
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Myria
Date: March 22, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Myria

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OU

Type ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website https://myria.com/

Changelog 03.03.2023 – Initial Review
22.03.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://myria.com/

Table of contents
Introduction 4
Scope 4
Severity Definitions 5
Executive Summary 6
System Overview 7
Checked Items 8
Findings 11

Critical 11
High 11

H01. Weak Auth System 11
Medium 11

M01. Requirements Violation 11
M02. Best Practice Violation 11
M03. Missing Event Emitting 12

Low 12
L01. Best Practice Violation 12
L02. Usage Of Block Values For Time Calculations 12
L03. Redundant Variable Usage 13
L04. Best Practice Violation 13

Disclaimers 14

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Myria (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://gitlab.com/myriaworld/myrianet/blockchain/myria-nft-contracts/

Commit 3d847a5eff9d7e668f24abb345e58ec3f5a318fb

Whitepaper Not provided

Functional
Requirements

Not provided

Technical
Requirements

Not provided

Contracts File: ./contracts/MyriaToken.sol
SHA3: 86e30d62f5caaf9777ba7fabd99fe5dc270c0fed7996045f9c16c06c2bf41942

Second review scope
Repository https://gitlab.com/myriaworld/myrianet/blockchain/myria-nft-contracts/

Commit 149fc0c58cd259cd5faef494ca8d6da3c678455e

Whitepaper Myria Whitepaper v5.5
SHA3: f3d6aa9867fbad05e69e459d1b69489a6fb2332026b42ee0c3332c59d0113385

Functional
Requirements

Readme file
SHA3: 3d7173316f37efe68a60ac1648bcb2717bec49552e894dc27cef738055ce63d5

Technical
Requirements

Readme file
SHA3: 3d7173316f37efe68a60ac1648bcb2717bec49552e894dc27cef738055ce63d5

Contracts File: ./contracts/MyriaToken.sol
SHA3: bc091ac547247944c71514364f34c748771122032af4b0d669702a7b4b8cbc49

www.hacken.io
4

https://gitlab.com/myriaworld/myrianet/blockchain/myria-nft-contracts/
https://gitlab.com/myriaworld/myrianet/blockchain/myria-nft-contracts/

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements, technical description and tokenomics are
provided.

● The code is covered with the NatSpec comments.

Code quality
The total Code Quality score is 10 out of 10.

● The code follows the Solidity style guides.

Test coverage
Code coverage of the project is 0% (branch coverage).

● Tests are not provided.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

3 March 2023 3 3 1 0

22 March 2023 1 0 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

System Overview

● MyriaToken — is an ERC-20 token contract.
It has the following attributes:

○ Decimals: 18
○ Maximal total supply: 50000000000 tokens.

The name and the symbol are defined when the contract deployment.

The token is ownable and allows the owner to mint tokens within the
maximal total supply. The users may burn their own tokens.

Privileged roles
● The owner of the MyriaToken contract can mint tokens.

Risks
● The token implementation does not contain the token supply

distribution, the release schedules and locks described in the
tokenomics.

www.hacken.io
7

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Not Relevant

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

Findings

Critical

No critical severity issues were found.

High

H01. Weak Auth System

The contract functionality allows to add the minted managers using
the setMintManagers function, but not to remove them.

Such role-granting functionality is unsafe as it can lead to
manipulations in case the manager was added incorrectly or was
compromised.

Path: ./contracts/MyriaToken.sol : setMintManagers()

Recommendation: add the functionality for the minted managers’
removal.

Found in: 3d847a5

Status: Fixed. Functionality removed (Revised commit: 149fc0c)

Medium

M01. Requirements Violation

The mint function has the amount parameter and no account parameter
as it is required in the standard mintable extension.

Such behavior is not documented and may indicate that the
requirements are violated. This may lead to incorrect function usage.

Path: ./contracts/MyriaToken.sol : mint()

Recommendation: clarify the minting functionality, document it, and
ensure the implementation matches the requirements.

Found in: 3d847a5

Status: Fixed. NatSpec added (Revised commit: 149fc0c)

M02. Best Practice Violation

The lockPeriods parameter’s length is not checked for equality with
the approvedMinters and allowances parameters’ lengths.

This may lead to incorrect input data processing.

Path: ./contracts/MyriaToken.sol : setApprovedMinters()

Recommendation: verify if the lockPeriods parameter’s length is equal
to the approvedMinters and allowances parameters’ lengths.

www.hacken.io
11

Found in: 3d847a5

Status: Fixed. Functionality removed (Revised commit: 149fc0c)

M03. Missing Event Emitting

Critical state changes should emit events for tracking things
off-chain.

The following functions do not emit events on the change of important
values.

Path: ./contracts/MyriaToken.sol : setMintManagers(),
setApprovedMinters()

Recommendation: create and emit the event whenever the corresponding
action happens.

Found in: 3d847a5

Status: Fixed. Functionality removed (Revised commit: 149fc0c)

Low

L01. Best Practice Violation

The contract uses the _msgSender function from the OpenZeppelin
Context contract for the most functionality. However, the msg.sender
is used in the burn function.

Using different styles for the msg.sender obtaining decreases the
code readability.

Path: ./contracts/MyriaToken.sol : burn()

Recommendation: obtain the msg.sender in the same way in all the
contract functionality.

Found in: 3d847a5

Status: Fixed (Revised commit: 149fc0c)

L02. Usage Of Block Values For Time Calculations

The contracts use block.timestamp for time calculations.

It is not precise and safe.

Path: ./contracts/MyriaToken.sol : setApprovedMinters(), mint()

Recommendation: avoid using the block values for the time
calculations. Alternatively, it is safe to use oracles.

Found in: 3d847a5

Status: Fixed. Functionality removed (Revised commit: 149fc0c)

www.hacken.io
12

L03. Redundant Variable Usage

The DECIMALS variable is redundant as the decimals() function from
the inherited OpenZeppelin ERC20 contract can be used for the
required calculation.

Redundant code decreases the code readability.

Path: ./contracts/MyriaToken.sol : DECIMALS

Recommendation: replace the DECIMALS variable usage with the
decimals() function.

Found in: 3d847a5

Status: Fixed (Revised commit: 149fc0c)

L04. Best Practice Violation

There is uint value in the contract whose size is not set explicitly.

This decreases the code readability. The explicit type definition
helps to understand the data size to proceed and detect errors.

Path: ./contracts/MyriaToken.sol : burn() - amount parameter

Recommendation: replace the uint type with the uint256.

Found in: 149fc0c

Status: New

www.hacken.io
13

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
14

