
Customer: Rumi Finance - Defi Blue
Date: March 21, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Blue
Swan Labs

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; Hedge Fund; Delta Neutral Yield Farming

Platform EVM

Language Solidity

Methodology Link

Website https://www.rumi.finance/

Changelog
20.01.2023 – Initial Review
02.03.2023 - Second Review
21.03.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.rumi.finance/

Table of contents
Introduction 5
Scope 5
Severity Definitions 11
Executive Summary 12
Checked Items 13
System Overview 16
Findings 18

Critical 18
C01. Denial Of Service Vulnerability 18
C02. Invalid Calculations 18
C03. Denial of Service Vulnerability 18

High 19
H01. Invalid Calculations 19
H02. Invalid Calculations 19
H03. Invalid Calculations 19
H04. Front Running Attack 20
H05. Requirements Violation 20
H06. Invalid Calculations 20
H07. Insufficient Balance 20
H08. Invalid Calculations 21
H09. Non-Finalized Code 21
H10. Invalid Calculations 21

Medium 22
M01. Inefficient Gas Model 22
M02. Invalid Calculations 22
M03. Inconsistent Data 22
M04. Inconsistent Data 23
M05. Tautology 23
M06. Contradiction 23
M07. Best Practice Violation 24
M08. Invalid Calculations 24
M09. Best Practice Violation 24
M10. Best Practice Violation 24
M11. Contradiction 25
M12. Contradiction 25
M13. Contradiction 25
M14. Best Practice Violation 25
M15. Inconsistent Data 26
M16. Invalid Calculations 26
M17. Requirement Violation 26

Low 26
L01. Misleading Contract Name 26
L02. Floating Pragma 27
L03. State Variables Can Be Declared Immutable 27
L04. Commented Code Parts 28
L05. Missing Events 28

www.hacken.io
3

L06. State Variable Default Visibility 28
L07. Functions that Can Be Declared External 29
L08. Missing Zero Address Validation 29
L09. Use of Hard-Coded Values 29
L10. Unused Function 30
L11.Redundant Mathematical Operation 30
L12. Redundant Import 30
L13. Similar Modifiers 30
L14. Boolean Equality 30
L15. Zero Valued Transactions 31
L16. Unimplemented Function 31

Disclaimers 32

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by Rumi Finance - Defi Blue
(Customer) to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of the
Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-har

dhat

Commit e8583d84acd6c722c6427701f7b7574df0722099

Whitepaper Link

Functional
Requirements

Link

Technical Requirements Link

Contracts File: ./contracts/AHStrategy.sol
SHA3:
033b8982d05d487069a4866ba51d7c2ef0e6d0296076997d8757140229d90442

File: ./contracts/deps/Controller.sol
SHA3:
770ab4803a35517549bf70d78d07290b19bc4c9b6da3b09b8c4b4cf03ecf19f0

File: ./contracts/deps/SettV3.sol
SHA3:
df0c5f4cdd6b639f2291dfa0993952d73ccae2a025655e6e72e96372e0a94804

File: ./contracts/libraries/BitMath.sol
SHA3:
ebbb6cbff6857d61fd7f507e014276d227a648fac37324e63217da0571d8f830

File: ./contracts/libraries/FixedPoint128.sol
SHA3:
113cc07aef8fec2ac943540438956848a00d79af066b396be5d5b029e7f16249

File: ./contracts/libraries/FixedPoint96.sol
SHA3:
1a7355695c5cf2b2e5450621a9e47d3cf6549a33067b1fd650f9e3909302b781

File: ./contracts/libraries/FullMath.sol
SHA3:
db0a08150647a30f2b3fdfb240a4aac73553e4ef0ee485ee62fc213d8c64aa91

File: ./contracts/libraries/HomoraMath.sol
SHA3:
1e4bee5c4d4e4f2d8269024acf64f863325998d61351335ebbb4be62dcbd077b

File: ./contracts/libraries/LiquidityAmounts.sol
SHA3:
49b635275599c11bacb330a5f09167c4fee6b90a28cc7873276b3c700374b41d

File: ./contracts/libraries/LowGasSafeMath.sol

www.hacken.io
5

https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-hardhat
https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-hardhat
https://qgalliance-my.sharepoint.com/:p:/g/personal/jose_garcia_quantum-dao_com/EYACn9U22KtPj7Nv4DbEO7oBPvLXVcuGGcH5R_Lvsicsgw?rtime=_JHsdR_02kg
https://qgalliance-my.sharepoint.com/:p:/g/personal/jose_garcia_quantum-dao_com/EYACn9U22KtPj7Nv4DbEO7oBPvLXVcuGGcH5R_Lvsicsgw?rtime=_JHsdR_02kg
https://github.com/hknio/bs-non-custodial-optimism-vault-32be3c1

SHA3:
3d5f137e0f0322d2e700b2749dac94c22e01fa497ae70b663f61973580fb9584

File: ./contracts/libraries/SqrtPriceMath.sol
SHA3:
506860400069f7402e383881ff323475988d25b72618a4840d2ec3a255ce9fd9

File: ./contracts/libraries/SwapMath.sol
SHA3:
e47e3399c0f9c683e6157d06a5172ed349247022184fdcd5fa5c09ef9a715b3c

