
Customer: SerenityShield
Date: April 6, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
SerenityShield

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OU

Type Secret Store

Platform Secret Network

Language Rust

Methodology Link

Website https://serenityshield.io

Changelog 14.03.2023 – Initial Review
06.04.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://serenityshield.io


Table of contents
Introduction 4
Scope 4
Severity Definitions 6
Executive Summary 7
Risks 8
System Overview 9
Checked Items 10
Findings 12

Critical 12
High 12

H01. Weak Source of Randomness 12
Medium 12

M01. Denial of Service Vulnerability 12
M02. Immutable Ownership 12
M03. Immutable Viewing Keys 13
M04. Weak Source of Randomness 13
M05. Weak Source of Randomness 13

Low 14
L01. Redundant Code 14
L02. Vulnerable Dependency 15
L03. Multiple Library Versions in Dependency Tree 15
L04. Unformatted Code 15
L05. Possible Typo 16
L06. Late Validation 16
L07. Outdated Platform SDK/Tools Versions 16
L08. Confusing Naming 16

Disclaimers 18

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by SerenityShield (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project includes review and security analysis of the
following smart contracts from the provided repository:

Initial review scope

Repository https://github.com/serenityshield/strongbox-contract

Commit b919434f50bf0ae0e0fa057d5edb54917ecbffa2

Whitepaper Link

Functional
Requirements Not provided

Technical
Requirements

./Publishing.md

./Importing.md

./Developing.md

./README.md

Contracts File: ./src/contract.rs
SHA3: 1bfbf8d18db3d6b237e70c7e873f000fc7a9758da68c0c455233645e37e87662

File: ./src/lib.rs
SHA3: 8c667e801a8acb3277ae534611c5d4211462c3f4a04cbe56a2744a5135182ad9

File: ./src/msg.rs
SHA3: f180222e65af92cdfd780f30515b6056e72c3c86df99308f5ff32b82e9ae9f66

File: ./src/state.rs
SHA3: 240d11227aa876c58b426e6b753f28cb1360081c0d9506ce34c5f8ff29da145b

File: ./src/utils.rs
SHA3: ec55d563141968054b065f6bfad927236dd6c01b995173a765c39a2ff0b48c59

File: ./src/viewing_key.rs
SHA3: 72f95227d45daae288d1895d7544704905d89b2822db0fb33caffc86c1a19ae6

www.hacken.io
4

https://github.com/serenityshield/strongbox-contract
https://serenityshield.io/wp-content/uploads/2023/01/Serenity-Shield-WhitePaper-VERSION-2.0-1.pdf


Second review scope

Repository https://github.com/serenityshield/strongbox-contract

Commit 65ed704631c4e001e04763ce2516fe7787ca686e

Whitepaper Link

Functional
Requirements ./README.md

Technical
Requirements ./Install.md

Contracts File: ./src/contract.rs
SHA3: 4cd77c6df507b7dafc3daafa18c62a5225823dd3e11058e2727e7b7f1bb3e527

File: ./src/lib.rs
SHA3: 947e1d1fec864f8af181628fce77e2ffea2fdb1afd5d961172102be0d05f5e39

File: ./src/msg.rs
SHA3: 30da6837c13448634480d0347f5fd47f888001fd89091e6da2b44208d50defc0

File: ./src/state.rs
SHA3: 0c2dfa763531b14d414bcc85a956fa561aa8e4ed5b1a749d563eb84e23907112

File: ./src/viewing_key.rs
SHA3: 17336a4d20eac1335a03e352500541ee2e30b0a26fc79b878b7fbc13b3b26c5c

www.hacken.io
5

https://github.com/serenityshield/strongbox-contract
https://serenityshield.io/wp-content/uploads/2023/01/Serenity-Shield-WhitePaper-VERSION-2.0-1.pdf


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality.

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● There are formatting issues in ./README.md; for example (as it looks

on Github):
● ./README.md, as the entry point to the documentation, should refer to

./Install.md, because otherwise, a reader has no way of knowing about
that document except searching for all possible documentation files
manually.

