d9a01a07e65c74def51566ce8ff0810168af9c31fc593312ffb65fd4b247e

File: ./contracts/HypERC20Collateral.sol
SHA3: fc5b7355f253543dbbc37eec0400bb451f058d676ff3f8905085b3eb5f2b3a75

File: ./contracts/HypERC721.sol
SHA3: 11a4e5d5b394b16174fff30fb13e6b98bcce0a9f699ed6e31a1b5b5da3640913

File: ./contracts/HypERC721Collateral.sol
SHA3: bbe96712d420bab07480b970682e5f7e7d1b02c9cd8b442f09a759db2b2dd5f9

File: ./contracts/libs/Message.sol
SHA3: b9647698d1d28efae16d0194226fbcbb77b3a9dd1bfa1e0886ae6d0506aaed8b

File: ./contracts/libs/TokenRouter.sol
SHA3: 6bf57431c6a35160fe02deec424664a92094cbb14a3c903cb7b29fa8087958eb

File: ./solidity/contracts/upgrade/ProxyAdmin.sol
SHA3: e986bb64e43d1929a57096e06456ab29c007ca3df4d95cebc02a809bdaef9eb5

File: ./solidity/contracts/upgrade/TransparentUpgradeableProxy.sol
SHA3: d7f2f0942f57e0c6dafe7ba9be364e50f2381082f6de7d70ce2b04c4c627fb8e

File: ./solidity/contracts/Create2Factory.sol
SHA3: 6f46791901284cb413b66462a391a2ef5d13ca29cfa19173878fdaf1ec407a36

www.hacken.io

6



Second review scope
Repository https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/audit-

v2-remediation

Commit def40316e9e0fee6857ece40d60a6ddcf2247e90

Whitepaper Link

Functional
Requirements

Link

Contracts File: ./solidity/contracts/Call.sol
SHA3: c526527679d5e752d2e900e13792ec455a356c3635288249ce908d6f2759f4d6

File: ./solidity/contracts/Create2Factory.sol
SHA3: a377db630f17238ec9f32c30c30dff5e181e9e27738fab6ba148bb648e12e3a2

File: ./solidity/contracts/HyperlaneConnectionClient.sol
SHA3: 146bc2a168ff2752e01a317d7c09ea581ca91567edc48eb4b80d9d0f099ec771

File: ./solidity/contracts/InterchainGasPaymaster.sol
SHA3: 8634708493afd063c1fd81c530e4b5e4db454b5dc7bf2c6c4cd78057b234c610

File: ./solidity/contracts/isms/MultisigIsm.sol
SHA3: b16c6b2f95824e33f712444082c4295034803759b9648219a1911cc14ec2eb8e

File: ./solidity/contracts/libs/EnumerableMapExtended.sol
SHA3: c4115c2ce6f2a0efc48c63e5869464eda34f8b5cfee9fc42eba149d74d23ef7c

File: ./solidity/contracts/libs/Merkle.sol
SHA3: 26bda8009ee094c60b3c0c10ec454bc3bfffbc74d45c49fd1ed50d696aed7751

File: ./solidity/contracts/libs/Message.sol
SHA3: f9ff058e169c9d5ff5a869293fdba1a8531a1e0db5c61a7b8885a26deda95b64

File: ./solidity/contracts/libs/MinimalProxy.sol
SHA3: 462abf74fb52f3dae320840027749198c9c067323e562fa1be68d965a299bfaa

File: ./solidity/contracts/libs/MultisigIsmMetadata.sol
SHA3: 3fcd0f0657d0e9568ad90367a63cd6f39e90849c4396e2fe6e7d9ddd570f0689

File: ./solidity/contracts/libs/TypeCasts.sol
SHA3: a6aba3f1569a897fef473a4a05d632db8b111eb41fe48f8c36c27a7d382a028a

File: ./solidity/contracts/Mailbox.sol
SHA3: cd6b6f1a43658fb060a6416c661ae3c7460882e1be0291edc47b158eca6e158c