File: ./contracts/libraries/TickBitMap.sol
SHA3:
d67e26b8d700142907580ad15e4c3d4012a48166a435fd25ecf84d5ef2e5361f

File: ./contracts/libraries/TickMath.sol
SHA3:
ee1a765f1e54c0cbb87f5b763c658794598109d0652c149157b508a8797ba8e7

File: ./contracts/UniswapV3SpellIntegrationOp.sol
SHA3:
a66f6422521d3fcad7d60aabddfd8506aa561a74f6aedbc9e4ed4988c86d6895

File: ./deps/BaseStrategy.sol
SHA3:
1def2f2c8014c00f5a04f5d69e692985631df3ec2e4f50153a610804407cfbb5

File: ./deps/SettAccessControl.sol
SHA3:
bb6c255f6ce06a423e42616e965d56f8ed8d44ad32d9a276b32c83ed7b7042d6

File: ./deps/SettAccessControlDefended.sol
SHA3:
0bfac94805828c11a3ac5399a9964abed8def8241cff48216b3c2d5669ad7d9f

www.hacken.io
6

Second review scope
Repository https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-har

dhat

Commit f824453867b2c5bf30f6c334436cbca0f2d6974c

Whitepaper Link

Functional
Requirements

Link

Technical Requirements Link

Contracts File: ./contracts/deps/Controller.sol
SHA3:
23b6adec35219c6736fa830520a37e8f3fb37837aeee18bc87c603938de34d32

File: ./contracts/deps/SettV3.sol
SHA3:
eea8360622561a60ac04c87243aff57ba3a3ed86ebe0a7bfece4166c31ed22c2

File: ./contracts/libraries/LiquidityMath.sol
SHA3:
191af298bc74859d3a989633b0b68f78a826f8294e1115156e6ab8cfbaf48f41

File: ./contracts/libraries/MaskBitPos.sol
SHA3:
f3cbc52ace9e3f728efc7be89360cc6b9e266996cad2e3dbcfb87199855720c0

File: ./contracts/StrategyAlphaHomora.sol
SHA3:
16976c99c230a9abcc50269738dbbb4b3d89b4a5ffcd49c04c71a061a378e7f1

File: ./contracts/UniswapV3SpellIntegrationOp.sol
SHA3:
ee20594c50d4a29e50dbaf81f3289c2b2fcfef1f87db8ecd4956c59cb54e9fed

File: ./interfaces/badger/IController.sol
SHA3:
ce80946d21a00035d74b832e48b886543c91e573dfc5ad9e022a7ac5643135a5

File: ./interfaces/badger/IStrategy.sol
SHA3:
75d96601d0835d6e2895735005bc87feda519e61ed0f089bbfebffeff83588a5

File: ./interfaces/erc20/IWETH.sol
SHA3:
4dbb1912577aeadcc80ca20588b4f8229b8791b541dbed54f64f5563a7042d43

File: ./interfaces/homora/IBank.sol
SHA3:
0358570645a0abfb6f12ccd5649b385a41488486bc3014915b962ca49dabecbe

File: ./interfaces/homora/IBankOP.sol
SHA3:
27f40399047733215822c7b0838742425b6911be1e6aed8411343d835ca5f5b2

File: ./interfaces/homora/IBaseOracle.sol
SHA3:
6c4b6168b430d8a8dd618589b35d7a9b5899d5df5f150b8be1c9ef5970a8ca82

File: ./interfaces/homora/IGovernable.sol
SHA3:
c8562b1e0906e8ec9f3fcf98aa2a89ea07a20542053e82e18f88a223666ecad8

www.hacken.io
7

https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-hardhat
https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-hardhat
https://qgalliance-my.sharepoint.com/:p:/g/personal/jose_garcia_quantum-dao_com/EYACn9U22KtPj7Nv4DbEO7oBPvLXVcuGGcH5R_Lvsicsgw?rtime=_JHsdR_02kg
https://qgalliance-my.sharepoint.com/:p:/g/personal/jose_garcia_quantum-dao_com/EYACn9U22KtPj7Nv4DbEO7oBPvLXVcuGGcH5R_Lvsicsgw?rtime=_JHsdR_02kg
https://github.com/hknio/bs-non-custodial-optimism-vault-32be3c1

File: ./interfaces/homora/IOracle.sol
SHA3:
a25ac953e489462dafa362ce42cd1a9575540cd63daaf2ab6f8828f9213d27c5

File: ./interfaces/homora/IUniswapv3OptimalSwap.sol
SHA3:
bf1510337fd32c0a9322d5daeb2623d8185e67dfcaa64aa36783c13f0e95910c

File: ./interfaces/homora/IUniswapV3Spell.sol
SHA3:
8fd4db94a1afb46ef724e927f2fb4cd62f357429051a330eb7693515b22fec40

File: ./interfaces/homora/IWUniswapV3Position.sol
SHA3:
924ba38ae4318984227090075ec877b4d5a0006cad6c23e8b4937e8090a44c5e

File: ./interfaces/optimism/gasEstimator.sol
SHA3:
2a1917131496861af8fa6c99b5a1aca083caa899b359476f887772a365aa6cc3