● ./Install.md refers to undefined cargo unit-test and cargo schema
commands.

● ./Install.md should list clang as a prerequisite, because it may not
come out of the box on some OS.

Code quality
The total Code Quality score is 8 out of 10.

● Redundant code was found.
● Readability issues were found.
● There are no documentation comments in the code.
● Development environment is configured.

Test coverage
Code coverage of the project is 92.71% (line coverage by cargo-llvm-cov).

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the Findings section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.2.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

March 14, 2023 7 5 1 0

April 6, 2023 2 0 0 0

Risks

● The validity of the contract is predicated on the following
guarantees by Secret Network:

○ Only the contract can decrypt its state.
○ Only the contract and the caller can see the call arguments and

the result.
● It is a known Secret Network issue that data stored at a moment in

the past can be retrieved with new viewing keys and actual stored
data can be retrieved with removed viewing keys.

● If someone manages to deploy a contract (e.g. in an ad-hoc side
chain) with the same Secret Network Contract Key as an instance of
the Strongbox contract, they would be able to decrypt the Strongbox
instance state. It is a known theoretical attack in Secret Network,
and is hardly executable.

● The contract owner may allow anyone to read the stored data.
● The contract owner is able to corrupt stored data.
● The contract owner is able to modify viewing keys, and revoke access

from the old ones.

www.hacken.io
8



System Overview

StrongBox is a smart contract on Secret Network which allows users to store
their private data on-chain safely.

● try_update_strongbox — provides an ability to store some data (only
contract owner)

● try_create_viewing_key — provides an ability to create keys to view
the data (only contract owner)

● try_transfer_ownership — provides an ability to transfer contract
ownership (only contract owner)

● try_revoke_viewing_key — provides an ability to remove a viewing key
for a given address (only contract owner)

● query — provides an ability to receive stored data using generated
keys

Privileged roles
Smart contract owner is able to:

● update data stored at StrongBox
● create, change or revoke a key that allows viewing the data stored at

StrongBox
● transfer the ownership to another address
● view the data stored at StrongBox

Viewing key owner:
● view the data stored at StrongBox

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Integer
Overflow and
Underflow

If unchecked math is used, all math operations
should be safe from overflows and underflows. Passed

Unchecked Call
Return Value

The return value of a message call should be
checked. Passed

Access Control
& Authorization

Ownership takeover should not be possible. All
crucial functions should be protected. Users could
not affect data that belongs to other users.

Passed

Assert
Violation

Properly functioning code should never reach a
failing assert statement. Passed

Deprecated Rust
Functions

Deprecated built-in functions should never be
used. Passed

DoS (Denial of
Service)

Execution of the code should never be blocked by a
specific contract state unless required. Passed

Block values as
a proxy for
time

Block numbers should not be used for time
calculations. Not Relevant

Signature
Unique Id

Signed messages should always have a unique id. A
transaction hash should not be used as a unique
id. Chain identifier should always be used.

Not Relevant

Weak Sources of
Randomness

Random values should never be generated from Chain
Attributes or be predictable. Passed

Race Conditions Race Conditions and Transactions Order Dependency
should not be possible. Not Relevant

Calls Only to
Trusted
Addresses

All external calls should be performed only to
trusted addresses. Not Relevant

Presence of
Unused
Variables

The code should not contain unused variables if
this is not justified by design. Passed

Assets
Integrity

Funds are protected and cannot be withdrawn
without proper permissions or be locked on the
contract.

Not Relevant

User Balances
Manipulation

Contract owners or any other third party should
not be able to access funds belonging to users. Not Relevant

www.hacken.io
10

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Data
Consistency

Smart contract data should be consistent all over
the data flow. Passed

Flashloan
Attack

When working with exchange rates, they should be
received from a trusted source and not be
vulnerable to short-term rate changes that can be
achieved by using flash loans. Oracles should be
used.

Not Relevant

Token Supply
Manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Not Relevant

Gas Limit and
Loops

Transaction execution costs should not depend
dramatically on the amount of data stored on the
contract. There should not be any cases when
execution fails due to the block Gas limit.

