
Customer: Tokeny
Date: March 30th, 2023



This report may contain confidential information about IT
systems and the intellectual property of the Customer, as well as
information about potential vulnerabilities and methods of their
exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Tokeny

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website https://tokeny.com/

Changelog
06.12.2022 – Initial Review
30.12.2022 - Second Review
30.03.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://tokeny.com/


Table of contents
Introduction 4

Scope 4

Severity Definitions 13

Executive Summary 14

Checked Items 15

System Overview 18

Findings 19

Disclaimers 32

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Tokeny (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/TokenySolutions/T-REX/tree/trex_4

Commit 5eb742a968219cdde6fb58a95ebbe68c9b4ea5af

Whitepaper https://tokeny.com/wp-content/uploads/2020/05/Whitepaper-T-REX-S
ecurity-Tokens-V3.pdf

Functional Requirements https://docs.tokeny.com/docs/smart-contracts

Technical Requirements https://docs.tokeny.com/docs/smart-contracts

Contracts Addresses Not deployed

Contracts File: ./contracts/compliance/modular/IModularCompliance.sol
SHA3: 90641d5030eda088c310b7e3f699bb2030a9ecf601882106c4b06cc3a6214b8e

File: ./contracts/compliance/modular/MCStorage.sol
SHA3: afe73986cd488efd65761fc5f5300bd284d7a862c8972df3be38bd82384c0161

File: ./contracts/compliance/modular/ModularCompliance.sol
SHA3: c9f89c22b8b3e915401ca1c8e0e813d683fcb5124d2b7f02575f6e33ed0b6996

File: ./contracts/compliance/modular/modules/AbstractModule.sol
SHA3: c522dad54aff00ca0864537bda15531a4c7ac185b21ee80b07357b50a2f3b2d9

File: ./contracts/compliance/modular/modules/CountryRestrictModule.sol
SHA3: f69993c4bd604aaf833740f185bacd065a8f22d393cb526ad9c6460d07a8129a

File: ./contracts/compliance/modular/modules/IModule.sol
SHA3: 21a29400077d164b310f7683bcb0121e03c168792cbbf7fa82cd0ccc021c6872

File: ./contracts/factory/ITREXFactory.sol
SHA3: a76ba374f097baa5b4c3dffb1de95f23a20a777803abe4bbc4e621d50281c66d

File: ./contracts/factory/TREXFactory.sol
SHA3: 729b490bbabed3b96a19a37af05c6e122a9e4bb138f5c6b598ae5bc298bf9987

File: ./contracts/proxy/authority/ITREXImplementationAuthority.sol
SHA3: e21fb48d1f3e66d4fa4f2a3fb8e46186f85656dd671518de07771cc40358d63b

File: ./contracts/proxy/authority/TREXImplementationAuthority.sol
SHA3: a4d5db4102684e5b5ab221721e82c19dc7aeec1c6e7dfa4290b6c07b645c7804

File: ./contracts/proxy/ClaimTopicsRegistryProxy.sol

www.hacken.io
4

https://github.com/TokenySolutions/T-REX/tree/trex_4
https://tokeny.com/wp-content/uploads/2020/05/Whitepaper-T-REX-Security-Tokens-V3.pdf
https://tokeny.com/wp-content/uploads/2020/05/Whitepaper-T-REX-Security-Tokens-V3.pdf
https://docs.tokeny.com/docs/smart-contracts
https://docs.tokeny.com/docs/smart-contracts


SHA3: ea04e701b4ab007715801ddce12500c9db4627f57216f811cb3918430ff66c0a

File: ./contracts/proxy/IdentityRegistryProxy.sol
SHA3: a98b318ff2355e036a9ec21f73090f9d650a214ba82ccc9bc08c1c14babfef47

File: ./contracts/proxy/IdentityRegistryStorageProxy.sol
SHA3: 923060438b1c8f23349dfeb0ec0374be790ac7821413f801d5d0bf23e9730b81

File: ./contracts/proxy/ModularComplianceProxy.sol
SHA3: 124b5cbfc6ee14905dfdbde1d35f8b46f390e98710fd1ad55d42772ba7ced1d6

File: ./contracts/proxy/TokenProxy.sol
SHA3: 5352556e17a4b50e2575c9422ef6f8218fe3eaebc067dde59ff26d767e5b3000

File: ./contracts/proxy/TrustedIssuersRegistryProxy.sol
SHA3: 8928506d053358ce770d15ccc7f7f8d05bb39bebacf031d32b6fa0dcb006045f