File: ./solidity/contracts/middleware/InterchainAccountRouter.sol
SHA3: 833a3264c484ece80269b385caa1b3842f028e5ffc71094fdf06e90707a5dc7e

File: ./solidity/contracts/middleware/InterchainQueryRouter.sol
SHA3: 73fc1bb053ca8f86488234108b930b684b4816d99fe0215d670fee27a919249b

File:
./solidity/contracts/middleware/liquidity-layer/adapters/CircleBridgeA
dapter.sol
SHA3: 6e5cdac68c278c07b49a74fbc76066ba93d9ebf7b33bf48c0f8b7434b6cbd7f7

www.hacken.io

7

https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/audit-v2-remediation
https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/audit-v2-remediation
http://docs.hyperlane.xyz/
https://docs.hyperlane.xyz/docs/introduction/readme


File:
./solidity/contracts/middleware/liquidity-layer/interfaces/circle/ICir
cleBridge.sol
SHA3: 21d6baf6b1c2573cdc496920e4a6e69cbebc53dbbd26b7ebbb60fb883efb50f0

File:
./solidity/contracts/middleware/liquidity-layer/interfaces/circle/ICir
cleMessageTransmitter.sol
SHA3: 16239fdf7eb2cdba4972b61bd3200626d8116d52152fdb618788df78a6698f13

File:
./solidity/contracts/middleware/liquidity-layer/interfaces/ILiquidityL
ayerAdapter.sol
SHA3: 8fb04b2bdb660334756796dc3168ea0518ac537257b3bf59db0b8b9321099d8d

File:
./solidity/contracts/middleware/liquidity-layer/LiquidityLayerRouter.s
ol
SHA3: 95b8bf70fb0635988258cdd5d27c1c91ba8d6bdce784b8f1bb456e2cbd377fa5

File: ./solidity/contracts/OwnableMulticall.sol
SHA3: 586923b834484a399fff21e7078149df06cf2b303b49ebc02a13307e2e4303d6

File: ./solidity/contracts/PausableReentrancyGuard.sol
SHA3: f21a36f320243422aaf896d1127d7a2ad44c9e04610ba79bc23ac68ddaacf849

File: ./solidity/contracts/Router.sol
SHA3: 91742a671942082210cb0f805abcb1e6ac7bc5b2c99166861494ce8c6c7bca12

File: ./solidity/contracts/upgrade/ProxyAdmin.sol
SHA3: e986bb64e43d1929a57096e06456ab29c007ca3df4d95cebc02a809bdaef9eb5

File: ./solidity/contracts/upgrade/TransparentUpgradeableProxy.sol
SHA3: d7f2f0942f57e0c6dafe7ba9be364e50f2381082f6de7d70ce2b04c4c627fb8e

File: ./solidity/contracts/upgrade/Versioned.sol
SHA3: 7b1e8357094ec9676a04cf8b6b6e022155c12f9949688dd9a6479e5640716a60

File: ./solidity/interfaces/IInterchainAccountRouter.sol
SHA3: bd6fa3bc80ec1faec01f41f744cae3323ee14d469ecd537995f457da4aa07ddf

File: ./solidity/interfaces/IInterchainGasPaymaster.sol
SHA3: 2684fb8703fc8b29c3e7ad6c8e617322c8912eaadb400aad88255781a2621024

File: ./solidity/interfaces/IInterchainQueryRouter.sol
SHA3: 42283382b3e8a82969972b25334d486d91edbed4e5bfa44c0adfbadf8d634984

File: ./solidity/interfaces/IInterchainSecurityModule.sol
SHA3: abd2e0879ec812a8ae5f1975977128ca1dd19f7a2af239682096b05e82ea7f4f

File: ./solidity/interfaces/ILiquidityLayerMessageRecipient.sol
SHA3: 2c4b4723e71a016152f7ddd66ab55cea8ab6beca88d9f39c885f4c2e97bb177c

File: ./solidity/interfaces/ILiquidityLayerRouter.sol
SHA3: 5dc89eab3cf04fe17e3d56c24d860935e8e62294d329e296e423ea46e46d25bd