Passed

Compiler
Warnings

The code should not force the compiler to throw
warnings. Passed

Requirements
Compliance

The code should be compliant with the requirements
provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and deploy
the code.

Failed

Secure Oracles
Usage

The code should have the ability to pause specific
data feeds that it relies on. This should be done
to protect a contract from compromised oracles.

Not Relevant

Tests Coverage

The code should be covered with unit tests. Test
coverage should be sufficient, with both negative
and positive cases covered. Usage of contracts by
multiple users should be tested.

Passed

Stable Imports The code should not reference draft contracts,
that may be changed in the future. Passed

Unsafe Rust
code

The Rust type system does not check memory safety
of unsafe Rust code. Thus, if a smart contract
contains any unsafe Rust code, it may still suffer
from memory corruptions such as buffer overflows,
use after frees, uninitialized memory, etc.

Passed

www.hacken.io
11



Findings

Critical

No critical severity issues were found.

High

H01. Weak Source of Randomness

It is not checked that the entropy / initial seed is secure enough.
The functions should check the length of entropy / initial seed to
make sure that the generated viewing keys are strong.

This may lead to the data being viewed by an unauthorized user.

In addition, the “human” address of the sender is used as an input
material for the viewing key. “Human” representation may not be
stable.

Path: src/contract.rs: try_create_viewing_key(), init()

Recommendation: assess the quality of the entropy / initial seed
(e.g. check the length). Use the canonical sender address
representation as a material for viewing keys.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

Medium

M01. Denial of Service Vulnerability

The human-readable address representation is used for identity
checking of the contract owner.

The human-readable representation may not be stable and larger than
the canonical representation. It is safer and more optimal to use the
canonical representation.

Path: src/state.rs: struct State

Recommendation: use the CanonicalAddr type for storing data in state.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

M02. Immutable Ownership

The contract is designed in a way that the ownership cannot be
transferred.

www.hacken.io
12



This may lead to impossibility of updating the owner in critical
situations.

Path: src/contract.rs

Recommendation: implement an ability to transfer the contract
ownership.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

M03. Immutable Viewing Keys

The contract is designed in a way that it is impossible to directly
revoke / renounce a viewing key. However, the owner is able to
recreate a viewing key for the viewer, the number of keys does not
decrease and the contract may be overwhelmed with the keys.

This may lead to a lot of permissive viewing keys being registered on
the contract.

Path: src/contract.rs

Recommendation: implement an ability to revoke / renounce a viewing
key.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

M04. Weak Source of Randomness

It is possible to recover the length of the initial seed, and the
viewing key entropy by analyzing the run-time of the functions
init(), try_create_viewing_key() respectively. The secrets’ length
affects the run-times of the functions. The run-times can be compared
and the duration-length relation may be inferred.

This may lead to the secrets’ length being decoded.

Path: src/contract.rs: init(), try_create_viewing_key()

Recommendation: make the methods’ run-time independent of the initial
seed / entropy length.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

M05. Weak Source of Randomness

The owner may reuse the viewing key entropy for different parties
(e.g. accidentally), because there is no check that a viewing key
entropy has not been used before generating a key from it.

www.hacken.io
13



It could also lead to identical viewing keys being generated for
different parties if the key creation calls are done in the same
block.

Path: src/contract.rs: try_create_viewing_key()

Recommendation: implement a check that a viewing key entropy has not
been used before generating a key from it.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

Low

L01. Redundant Code

● Module contract:
○ line 33: needless borrow at

&general_purpose::STANDARD.encode(&initial_seed).as_bytes()
○ line 95: needless borrow at &entropy.as_bytes()
○ line 107: needless borrow at (&entropy)
○ line 189: needless return
○ line 47: redundant ..
○ line 33: redundant conversion to base64
○ function query(..): the abstraction over QueryMsg kinds,

provided by QueryMsg::get_validation_params(..) is redundant,
since there’s only one kind of QueryMsg, which is GetStrongbox.
The loop on lines 167-181 could be replaced with its body for
the single possible address: QueryMsg::GetStrongbox::behalf

● Module viewing_key:
○ line 23: needless borrow at &self.as_bytes()
○ line 32: needless borrow at

&env.block.time.to_string().as_bytes()
○ line 42: needless borrow at &key
○ line 32: redundant conversion to string at

env.block.time.to_string(), which causes reallocation of
rng_entropy, because the length of result string is 20 (as of
the time of writing), but rng_entropy has only 8 bytes reserved
for the value.