File: ./contracts/registry/implementation/ClaimTopicsRegistry.sol
SHA3: 744041b925d6858178599ce3931878aa8b7de6ab669324f93441d09388bace57

File: ./contracts/registry/implementation/IdentityRegistry.sol
SHA3: 1ef4bca6f0f6f94d031a3f61d019895d8fd2b9673f003833cb3d0620414809fb

File: ./contracts/registry/implementation/IdentityRegistryStorage.sol
SHA3: 28627f2dfb4c1ec07ffc37967fd298657e60437d7efc319e55140e83107659e1

File: ./contracts/registry/implementation/TrustedIssuersRegistry.sol
SHA3: fdf95fee9e771fad5b562d975fae14d1d9ed7b1314ece0668d3839596f25d3da

File: ./contracts/registry/interface/IClaimTopicsRegistry.sol
SHA3: fde4fec65bb00c06d2ff2edb1590c7040165a00088adb18feb3cb674519f4c2e

File: ./contracts/registry/interface/IIdentityRegistry.sol
SHA3: 79ea2359dea51b59d7dfd5e29d506e7f5a6ad79b9029c277514e91daf8a64999

File: ./contracts/registry/interface/IIdentityRegistryStorage.sol
SHA3: 6155496dea2aaf5728f31556e4991bacff8c133afd34164345a26050b2dca0a4

File: ./contracts/registry/interface/ITrustedIssuersRegistry.sol
SHA3: 7e59af08692098ec3df216ae6e0beea1f2da507a51c3e4d55dd9acdb96bdb94e

File: ./contracts/registry/storage/CTRStorage.sol
SHA3: 78ab672808d102b5d6fb180adc65958ae7ba4e67458f26e3017bb96db1799505

File: ./contracts/registry/storage/IRSStorage.sol
SHA3: 5877167801d60d1a00c0fd0884dfb6f618bb79659884f3d865df485c03aee2e2

File: ./contracts/registry/storage/IRStorage.sol
SHA3: ec07dbec0113220db6294d922d7b8fc4c8eda8ce86c5a3b1d872bc168b4811c4

File: ./contracts/registry/storage/TIRStorage.sol
SHA3: 81f037d7af5743bc9b5f61963019c254645ac1c5dbfbd731d2283d8bc52b18d0

File: ./contracts/roles/AgentRole.sol
SHA3: 1810a8b9c18f2563e08343dacc8a39b4bd2062def2bec63b8fec95031ef0fad4

File: ./contracts/roles/AgentRoleUpgradeable.sol

www.hacken.io
5



SHA3: d90e9e0a00e918ad79e8a0bc26121142d7498d03a1f39977722acefe1a1b8b8b

File: ./contracts/roles/Roles.sol
SHA3: 5d4df60d9b6f87cf25344d5ecc9402e54e5bdc00d43b1039a751fbc031eeca89

File: ./contracts/token/IToken.sol
SHA3: 66438cde83c9b5cc734af1930b08e81c6d05a9a95ef13dd4df332aca429ecf55

File: ./contracts/token/Token.sol
SHA3: 3e429e3182e6a36077617ac18716c8af5c2bd3c819598bc4d2dc0d9523eebd7f

File: ./contracts/token/TokenStorage.sol
SHA3: e682343786e26a5d2aec7e459a3530763683aa2d0e6bc913efa62eb53bcb7f9d

www.hacken.io
6



Second review scope

Repository https://github.com/TokenySolutions/T-REX/tree/hacken-correcti
ons

Commit 3491272c566bfc0de37411858f9780e098b162bf

Contracts Addresses Not Deployed

Contracts File: ./contracts/compliance/modular/IModularCompliance.sol
SHA3:
d7f72c7301df7885e89a0b31160b4de090c7498387231066c33662d238ff9681

File: ./contracts/compliance/modular/MCStorage.sol
SHA3:
ef8853baaef156f8dabce10f7458726395122a691728dfe72a7f869289fafe25

File: ./contracts/compliance/modular/ModularCompliance.sol
SHA3:
342d86bd04f628b8cafe72c0891b534f6e0f185938e200730e7cff10c0fc3eec

File: ./contracts/compliance/modular/modules/AbstractModule.sol
SHA3:
0003ace97ec9f74cb15eb1afab69e90820aed9eb6624d026ab5eaec93438da88