File: ./interfaces/uniswap/IUniswapRouterV2.sol
SHA3:
a03c5b9b99d76ff83c46c4179ad3bb617e99e5d8de825d439ffde366f139978b

File: ./interfaces/UniswapV3/INonfungiblePositionManager.sol
SHA3:
01fa235b2b8b556548229f30c519703774c4a14510416ff6826788f6121d02b6

File: ./interfaces/UniswapV3/Interfaces.sol
SHA3:
689514444632c868337b15aeeb0cd28734ced6341f8c022c4a870af71b6d6191

File: ./interfaces/UniswapV3/ISwapRouter.sol
SHA3:
973e7523ff1967cc124868d131d64d261ad2d18498c5147c6b5945950622878a

Third review scope
Repository https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-har

dhat

Commit 0d0354db7c3ba3c85791e77412d39648542d8356

Whitepaper Link

Functional
Requirements

Link

Technical Requirements Link

Contracts File: ./contracts/BaseIntegration.sol
SHA3:
c97fc52a255b9b1c6609fcbcc84a0a64c60b5674dcb171a9239b3fa63bd6066f

File: ./contracts/deps/BaseStrategy.sol
SHA3:
ccd975c62ee3025ae15336a1f536e34b189d1e54ff577c85003ad55f4a3a0761

File: ./contracts/deps/Controller.sol
SHA3:
2e32cf6366eb746e4ea18dd579863d9d74504d7c0c83120def30e9318fbc7b1d

www.hacken.io
8

https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-hardhat
https://bitbucket.org/blueswanio/bs-non-custodial-optimism-vault-hardhat
https://qgalliance-my.sharepoint.com/:p:/g/personal/jose_garcia_quantum-dao_com/EYACn9U22KtPj7Nv4DbEO7oBPvLXVcuGGcH5R_Lvsicsgw?rtime=_JHsdR_02kg
https://qgalliance-my.sharepoint.com/:p:/g/personal/jose_garcia_quantum-dao_com/EYACn9U22KtPj7Nv4DbEO7oBPvLXVcuGGcH5R_Lvsicsgw?rtime=_JHsdR_02kg
https://github.com/hknio/bs-non-custodial-optimism-vault-32be3c1

File: ./contracts/deps/SettAccessControl.sol
SHA3:
7c9ecde86ae43e77d34a0a943bf940362357a11165f4ecd9524e040ddf28e15f

File: ./contracts/deps/SettAccessControlDefended.sol
SHA3:
42febcabfa5d98e52f9de896eb737c87b5f61b3094a542b1b1dd479568ffe230

File: ./contracts/deps/SettV3.sol
SHA3:
24df38117a4f25bd1288ff7041e5d82f402f02013a16b1a1645fba82f7598cf4

File: ./contracts/libraries/LiquidityMath.sol
SHA3:
191af298bc74859d3a989633b0b68f78a826f8294e1115156e6ab8cfbaf48f41

File: ./contracts/libraries/MaskBitPos.sol
SHA3:
f3cbc52ace9e3f728efc7be89360cc6b9e266996cad2e3dbcfb87199855720c0

File: ./contracts/StrategyAlphaHomora.sol
SHA3:
0972159ddbf0c1c56cb9a11f6fa0d684d59d0fe5f20d818a433dd0e759466c0e

File: ./contracts/UniswapV3SpellIntegrationOp.sol
SHA3:
92928be6f39a0c299b7d77e186c2ab51babb70910b52e7a65db51ec3f3290400

File: ./interfaces/badger/IController.sol
SHA3:
ce80946d21a00035d74b832e48b886543c91e573dfc5ad9e022a7ac5643135a5

File: ./interfaces/badger/IStrategy.sol
SHA3:
75d96601d0835d6e2895735005bc87feda519e61ed0f089bbfebffeff83588a5

File: ./interfaces/erc20/IWETH.sol
SHA3:
4dbb1912577aeadcc80ca20588b4f8229b8791b541dbed54f64f5563a7042d43

File: ./interfaces/homora/IBank.sol
SHA3:
0358570645a0abfb6f12ccd5649b385a41488486bc3014915b962ca49dabecbe

File: ./interfaces/homora/IBankOP.sol
SHA3:
27f40399047733215822c7b0838742425b6911be1e6aed8411343d835ca5f5b2

File: ./interfaces/homora/IBaseOracle.sol
SHA3:
6c4b6168b430d8a8dd618589b35d7a9b5899d5df5f150b8be1c9ef5970a8ca82

File: ./interfaces/homora/IGovernable.sol
SHA3:
c8562b1e0906e8ec9f3fcf98aa2a89ea07a20542053e82e18f88a223666ecad8

File: ./interfaces/homora/IOracle.sol
SHA3:
a25ac953e489462dafa362ce42cd1a9575540cd63daaf2ab6f8828f9213d27c5

File: ./interfaces/homora/IUniswapv3OptimalSwap.sol
SHA3:
bf1510337fd32c0a9322d5daeb2623d8185e67dfcaa64aa36783c13f0e95910c

File: ./interfaces/homora/IUniswapV3Spell.sol

www.hacken.io
9

SHA3:
8fd4db94a1afb46ef724e927f2fb4cd62f357429051a330eb7693515b22fec40

File: ./interfaces/homora/IWUniswapV3Position.sol
SHA3:
924ba38ae4318984227090075ec877b4d5a0006cad6c23e8b4937e8090a44c5e