● Module msg:
○ line 32: redundant ..

Paths: ./src/contract.rs, ./src/viewing_key.rs, ./src/msg.rs

Recommendation: eliminate the mentioned redundancies.

Found in: b919434

Status: Reported

www.hacken.io
14



L02. Vulnerable Dependency

Vulnerability info: https://rustsec.org/advisories/RUSTSEC-2021-0076

Dependency path:

libsecp256k1 0.3.5
<- secret-toolkit-crypto 0.1.0
<- secret-toolkit 0.1.0
<- serenty_shield 0.1.0

Path: Cargo.toml

Recommendation: upgrade libsecp256k1 to >=0.5.0 by changing the
version of secret-toolkit. For example, secret-toolkit 0.7.0 does not
have vulnerabilities in the dependencies.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

L03. Multiple Library Versions in Dependency Tree

The issue causes bloating of the size of targets, and can lead to
confusing error messages when structs or traits are used
interchangeably between different versions of a crate. Because this
can be caused purely by the dependencies themselves, it is not always
possible to fix this issue.

Cases:

● base64: 0.13.1, 0.21.0
● block-buffer: 0.9.0, 0.10.4
● digest: 0.9.0, 0.10.6
● rand_core: 0.5.1, 0.6.4
● sha2: 0.9.9, 0.10.6
● syn: 1.0.109, 2.0.8

Path: Cargo.toml

Recommendation: for some dependencies, it is possible to fix the
duplication, but that would mean downgrading some dependencies.
Overall, the choice of dependency versions is conscious; therefore,
no action is suggested.

Found in: b919434

Status: Mitigated (the issue is informational and does not require
any fixes)

L04. Unformatted Code

cargo fmt yields changes in some files.

Path: src/lib.rs, src/utils.rs, src/viewing_key.rs

www.hacken.io
15

https://rustsec.org/advisories/RUSTSEC-2021-0076


Recommendation: format the code using rustfmt or equivalent.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

L05. Possible Typo

It looks like serenty_seed should be changed to serenity_seed.

Path: src/state.rs: struct State

Recommendation: provide conscious variable names.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

L06. Late Validation

The signer-is-owner check is executed after heavy viewing key
generation.

This increases computation cost in the case of check failure.

Path: src/state.rs: try_create_viewing_key()

Recommendation: perform the signer-is-owner check at the start of
execution.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

L07. Outdated Platform SDK/Tools Versions

secret-toolkit (v0.1.0 used), cosmwasm-* (v0.10.* used) library
versions are significantly outdated.

The docker image for the Secret node (v1.2.6 used) and Secret CLI is
outdated.

This may lead to missing important bug fixes. This makes the code and
dev environment not in line with the contemporary official
documentation.

Path: Cargo.toml, Makefile

Recommendation: consider upgrading the platform dependencies.

Found in: b919434

Status: Fixed (Revised commit: 65ed704)

L08. Confusing Naming

● Module contract:

www.hacken.io
16



○ line 33: The name general_purpose::STANDARD is detached from
the meaning. It is recommended to use alias import in such
cases, for example:

use base64::engine::general_purpose::STANDARD as base64_std;

● Module viewing_key:
○ line 42: The name general_purpose::STANDARD is detached from

the meaning. It is recommended to use alias import in such
cases, for example:

use base64::engine::general_purpose::STANDARD as base64_std;

Path: ./src/contract.rs, ./src/viewing_key.rs

Recommendation: improve the naming according to the suggestions in
the description.

Found in: 65ed704

Status: New

www.hacken.io
17



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
18


