
Customer: TeraBlock
Date: July 06th, 2022



This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
TeraBlock

Approved By Noah Jelich | Senior Solidity SC Auditor at Hacken OU

Type ERC-20 token bridge helper

Platform EVM

Language Solidity

Methods Manual Review, Automated Review, Architecture review

Website https://terablock.com/

Timeline 15.06.2022 – 06.07.2022

Changelog 27.06.2022 – Initial Review
06.07.2022 – Second Review

www.hacken.io
2

https://terablock.com/


Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 13

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by TeraBlock (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/TeraBlock/swidge-contracts
Commit:

10ca3c0f9b99f94280cdce7ecf6b6276514cdf49
Technical Documentation:

Type: Technical description
https://docs.google.com/document/d/1JcipE9ZGBbOjvjL_PFl87tV6Uq1nxQxoWQr0bSu

-Rts/edit?usp=sharing

Integration and Unit Tests: Yes
(https://github.com/TeraBlock/swidge-contracts/blob/10ca3c0f9b99f94280cdce7
ecf6b6276514cdf49/test/Swidge.ts)
Deployed Contracts Addresses: No
Contracts:

File: ./contracts/Swidge.sol
SHA3: 04a2252d0911e7d28c45a5ab85800b26d5d8edc33dd6c370528b28893cb29b90

Second review scope
Repository:

https://github.com/TeraBlock/swidge-contracts-v1/
Commit:

2efa2073ab61a81926fafdd0234d76002c96d7e9
Technical Documentation:

Type: Technical description
https://docs.google.com/document/d/1JcipE9ZGBbOjvjL_PFl87tV6Uq1nxQxoWQr0bSu

-Rts/edit?usp=sharing

Integration and Unit Tests: Yes
(https://github.com/TeraBlock/swidge-contracts-v1/blob/main/test/Swidge.ts)
Deployed Contracts Addresses: No
Contracts:

File: ./contracts/Swidge.sol
SHA3: 71b579ac66eac5eedd94d16d4e1a6b00cfffe05f9d5ed5170fa89df1690e7675

www.hacken.io
4

https://github.com/TeraBlock/swidge-contracts
https://docs.google.com/document/d/1JcipE9ZGBbOjvjL_PFl87tV6Uq1nxQxoWQr0bSu-Rts/edit?usp=sharing
https://docs.google.com/document/d/1JcipE9ZGBbOjvjL_PFl87tV6Uq1nxQxoWQr0bSu-Rts/edit?usp=sharing
https://github.com/TeraBlock/swidge-contracts/blob/10ca3c0f9b99f94280cdce7ecf6b6276514cdf49/test/Swidge.ts
https://github.com/TeraBlock/swidge-contracts/blob/10ca3c0f9b99f94280cdce7ecf6b6276514cdf49/test/Swidge.ts
https://github.com/TeraBlock/swidge-contracts-v1/
https://docs.google.com/document/d/1JcipE9ZGBbOjvjL_PFl87tV6Uq1nxQxoWQr0bSu-Rts/edit?usp=sharing
https://docs.google.com/document/d/1JcipE9ZGBbOjvjL_PFl87tV6Uq1nxQxoWQr0bSu-Rts/edit?usp=sharing
https://github.com/TeraBlock/swidge-contracts-v1/blob/main/test/Swidge.ts


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10. Functional and
technical requirements are provided.

Code quality
The total CodeQuality score is 8 out of 10. Code follows the Style guide
recommendations. The code is mostly commented. The unit test covers 70% of
functions.

Architecture quality
The architecture quality score is 10 out of 10. The project has clear and
clean architecture.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

www.hacken.io
6

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb


Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Not Relevant

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Not relevant

Authorization SWC-115 tx.origin should not be used for Passed

www.hacken.io
7

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115


through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution

Not Relevant

www.hacken.io
8

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
9



System Overview

Swidge contract allows to swap and send tokens to the relevant bridge
contract. According to the documentation, the contract uses 1inch to swap
the tokens. The contract takes a fee after each swap. The fee percent is
set by the owner of the contract.

Privileged roles
● The owner of the contract may:

○ Pause or unpause the contract;
○ Set bridge address for a specific token;
○ Set fee percent;
○ Withdraw any tokens from the contract.

Risks
● All the bridge contract logic is out of the audit scope. The audited

contract only swaps and sends tokens to the bridge contract.
● The contract is upgradable, this allows the admin to change the

contract implementation logic.
● Ensure that the contract was deployed with the correct 1inch exchange

address.

www.hacken.io
10



Findings

Critical

No critical severity issues were found.

High

No checks to prevent percentage overflow.

The contract has the function setFeePercent which allows the admin to
update the fee, but the function does not have the value validation,
the fee may be greater than 100 percent.

If the fee value is greater than 100 percent, the contract
functionality will be blocked.

Contracts: ./contracts/Swidge.sol

Function: initialize, setFeePercent

Recommendation: Add conditional or require statements to validate the
input data.

Status: Fixed (8311d5839136f40157b97040c5a67921200a5d29)

Medium

Redundant allowance value.

The contract has the function _checkAllowance which checks if the
allowance value is sufficient. However, if the token allowance value
is lower than needed, it calls the approve function and approves the
maximum uint value.

This may lead to funds leakage (e.g. accumulated fees) from the
Swidge contract if the contract (e.g. exchange, bridge) which
requires the allowance is vulnerable.

Contracts: ./contracts/Swidge.sol

Function: _checkAllowance

Recommendation: Approve only the needed amount of tokens for a
specific operation.

Status: Fixed (8311d5839136f40157b97040c5a67921200a5d29)

Low

1. Usage of the low-level calls.

The contract has the function which does call the exchange address.

Users may pass arbitrary data and call any function from the exchange
contract.

Contracts: ./contracts/Swidge.sol

www.hacken.io
11



Function: _swap

Recommendation: It is recommended to use a predefined interface for
interaction with the exchange contract.

Status: Reported

2. Missing zero address validation.

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Contracts: ./contracts/Swidge.sol

Function: initialize, setBridge

Recommendation: Implement zero address validations.

Status: Fixed (8311d5839136f40157b97040c5a67921200a5d29)

3. Missing event emitting.

Events for critical state change (e.g. fee percent update) should be
emitted for tracking things off-chain.

Contracts: ./contracts/Swidge.sol

Function: setFeePercent

Recommendation: Create and emit a related event.

Status: Fixed (8311d5839136f40157b97040c5a67921200a5d29)

www.hacken.io
12



Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
13