File: ./interfaces/uniswap/IUniswapRouterV2.sol
SHA3:
a03c5b9b99d76ff83c46c4179ad3bb617e99e5d8de825d439ffde366f139978b

File: ./interfaces/UniswapV3/INonfungiblePositionManager.sol
SHA3:
01fa235b2b8b556548229f30c519703774c4a14510416ff6826788f6121d02b6

File: ./interfaces/UniswapV3/Interfaces.sol
SHA3:
689514444632c868337b15aeeb0cd28734ced6341f8c022c4a870af71b6d6191

File: ./interfaces/UniswapV3/ISwapRouter.sol
SHA3:
973e7523ff1967cc124868d131d64d261ad2d18498c5147c6b5945950622878a

www.hacken.io
10

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to assets loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect the code
quality

www.hacken.io
11

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements are provided.
● Technical description is partially provided.

Code quality
The total Code Quality score is 10 out of 10.

● The code follows style guide and best practices.
● The development environment is configured.

Test coverage
Code coverage of the project is 94.81% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative test cases coverage is missing.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

20 January 2023 16 17 8 2

02 March 2023 1 3 2 1

21 March 2023 0 0 0 0

www.hacken.io
12

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility levels
should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows and
underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent version of
the Solidity compiler. Passed

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have
been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call should be

checked. Passed

Access Control
& Authorization CWE-284

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be self-destructible

while it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Passed

Assert
Violation SWC-110 Properly functioning code should never reach

a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should never
be used. Passed

Delegatecall to
Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state unless
required.

Passed

Race Conditions SWC-114 Race Conditions and Transactions Order
Dependency should not be possible. Passed

www.hacken.io
13

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values as
a proxy for
time

SWC-116
Block numbers should not be used for time
calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a unique
id. A transaction hash should not be used as
a unique id. Chain identifiers should always
be used. All parameters from the signature
should be used in signer recovery. EIP-712
should be followed during a signer
verification.

Not Relevant

Shadowing State
Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources of
Randomness SWC-120 Random values should never be generated from

Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical functions,
a developer should carefully specify
inheritance in the correct order.

Passed

Calls Only to
Trusted
Addresses

EEA-Leve
l-2

SWC-126

All external calls should be performed only
to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused variables
if this is not justified by design. Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be withdrawn
without proper permissions or be locked on
the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data
Consistency Custom Smart contract data should be consistent all

over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source and
not be vulnerable to short-term rate changes
that can be achieved by using flash loans.
Oracles should be used.

Passed

Token Supply
Manipulation Custom

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract. There should not be
any cases when execution fails due to the
block Gas limit.

Passed

www.hacken.io
14

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Style Guide
Violation Custom Style guides and best practices should be

followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit tests.
Test coverage should be sufficient, with
both negative and positive cases covered.
Usage of contracts by multiple users should
be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
15

System Overview

Blue Swan is a crypto hedge fund with the following contracts:
● AHstrategy — The contract defines the specific strategy that

interacts with Alpha Homora and UniswapV3 Pools to execute a
Leveraged Delta Neutral Yield Farming Strategy.

● BaseStrategy — The contract holds the base class for all strategies
that are held under the portfolio. It holds the functional structure
for deposits, withdrawals and other permissioned calls to the
Strategy contracts.

● Controller — The contract couples the Vault and Strategies
together, allowing these to be interchangeable. A Controller can
couple several Vaults and Strategies together, allowing for a N to
the N combination. Normally one controller would be used per chain
where we deploy the Vaults and Strategies. This will keep an
inventory of them.

● SettV3 - The contract that will interact with external users and
other smart contracts that want to initiate an investment with us. It
keeps accounting of investment through emitting shares
(ERC20-LPToken) while tracking a value (NAV) of its managed portfolio
of strategies.

● UniswapV3SpellIntegrationOp - The contract that interacts with
UniswapV3 to open/add/remove/close users' positions.

● SettAccessControl - The contract that sets permissioned roles for the
“Sett” ecosystem.

● SettAccessControlDefended - The contract to prevent unwanted contract
access to “Sett” permissions.

Privileged roles
● The Governance address is responsible for setting strategist,

controller, guardian, treasury, keeper, and governance, reward, vault
addresses, as well as approve/revoke contract addresses and
pause/unpause the contracts. The Governance can set thresholds,
leverage, ticks, min harvest amount. Additionally, the Governance
role has the ability to recover tokens that may become stuck in the
contract.

● The Strategist address can withdraw the entire token balance of the
strategy contract and can set strategy, vault addresses.
Additionally, the Strategist role has the ability to recover tokens
that may become stuck in the Controller.sol contract.

● The owner of the UniswapV3SpellIntegrationOp contract can open,
close, increase, reduce, reinvest, harvest and clear positions.

● The Guardian address can pause the SettV3.sol contract.
● The keeper is an address that can call earn() to deposit tokens from

a SettV3.sol into the associated active Strategy. Designed for use by
a trusted bot in lieu of having this function publicly callable.

www.hacken.io
16

Risks
● The contract interacts with Alpha Homora V2 and UniswapV3 contracts,

which are out-of-scope for this audit.

www.hacken.io
17

Findings

Critical

C01. Denial Of Service Vulnerability

The removeStrategy() function does not effectively eliminate the
targeted address from the "wantsArray" list as intended. Instead, it
alters the targeted address to the default value of 0x00.
Subsequently, any external function calls made to remove elements of
the wantsArray list will revert.