File: ./solidity/interfaces/IMailbox.sol
SHA3: c75094d68ec0a1ad5d92d62629c77e37c555995a35b16311309099c3f59e1329

File: ./solidity/interfaces/IMessageRecipient.sol

www.hacken.io

8



SHA3: df770d6ff439c2300c4ba039ecdc5eb5757db06d8df98d64a47659204c4bfd1b

File: ./solidity/interfaces/IMultisigIsm.sol
SHA3: b24df09465064fbe3daf54b77fcaa2e86dd1f6b7152e35c95a240d28c7703070

www.hacken.io

9



Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io

10



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● The documentation is overall clear and complete

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.

Security score
As a result of the audit, the code contains 2 medium and 2 low severity
issues. The security score is 8 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.6.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

28 January 2023 10 6 5 0

03 April 2023 2 2 0 0

www.hacken.io

11

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Failed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io

12

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io

13

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io

14



System Overview

There are two different repositories in the project, the repository for the
main protocol and the repository for the token standard.

1. Token repository - Warp API
Developers can use Hyperlane's Warp API to permissionlessly deploy
"Warp Routes", contracts that allow ERC20 and ERC721 tokens to move
effortlessly between chains.
Unlike other token wrapping protocols, Warp Routes are secured by a
sovereign consensus.

2. Hyperlane Monorepo
Hyperlane is a modular interchain protocol, with various parts:

● Mailbox: Mailbox is the low-level part of the messaging
protocol. It is the place where the message arrives and departs
from. Relayers are watching the mailbox at all times to look
for new messages to route to another chain. Relayers will
invoke the Mailbox contract on the target chain to deliver an
interchain message.

● Router: The router is the high-level part of the messaging
protocol. It is used to interact with the Mailbox contract, and
can be extended to offer many capabilities like messaging,
bridging tokens and making calls to another chain. The protocol
offers Router implementations providing these functionalities:
InterchainQueryRouter, InterchainAccountRouter,
LiquidityLayerRouter. Routers are built according to a
structure that allows them to be deployed to multiple chains
without code changes.

○ InterchainQueryRouter: used to query the state on remote
chains via interchain view calls.

○ IterchainAccountRouter: used to create an account on a
remote chain, and use that account to call smart
contracts. Remote accounts are owned by the protocol.

○ LiquidityLayerRouter: used to wrap around several token
bridges to allow developers to send tokens alongside
their message.

● HyperlaneConnectionClient: mix-in contract that maintains
pointers to the three contracts Hyperlane developers may need
to interact with: Mailbox (required), InterchainGasPaymaster
(optional), InterchainSecurityModule (optional).

● Validators: Validators create the signMailbox merkle roots and
make their signatures available to relayers.

● ISM: Interchain security modules (ISMs) are smart contracts
that define the security model for an application. They can be

www.hacken.io

15



user defined or the protocol default ones can be used. At the
moment the only ISM provided by the protocol is MultisigIsm, a
t-of-n security module. ISMs must implement the verify()
interface, which gets called by the Mailbox before delivering a
message. If verify() does not return true, the transaction will
revert.

● Relayer: aggregates the off-chain metadata needed to deliver
messages (e.g. validator signatures and merkle proofs) and
submits them to Mailboxes by calling Mailbox.process(), which
in turn will invoke IMessageRecipient.handle() on the
destination chain Router.

● Watch towers: observe the network for validator fraud. If
detected, watchtowers submit evidence to the source chain,
slashing the fraudulent validator(s). The slashing process is
frictionless because each validator only validates on the chain
they are staking on.

This is the execution flow of a general message between chains:

Privileged roles
● Protocol deployer - onlyOwner: the owner of the protocol can set the

mailbox, interchain gas payment and interchain security module in the
hyperlane connect client, set the default interchain security module
in the mailbox, and also pause and unpause the mailbox, enroll a new
router in the router contract, enroll, unenroll and set thresholds
for validators in the interchain security module, set a liquidity
layer adapter in the liquidity layer router contract, and add a
domain and add/remove a token in the adapter contract.

www.hacken.io

16



● Mailbox - onlyMailbox: can call the handle function in the router.
● Router - onlyRemoteRouter: can be the original sender of a message

dispatched to the handle function in the router.
● LiquidityLayerRouter - onlyLiquidityLayerRouter in

CircleBridgeAdapter.sol: can send and receive tokens.