File:
./contracts/compliance/modular/modules/CountryRestrictModule.sol
SHA3:
ea87e647c4f458a1032d8c717915056a16c7e077f2f4c1c5a46190759a111f0e

File: ./contracts/compliance/modular/modules/IModule.sol
SHA3:
3a2a3a692c531a0384d279ecaa562f3090116bd9df2a7df80ffe2b97035208ad

File: ./contracts/factory/ITREXFactory.sol
SHA3:
ec429a1a4b6578e7b240fa780c88253cf81d9bfde25f456f9785e8d3647605c0

File: ./contracts/factory/TREXFactory.sol
SHA3:
c945f1c336ea18bb799544aa12143f5ff2a3dcb08db29f659a682afae1466de1

File: ./contracts/proxy/AbstractProxy.sol
SHA3:
58462e5792364d328748975d254d13837254687d987d8099bfed3140f858e7ff

File: ./contracts/proxy/authority/IAFactory.sol
SHA3:
8d07ca2d7193c8fb449584a4d22f58769f87433e42f80a57754deda33bc7c2d8

File: ./contracts/proxy/authority/IIAFactory.sol
SHA3:
bde7975653016fd044f2e8543334acca2f080daf1fd7c16f8c7ec237e6aa527b

File: ./contracts/proxy/authority/ITREXImplementationAuthority.sol
SHA3:
cf9af87afc36645b8d711d2e539c38639ffe2c8dba220d244406bc6c9f253261

File: ./contracts/proxy/authority/TREXImplementationAuthority.sol
SHA3:
b36e911d7a054347d6fded0e0c31188dacaa0234293073f4087b1cf30a73de2a

File: ./contracts/proxy/ClaimTopicsRegistryProxy.sol

www.hacken.io
7

https://github.com/TokenySolutions/T-REX/tree/hacken-corrections
https://github.com/TokenySolutions/T-REX/tree/hacken-corrections


SHA3:
42e8ab642fe28389010b40a3680e218797803d99fc32d972db55967f0010ba76

File: ./contracts/proxy/IdentityRegistryProxy.sol
SHA3:
b84f442e5380d84234f7976dbf6b39145b57d4b6a835f72cbe09b0c9ffad83f4

File: ./contracts/proxy/IdentityRegistryStorageProxy.sol
SHA3:
153c6ca10911ecbeaffe36eab8fe0f08e7753709691762e6713111c5ce884908

File: ./contracts/proxy/interface/IProxy.sol
SHA3:
4162cea8f46c08837f9141c44c5aa28897482ca67e8332856543ea9f2945ba43

File: ./contracts/proxy/ModularComplianceProxy.sol
SHA3:
651227a0687bb1c26df279a7b6f8ef6def661c78e2d6135f27414d83a2ce0438

File: ./contracts/proxy/TokenProxy.sol
SHA3:
97b9b26e52b2a130df9072cd17b4ef2845dedf6f6b575ddbde2a58efe138362e

File: ./contracts/proxy/TrustedIssuersRegistryProxy.sol
SHA3:
1f1be78df772a0df8b03c2f4e2d138d825efe5da2afe20bea067322eafe68fbe

File: ./contracts/registry/implementation/ClaimTopicsRegistry.sol
SHA3:
a473480a122d02bf7aad923844e9942b31e1db07fe6b0775b0fa0870cbce30f7

File: ./contracts/registry/implementation/IdentityRegistry.sol
SHA3:
3ae6274aa9ff6d9fc2ed7d855b707d97c237263ec96ca19ca57bb655cd7f6c82

File:
./contracts/registry/implementation/IdentityRegistryStorage.sol
SHA3:
f6c839ee853fd6fc0dbae9e0840d6a81439b00aef6b01d1a944c553de75f7ea6

File: ./contracts/registry/implementation/TrustedIssuersRegistry.sol
SHA3:
ed2033bf75681776302f8a4b3aa03de5a1d4c731e68888376e6f1d34a10115e6

File: ./contracts/registry/interface/IClaimTopicsRegistry.sol
SHA3:
66358e9ae51db5f4c3045b65cca496fa0be36fd47e9780c33a516829d19cb9d3

File: ./contracts/registry/interface/IIdentityRegistry.sol
SHA3:
d4004e445a827ab746f416369c62c79d5eb0d491e0ef4e673facea79a2a1ba2a

File: ./contracts/registry/interface/IIdentityRegistryStorage.sol
SHA3:
797971a9ab8f56f3fbddf638cf274aa6c53e58a8acca4906b070f2fbeacf8345