This can lead to denial of service vulnerability.

Path: ./contracts/deps/SettV3.sol : removeStrategy()

Recommendation: Copy the last index value to will be removed index,
then pop the last element from the list.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

C02. Invalid Calculations

The mulDivRoundingUp() function calculates the a*b/denominator by
rounding up the value. This calculation is being used in various
places like calculateAmountOut() function in
UniswapV3SpellIntegrationOp.sol contract. There is an error in this
calculation. In normal rounding up, the number should only be
increased by 1 if the decimal part is greater than or equal to 5.
This function, however, rounds up every decimal.

For more information, this PoC can be examined.

This can lead users to have more funds than they should.

Path: ./contracts/libraries/Fullmath.sol: mulDivRoundingUp()

Recommendation: Re-implement this function, so that it applies the
correct rounding up rule.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

C03. Denial of Service Vulnerability

Within the for loop, the function makes an external call to the
controller.withdraw() function. However, it does not check the
_toWithdraw amount is greater than zero. In the scenario that this
amount is equal to zero, the contract will revert without finishing
the for loop.

This can lead to a block in users' fund withdrawal activities.

Path: ./contracts/deps/SettV3.sol: _withdraw()

www.hacken.io
18

https://docs.google.com/document/d/1b1F4dRMwNHXwzG5_6pfsrKo8Q1ULKCal-yP5GpTnrtA/edit

Recommendation: Implement a balance check before performing the
controller.withdraw() function.

Status: Fixed (Revised commit:
0d0354db7c3ba3c85791e77412d39648542d8356)

High

H01. Invalid Calculations

The calculateFee() and totalSupply() functions return value based on
1e18 decimal. Inside the epochHarvest() and
getApproximateWithdrawableAmount() functions sharesToMint calculation
divided is 1e14 (100*PRECISION) decimal.

This may actually return larger results than one intended to
calculate.

Paths: ./contracts/deps/SettV3.sol : epochHarvest(),
getApproximateWithdrawableAmount()

./contracts/AHStrategy.sol: _swapStableUSDC(), _ammCheck(),
_checkPositionHealth()

Recommendation: Divide by 1e18 instead of 1e14.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

H02. Invalid Calculations

The square root function sqrt() of the HomoraMath.sol function should
return a rounded-down value due to the nature of the calculation. In
other words, the result of the computation must always be less than
or equal to the input. However, the current implementation does not
support this behavior in some cases.

For more information, this PoC can be examined.

This may lead to wrong results being used in the fund computations.

Path: ./contracts/libraries/HomoraMath.sol: sqrt()

Recommendation: Re-implement square root functionality.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

H03. Invalid Calculations

The getNextSqrtPriceFromAmount0RoundingUp() function returns the next
sqrt price for a given delta of token0. It benefits from two
formulas; one for normal cases and the other for when overflows
occur. The overflow formula is the following: “liquidity / (liquidity
/ sqrtPX96 +- amount)”. When the issued function’s output is checked
against the formula’s output range, there are some exceptions.

For more information, this PoC can be examined.

www.hacken.io
19

https://docs.google.com/document/d/1b1F4dRMwNHXwzG5_6pfsrKo8Q1ULKCal-yP5GpTnrtA/edit
https://docs.google.com/document/d/1b1F4dRMwNHXwzG5_6pfsrKo8Q1ULKCal-yP5GpTnrtA/edit

This may lead to wrong results being used in the fund computations.

Path: ./contracts/libraries/SqrtPriceMath.sol :
getNextSqrtPriceFromAmount0RoundingUp()

Recommendation: Re-implement square root functionality.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

H04. Front Running Attack

The contract performs swaps on Uniswap through Alpha Homora. However,
in those swaps, they do not consider the case where minOut is 0. The
minOut values are calculated through given slippage.

This may lead to sandwich attacks.

Path: ./contracts/UniswapV3SpellIntegrationOp.sol: _convertToStable()

Recommendation: Implement checks for the case where minOut is zero.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

H05. Requirements Violation

The note comment states that the function must exclude any tokens
used in the yield, but the code does not implement it.

Path: ./deps/BaseStrategy.sol: withdrawOther()

Recommendation: Either implement the missing logic or remove the
related statement from the documentation

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

H06. Invalid Calculations

The _calculateAdminFee() function first calculates the adminFeeEpoch
in a weekly manner (adminFee*timeSinceEpoch/(7*24*60*60)). However,
when calculating the annual admin fee, it divides the value by 52
instead of (7*24*60*60*52).

This can lead to incorrectly calculated admin fees.

Path: ./contracts/deps/SettV3.sol: _calculateAdminFee()

Recommendation: Re-implement the calculation logic.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

H07. Insufficient Balance

While setting strategy allocation, the implementation withdraws all
the funds from the related strategy to rebalance the environment; it
then makes a call to earn() function, which transfers underlying

www.hacken.io
20

tokens to the controller. However, there may not be enough funds to
send to the controller after rebalancing.