Risks
● The Token repository makes use of the unaudited package

@hyperlane-xyz.
● Contracts are upgradable.
● Part of the protocol is off-chain and out of the scope of this audit.
● InterchainAccountRouter does not implement a callback functionality

to inform the origin chain about state changing operations performed
on the remote chain.

● LiquidityLayerRouter can only send tokens to contracts implementing
the receiveTokens() function.

www.hacken.io

17



Findings

Critical

No critical severity issues were found.

High

H02. Upgradeability Errors

CircleBridgeAdapter.sol is inheriting Router, but is not initializing
it. Issue M09 is related to this situation.
OwnableMulticall.sol is inheriting OwnableUpgradable, but is not
initializing it.

Path: monorepo/solidity/contracts/middleware/CircleBridgeAdapter.sol:
initialize()

Recommendation: Initialize the inherited upgradable contracts.

Status: Fixed (Revised commit: def4031)

H03. Upgradeability Errors

In InterchainGasPaymaster.sol the initialize() function is inside the
constructor, the constructor in the upgradable contract should only
contain immutable variable declarations or the _disableInizializer()
function.

Path:monorepo/solidity/contracts/InterchainGasPaymaster.sol

Recommendation: Remove the constructor to follow best practices for
upgradable contracts.

Status: Fixed (Revised commit: def4031)

H05. Data Inconsistency

InterchainQueryRouter is the Router contract used to poll view
functions on a remote chain. By design, InterchainQueryRouter on the
remote chain will perform a callback on the origin chain to
communicate the results of the calls. The calls on the remote chain
are performed through the function OwnableMulticall._call(), called
by InterchainQueryRouter._handle().

In case of a failed call, OwnableMulticall._call() will revert, so
the flow of InterchainQueryRouter._handle() will stop before calling
_dispatch() which would take care of sending the callback to the
origin chain.

In this case, the origin chain will receive no callbacks, and will
not be informed of the failed call on the remote chain. Even if the

www.hacken.io

18



call failed and there is no value to communicate to the origin chain,
a flag informing of the failure should be sent back.

Path: monorepo/solidity/contracts/middleware/InterchaiQueryRouter.sol
: query(), _handle()
monorepo/solidity/contracts/Mailbox.sol : dispatch(), process()
monorepo/solidity/contracts/OwnableMulticall.sol : _call()

Recommendation: Instead of reverting, a failure flag should be sent
to the origin chain.

Status: Mitigated (Documentation updated to reflect this behavior)

H07. Compilation Error

The Create2Factory contract implements custom errors, a solidity
functionality introduced on version 0.8.4.

The pragma version defined in the contract is ^0.8.0, making it
possible to raise compilation errors.

Path: monorepo/solidity/contracts/Create2Factory.sol

Recommendation: Adjust pragma version

Status: Fixed (Revised commit: def4031)

Medium

M02. Missing SafeERC20

The project does not implement SafeERC20 for ERC20 transfers. This
may expose the protocol to denial of service vulnerabilities or data
inconsistencies during interactions with non-standard tokens.

This issue has been acknowledged by developers through TODO comments
in contracts LiquidityLayerRouter.sol and CircleBridgeAdapter.sol

Path:
monorepo/solidity/contracts/middleware/liquidity-layer/LiquidityLayer
Router.sol : dispatchWithTokens()

monorepo/solidity/contracts/middleware/liquidity-layer/adapters/Circl
eBridgeAdapter.sol : receiveTokens()

Recommendation: Implement the SafeERC20 library to safely interact
with tokens.

Status: Fixed (Revised commit: def4031)

www.hacken.io

19

https://blog.soliditylang.org/2021/04/21/custom-errors/


M03. Best Practice Violation

The functions do not use the SafeTransferFrom() function or the
SafeMint() function for checking if the recipient address can receive
ERC721 token transfers. The recipient might not be able to handle
ERC721 tokens and to transfer them back.

Issue M06 is related to this situation.

Path: token/contracts/HypERC721Collateral.sol: _transferTo(),
_transferFromSender();

token/contracts/HypERC721.sol: _transferTo();

Recommendation: use SafeTransferFrom() and SafeMint() functions to
interact with tokens safely.

Status: Fixed (Revised commit: def4031)

M04. Unfinalized code

The code contains multiple TODO comments about functionalities yet to
be implemented or code sections to be rewritten.

Some of these situations have already been addressed in the
identified issues in this audit.

Path: monorepo/solidity/contracts/Router.sol : handle()

monorepo/solidity/contracts/OwnableMulticall.sol :
proxyCallBatch()

monorepo/solidity/contracts/middleware/InterchaiQueryRouter.sol
: query(), _handle()

monorepo/solidity/contracts/middleware/liquidity-layer/Liquidit
yLayerRouter.sol : dispatchWithTokens()

Recommendation: Finalize functionalities implementations.

Status: Fixed (Revised commit: def4031)

M05. Copy of well-known contract

The project uses PausableReentrancyGuard.sol, a merged version of
OpenZeppelin’s ReentrancyGuardUpgradeable and PausableUpgradeable
contracts.

While this does not pose a direct security threat, well-known
contracts from projects like OpenZeppelin should be imported directly
from the source as the projects are in development and may update the
contracts in the future.

www.hacken.io

20



Path: monorepo/solidity/contracts/PausableReentrancyGuard.sol

Recommendation: Import ReentrancyGuardUpgradeable and
PausableUpgradeable from the source and use them separately.

Status: Mitigated (The merged contract implements gas optimization
that saves users of Hyperlane >2k gas on every Mailbox.process
invocation)

M08. Data Consistency

hyperlaneDomainToCircleDomain mapping can be ambiguous, as in Circle
domain the Ethereum chain is encoded as ‘0’.

This issue has been already identified by the developers and
highlighted in a TODO comment on line 25.

Path:
monorepo/solidity/contracts/middleware/liquidity-layer/adapters/Circl
eBridgeAdapter.sol

Recommendation: An easy solution would be to add a +1 offset to the
mapping to make it base 1 instead of base 0.

Status: Reported

M09. Best Practices

CircleBridgeAdapter.sendTokens() performs a check on
_destinationDomain, to verify that there is a valid router on the
destination domain.

As stated in a comment on lines 162-163, CircleBridgeAdapter inherits
Router only to perform this check.

This is inefficient as all remote router addresses shall be added and
kept updated in the _router Map variable on this contract, only to
perform this check.

It would suffice to move this check to the invoker contract
LiquidityLayerRouter, which is a Router and already has the _router
variable filled and updated.

This piece of code contains another issue: the check is performed
without using the dedicated function Router._mustHaveRemoteRouter(),
the code is duplicated instead.

Path:
monorepo/solidity/contracts/middleware/liquidity-layer/adapters/Circl
eBridgeAdapter.sol : sendTokens()

www.hacken.io

21



Recommendation: Move the check to
LiquidityLayerRouter.dispatchWithTokens() and make use of the
function Router._mustHaveRemoteRouter()

Status: Reported

M10. Upgradeability Errors

In InterchainAccountRouter.sol the constructor is combined with the
initialize function, which is not following best practices for
upgradability contracts.

Path:
monorepo/solidity/contracts/middleware/InterchainAccountRouter.sol

Recommendation: Use only the initialize function instead of the
constructor.

Status: Mitigated (The constructor allows for consistent gas savings
on transactions)

Low

L01. Inefficient Gas Model

Length computation for arrays is often included in the for loops
condition instead of being catched in a local variable.

In these cases, the Solidity compiler will always read the length of
the array during each iteration.

Instead, creating a new variable uint256 _length and iterating for
(uint256 i = 0; i < _length; ++i) will be much cheaper in terms of
Gas.