This can lead to imbalances.

Path: ./contracts/deps/SettV3.sol: setStrategiesAllocation()

Recommendation: Make sure there are enough funds.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

H08. Invalid Calculations

The balanceOfPool() function has this calculation:
(stableBalance*uint(10)**6)/stableDecimals some of the stable tokens
have 1e18 decimals. In such a scenario, this calculation may lead to
an inaccurate result when applied to these tokens.

The _setPnl() function has this calculation:
(pnlInt*int(10)**6)/int(10)**ERC20Upgradeable(stableToken).decimals()
some of the stable tokens have 1e18 decimals. In such a scenario,
this calculation may lead to an inaccurate result when applied to
these tokens.

Path: ./contracts/AHStrategy.sol : balanceOfPool(), _setPnl()

Recommendation: Change the (10)**6 to stableDecimals.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

H09. Non-Finalized Code

The file has an exploiter contract which is used for testing
purposes. The production code should not contain any functions or
variables that are being used solely in the test environment. This
will allow malicious parties to manipulate the code or users to
trigger them accidentally.

Path: ./contracts/deps/SettV3.sol

Recommendation: Remove any variables, contracts, or other entities
that are associated with the testing process.

Status: Fixed (Revised commit:
0d0354db7c3ba3c85791e77412d39648542d8356)

H10. Invalid Calculations

While calculating the pool balance in the strategy contract the
function, calculates the pool balance with the following formula:

balanceOfPoolInt()+getHarvestable()+IERC20Upgradeable(stableToken).ba
lanceOf(address(this))

www.hacken.io
21

Then function checks if the stable token is not USDC, if it is, it
adds the active USDC balance to the calculated balance. This means
that the USDC balance is used in the calculation twice.

This may lead to calculating more balance than it actually has.

Path: ./contracts/StrategyAlphaHomora.sol: balanceOfPool()

Recommendation: Re-implement the formula so that it will not add the
USDC balance twice.

Status: Fixed (Revised commit:
0d0354db7c3ba3c85791e77412d39648542d8356)

Medium

M01. Inefficient Gas Model

The numbers of iterations of the loop in the functions are
uncontrolled as it depends on stored data.

The numbers of iterations of the loop in the functions are
uncontrolled as it depends on stored data and it makes external
calls.

Path: ./contracts/deps/SettV3.sol : _harvest(), _deposit(),
_withdraw(), setStrategiesAllocation(), _earn()

Recommendation: Implement loop length limitations.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M02. Invalid Calculations

In the getApproximateWithdrawableAmount() function, it is possible
for the calculation _shares -= sharesAsFee to yield unexpected
results. Specifically, if the fee variable holds a sufficiently large
value, the value of sharesAsFee can surpass the value of _shares.

Path: ./contracts/deps/SettV3.sol :
getApproximateWithdrawableAmount()

Recommendation: Implement the necessary _shares is greater than
sharesAsFee checks.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M03. Inconsistent Data

The getPositionBalance() function makes an external call to
bank.getPositionInfo(), which assigns the return value to the
variable collSize, which is defined as a uint. Subsequently, the
value of collSize is passed as an argument to another function as
uint128(collSize). However, if the value of collSize exceeds the
maximum value of uint128, an overflow condition may occur.

www.hacken.io
22

The delta variable, which is defined as a uint256, is improperly cast
to a uint128, which may result in an overflow.

The setTicks() function casts absTick, uint256, to int24.

Paths: ./contracts/UniswapV3SpellIntegrationOp.sol :
_getPositionTokens(), _calculateAmountOut()

./contracts/AHStrategy.sol : _setTicks()

Recommendation: Refactor the logic in case of the overflow factor.

Status: Mitigated. Uniswap’s implementation is being used.

M04. Inconsistent Data

The constructor takes in two input parameters: a dynamic array of
config elements and a dynamic array of ticks. Within the constructor,
six elements from the config array and two elements from the ticks
array are utilized. It is important to ensure that the length of both
lists is properly verified before proceeding.

Path: ./contracts/AHStrategy.sol.sol : constructor()

Recommendation: Re-implement the code so that it will use structs
instead of two arrays.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M05. Tautology

The setThresholds() function has a requirement that contains a
contradiction. Specifically, the requirement that _slippage >= 0 is
in conflict with the definition of the _slippage variable as a uint.
By definition, variables of type uint are always equal to or greater
than ZERO.

Path: ./contracts/AHStrategy.sol : setThresholds()

Recommendation: Remove related require statement.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M06. Contradiction

If the value of priceChange is less than all elements in the
gradientBreakPoints list, at the end of the loop, the contract is
reverting due to the (uint i = gradientBreakPoints.length-1; i>=0;
i--) statement.

Path: ./contracts/UniswapV3SpellIntegrationOp.sol : getGradient()

Recommendation: Remove = operator from the statement and assign uint
i as i = gradientBreakPoints.length. Replace the

www.hacken.io
23

gradientBreakPoints[i] and gradients[i] with gradientBreakPoints[i-1]
and gradients[i-1] respectively.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M07. Best Practice Violation

The Checks-Effects-Interactions pattern is violated. During the
function, some state variables are updated after the external calls.