This is most impactful for storage variable read operations, but it
is advised as a best practice in any case.

Path: monorepo/solidity/contracts/Router.sol : enrollRemoteRouters()

monorepo/solidity/contracts/OwnableMulticall.sol :
proxyCalls(), _call(), proxyCallBatch()

monorepo/solidity/contracts/MultisigIsm.sol :
enrollValidators(), setThresholds()

Recommendation: Load the length of the arrays in a new local variable
and use it in the loop iteration.

Status: Fixed (Revised commit: def4031)

www.hacken.io

22



L02. Unemitted Events

InterchainAccountRouter and LiquidityLayerRouter contracts do not
emit events on send and receive situations while
InterchainQueryRouter does.

Path: monorepo/contracts/middleware/InterchainAccountRouter.sol;

monorepo/contracts/middleware/liquidity-layer/InterchainAccountRouter
.sol;

token/contracts/HypERC20Collateral.sol: _transferFromSender(),
_transferTo();

token/contracts/HypeERC721Collateral.sol: _transferFromSender(),
_transferTo();

Recommendation: Add, send and receive events to
InterchainAccountRouter and LiquidityLayerRouter to keep the flow
consistent among routers.

Status: Mitigated (The InterchainQueryRouter emits events on dispatch
so that they can be matched with QueryResolved events)

L03. Function Visibility

public functions that are never called by the contract should be
declared external to save gas.

Path: monorepo/solidity/contracts/Mailbox.sol : latestCheckpoint()

monorepo/solidity/contracts/isms/MultisigIsm.sol : verify()

monorepo/solidity/contracts/middleware/InterchainAccountRouter.sol :
initialize(), getInterchainAccount()

monorepo/solidity/contracts/middleware/InterchainQueryRouter.sol :
initialize()

monorepo/solidity/contracts/middleware/liquidity-layer/LiquidityLayer
Router.sol : initialize()

monorepo/solidity/contracts/middleware/liquidity-layer/adapters/Circl
eBridgeAdapter.sol : initialize()

Recommendation: Change function visibility to external for functions
never called internally by the contract.

Status: Fixed (Revised commit: def4031)

L04. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

www.hacken.io

23



Path: monorepo/contracts/mailbox: process()

Recommendation: Remove boolean equality.

Status: Mitigated (The comparison to false is done for readability
purposes)

L06. Floating Pragma

The project uses floating pragmas.

Path: monorepo/contracts; token/contracts;

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Mitigated (To be permissive with devs implementing the
protocol)

L07. Outdated Solidity Version

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version.

Path: monorepo/contracts; token/contracts;

Recommendation: Use a recent compiler version.

Status: Reported

L08. Misleading Require Message

Some messages in the require conditions are not descriptive.

This makes the code harder to test and debug, as well as making the
User Experience worse.

Path: monorepo/contracts; token/contracts;

Recommendation: Refactor messages in the require conditions to fit
code behavior.

Status: Reported

L09. Empty Constructor

In contract MultisigIsm the constructor is empty, which makes it
redundant due to default Solidity behavior to create an empty
constructor if it's not included in the code.
This makes parts of the code redundant.

Path: monorepo/solidity/contracts/isms/MultisigIsm.sol

www.hacken.io

24



Recommendation: Remove the constructor.

Status: Mitigated (This constructor is included for readability
purposes invoking the super Ownable contract’s constructor. It is
very easy to miss this invocation when it is appended to the contract
header.)

L10. Missing zero address validation

Address parameters are used without checking against the possibility
of 0x0.

Path: monorepo/solidity/contracts/HyperlaneConnectionClient.sol :
_setMailbox(), setInterchainSecurityModule()

monorepo/solidity/contracts/OwnableMulticall.sol : proxyCallBatch()

Recommendation: Add zero address checks.

Status: Fixed (Revised commit: def4031)

L11. Style Guide Violation

The provided projects should follow official guidelines.

Path: monorepo/contracts;

Recommendation: Folrw the official Solidity guidelines.

Status: Fixed (Revised commit: def4031)

www.hacken.io

25



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io

26