Paths: ./contracts/deps/Controller.sol : setStrategy()

./contracts/UniswapV3SpellIntegrationOp.sol: ensureApprove(),
_convertToStable()

Recommendation: Implement the function according to the
Checks-Effects-Interactions pattern.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M08. Invalid Calculations

The getAmount0Delta() reverts in some cases due to the customMulDiv()
function calculation overflow.

For more information, this PoC can be examined.

Path: ./contracts/libraries/SqrtPriceMath.sol : getAmount0Delta(),
customMulDiv()

Recommendation: Refactor the calculation for the overflow factor.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M09. Best Practice Violation

The LiquidityAmounts.sol (LiquidityAmounts and LiquidtyMath),
SafeCast.sol, UnsafeCast.sol, and UniswapV3IntegrationOp.sol
contracts contain multiple contracts in the same file.

Path: ./contracts/UniswapV3IntegrationOp.sol

Recommendation: Separate defined contracts into individual files.

Status: Fixed (Revised commit:
0d0354db7c3ba3c85791e77412d39648542d8356)

M10. Best Practice Violation

The StrategyAlphaHomora.sol and SettV3.sol, contracts contain
multiple contracts in the same file.

Paths: ./contracts/StrategyAlphaHomora.sol

./contracts/SettV3.sol

www.hacken.io
24

https://docs.google.com/document/d/1b1F4dRMwNHXwzG5_6pfsrKo8Q1ULKCal-yP5GpTnrtA/edit

Recommendation: Separate defined contracts into individual files.

Status: Fixed (Revised commit:
0d0354db7c3ba3c85791e77412d39648542d8356)

M11. Contradiction

The implementation contains commented code which looks like it should
be uncommented to finalize the code.

Paths: ./contracts/deps/Controller.sol: earn()

./contracts/AHStrategy.sol: constructor()

./deps/BaseStrategy.sol: withdrawOther()

Recommendation: Remove the commented code or finalize its
implementation.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M12. Contradiction

_calculateFee’s NatSpec block was placed in the block of another
function.

withdrawAll() and withdrawAllForRebalance() functions’ NatSpec state
that they only allow partial withdrawals. However, the functions
implemented to withdraw all of the funds.

Paths: ./contracts/deps/SettV3.sol: _calculateAdminFee()

./deps/BaseStrategy.sol: withdrawAll(),
withdrawAllForRebalance(),

Recommendation: Change the NatSpec into the correct one.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M13. Contradiction

The withdrawAllFromRebalance() function performs an authentication
check it allows strategists, governance, and vault tokens. However,
the error message does not include vault tokens.

Path: ./contracts/deps/Controller.sol: withdrawAllFromRebalance()

Recommendation: Update the error message.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M14. Best Practice Violation

The UniswapV3SpellIntegrationOp.sol contract contains a fallback()
function. However, there is no need for such a functionality.

Path: ./contracts/UniswapV3SpellIntegrationOp.sol: fallback()

www.hacken.io
25

Recommendation: Update the error message.

Status: Mitigated. Needed for Homora’s spell contract.

M15. Inconsistent Data

Consider limiting the variables in order to prevent high fees,
unexpected calculations etc.

Paths: ./contracts/AHStrategy.sol : ammCheckThreshold,
debtRatioThreshold, volatilityThreshold, gradients,
gradientBreakPoints

./contracts/deps/SettV3.sol: performanceFee, adminFee,
withdrawalFee, min

Recommendation: Provide conscious limits for stored configuration
values.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M16. Invalid Calculations

In the _swapStableUSDC() function, it is possible for the calculation
expectedOut =
balance*uint(10)**ERC20Upgradeable(tokenOut).decimals()/uint(10)**ERC
20Upgradeable(tokenIn).decimals() to yield unexpected results.
Specifically, if the tokenOut decimal is different from the tokenIn
decimal.

Path: ./contracts/AHStrategy.sol : _swapStableUSDC()

Recommendation: Implement the necessary checks.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

M17. Requirement Violation

The commented line states the performance fee is equal to 20% but it
is actually 2%.

This can lead to misunderstanding about the contract.

Path: ./contracts/deps/SettV3.sol : initialize()

Recommendation: Either change the comment line or the logic.

Status: Fixed (Revised commit:
0d0354db7c3ba3c85791e77412d39648542d8356)

Low

L01. Misleading Contract Name

The contract name is mismatched with the file name.

Path: ./contracts/AHStrategy.sol
www.hacken.io

26

Recommendation: Either change the contract or file name.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L02. Floating Pragma

The project uses floating pragmas ^0.8.16, ^0.8.17.

Paths: ./contracts/UniswapV3SpellIntegrationOp.sol,

./contracts/AHStrategy.sol,

./deps/BaseStrategy.sol,

./deps/SettAccessControl.sol,

./deps/SettAccessControlDefended.sol,

./contracts/proxy/AdminUpgradeabilityProxy.sol,

./contracts/deps/Controller.sol,

./contracts/deps/SettV3.sol,

./contracts/libraries/BitMath.sol,

./contracts/libraries/FixedPoint96.sol,

./contracts/libraries/FixedPoint128.sol,

./contracts/libraries/FullMath.sol,

./contracts/libraries/HomoraMath.sol,

./contracts/libraries/LiquidityAmounts.sol,

./contracts/libraries/LowGasSafeMath.sol,

./contracts/libraries/SqrtPriceMath.sol,

./contracts/libraries/SwapMath.sol,

./contracts/libraries/TickBitMap.sol,

./contracts/libraries/TickMath.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L03. State Variables Can Be Declared Immutable

Variable`s PRECISION, MAX_INT, stableToken value is set in the
constructor. These variables can be declared immutable.

This will lower the Gas taxes.

Paths: ./contracts/AHStrategy.sol:

www.hacken.io
27

./contracts/UniswapV3SpellIntegrationOp.sol:

Recommendation: Declare mentioned variables as immutable.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L04. Commented Code Parts

In the contract AHStrategy.sol lines 334-348 are commented parts of
code.

This reduces code quality.

Path: ./contracts/AHStrategy.sol

Recommendation: Remove commented parts of code.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L05. Missing Events

Events for critical state changes should be emitted for tracking
things off-chain.

Paths: ./deps/BaseStrategy.sol : setController(), setGuardian(),
setWithdrawalMaxDeviationThreshold(),

./contracts/deps/Controller.sol: setStrategy(),
approveStrategy(), revokeStrategy(), setRewards(), setVault(),

./deps/SettAccessControlDefended.sol: approveContractAccess(),
revokeContractAccess(),

./deps/SettAccessControl.sol: setStrategist(), setKeeper(),
setGovernance()

./contracts/deps/SettV3.sol: setFees(), setMin(),
setController(), setGuardian(), setTreasury()

./contracts/AHStrategy.sol: setLeverage(), setThresholds(),
setMinHarvestRequired()

Recommendation: Create and emit related events.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L06. State Variable Default Visibility

Labeling the visibility explicitly makes it easier to catch incorrect
assumptions about who can access the variables (pnl, stableDecimals,
volatileDecimals, PRECISION, MAX_INT, bank, factory, npm, router,
stableToken, MAX_DEPOSIT.

Paths: ./contracts/AHStrategy.sol

./contracts/UniswapV3SpellIntegrationOp.sol

www.hacken.io
28

./contracts/deps/SettV3.sol

Recommendation: Variables can be specified as being public, internal
or private. Explicitly define visibility for all state variables.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L07. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths: ./deps/SettAccessControl.sol: setGovernance()

./contracts/deps/Controller.sol: approveStrategy(), revokeStrategy(),
setRewards()

./contracts/AHStrategy.sol: getAmounts()

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L08. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths: ./deps/SettAccessControl.sol: setGovernance(), setKeeper(),
setStrategist()

./contracts/deps/Controller.sol: setRewards(), withdrawAll()

./deps/BaseStrategy.sol: setController(), setGuardian()

./deps/SettAccessControlDefended.sol: approveContractAccess()

./contracts/deps/SettV3.sol: initialize()

./contracts/AHStrategy.sol : constructor()

./contracts/UniswapV3SpellIntegrationOp.sol: constructor

Recommendation: Implement zero address checks.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L09. Use of Hard-Coded Values

Hard-coded values are used in computations.

Paths: ./contracts/deps/SettV3.sol: _calculateAdminFee()

./contracts/StrategyAlphaHomora.sol : constructor()

www.hacken.io
29

Recommendation: Convert these variables into constants.

Status: Fixed (Revised commit:
0d0354db7c3ba3c85791e77412d39648542d8356)

L10. Unused Function

The functions created but not used in the project should be deleted.
This will make a more Gas efficient contract.

Paths: ./contracts/AHStrategy.sol : withdrawSome()

./deps/BaseStrategy.sol: isTendable()

Recommendation: Remove unused function.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L11.Redundant Mathematical Operation

The mathematical operation withdrawalFee = 1 * PRECISION is
redundant.

Path: ./contracts/deps/SettV3.sol: initialize()

Recommendation: Remove redundant mathematical operations.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L12. Redundant Import

The usage of IController is unnecessary for the contract.

Path: ./deps/BaseStrategy.sol

Recommendation: Remove the redundant import.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L13. Similar Modifiers

Modifiers with similar functionalities should be merged into one.
onlyGovernance(), onlyAuthorizedActors() have similar
functionalities.

Path: ./deps/SettAccessControl.sol: onlyGovernance(),
onlyAuthorizedActors()

Recommendation: Merge modifiers.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L14. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

www.hacken.io
30

Path: ./contracts/deps/Controller.sol: setStrategy()

Recommendation: Remove boolean equality.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L15. Zero Valued Transactions

The function withdraw can execute a zero-valued transaction if
_amount input parameter is ZERO.

This can lead to a transaction with zero value to be sent.

Paths: ./deps/BaseStrategy.sol: withdraw()

./contracts/deps/Controller.sol inCaseTokensGetStuck(),
inCaseStrategyTokenGetStuck()

Recommendation: Implement conditional checks for the zero-valued
transaction.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

L16. Unimplemented Function

The function has no implementation.

Path: ./deps/BaseStrategy.sol: _postDeposit()

Recommendation: Implement the function or remove it.

Status: Fixed (Revised commit:
f824453867b2c5bf30f6c334436cbca0f2d6974c)

www.hacken.io
31

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
32