File: ./contracts/registry/interface/ITrustedIssuersRegistry.sol
SHA3:
7a39d1e73c6774d7e430955c757e75659dd711808325677aea864ec9e035a5ea

File: ./contracts/registry/storage/CTRStorage.sol
SHA3:
4d5b265c637542931ee88891a7bddaffb3b91ccd743e9b4913759802115f2675

File: ./contracts/registry/storage/IRSStorage.sol

www.hacken.io
8



SHA3:
e0e5ae5a5330874554bb1f81d8e8b61e2ea2e2aec37f81196433bfece2f7b437

File: ./contracts/registry/storage/IRStorage.sol
SHA3:
e17931cd92fa76327d4b04370e6418475f39dbf7a4b0cf2fa4e774ba7a27d504

File: ./contracts/registry/storage/TIRStorage.sol
SHA3:
d90ae384e7f3290e32c845aa5c1824eab54a0f3608e0d0ffc5b06649d851fdd5

File: ./contracts/roles/AgentRole.sol
SHA3:
a573c0c8f1a0758fcc38feb522eedf27f4cbfe683dfecf1cfd15011a32e5abbe

File: ./contracts/roles/AgentRoleUpgradeable.sol
SHA3:
abd34390d79e49318a021b902665a25b06b554468b0a737bdc66a7b3924cc8e2

File: ./contracts/roles/Roles.sol
SHA3:
711d40dbd3b1f82619eb6a4f0175bda877d87682208057b72c9a98648547eb88

File: ./contracts/token/IToken.sol
SHA3:
426e369754a989a9d828914687dacb75c1971ce3c24dc9715860188544b5966c

File: ./contracts/token/Token.sol
SHA3:
72f41033f902b74dca3b0a27868489614c868a1f489993b3e35a3cd767a88317

File: ./contracts/token/TokenStorage.sol
SHA3:
fbc4b62c44694e61dcc3d0c7af34924b5d531b94371488290b0da79e7149ab3c

www.hacken.io
9



Third review scope

Repository https://github.com/TokenySolutions/T-REX/tree/hacken-correcti
ons

Commit e32436b93927c5efb4454e8baf14d904f7f14c45

Contracts Addresses Not Deployed

Contracts File: ./contracts/compliance/modular/IModularCompliance.sol
SHA3:
d7f72c7301df7885e89a0b31160b4de090c7498387231066c33662d238ff9681

File: ./contracts/compliance/modular/MCStorage.sol
SHA3:
ef8853baaef156f8dabce10f7458726395122a691728dfe72a7f869289fafe25

File: ./contracts/compliance/modular/ModularCompliance.sol
SHA3:
342d86bd04f628b8cafe72c0891b534f6e0f185938e200730e7cff10c0fc3eec

File: ./contracts/compliance/modular/modules/AbstractModule.sol
SHA3:
0003ace97ec9f74cb15eb1afab69e90820aed9eb6624d026ab5eaec93438da88

File:
./contracts/compliance/modular/modules/CountryRestrictModule.sol
SHA3:
ea87e647c4f458a1032d8c717915056a16c7e077f2f4c1c5a46190759a111f0e

File: ./contracts/compliance/modular/modules/IModule.sol
SHA3:
3a2a3a692c531a0384d279ecaa562f3090116bd9df2a7df80ffe2b97035208ad

File: ./contracts/factory/ITREXFactory.sol
SHA3:
ec429a1a4b6578e7b240fa780c88253cf81d9bfde25f456f9785e8d3647605c0

File: ./contracts/factory/TREXFactory.sol
SHA3:
c945f1c336ea18bb799544aa12143f5ff2a3dcb08db29f659a682afae1466de1

File: ./contracts/proxy/AbstractProxy.sol
SHA3:
973baed4ec326c3b5df252dbcbc0f6f19f6eadc1f02750de9d1505dcb210e93d

File: ./contracts/proxy/authority/IAFactory.sol
SHA3:
8d07ca2d7193c8fb449584a4d22f58769f87433e42f80a57754deda33bc7c2d8

File: ./contracts/proxy/authority/IIAFactory.sol
SHA3:
bde7975653016fd044f2e8543334acca2f080daf1fd7c16f8c7ec237e6aa527b

File: ./contracts/proxy/authority/ITREXImplementationAuthority.sol
SHA3:
cf9af87afc36645b8d711d2e539c38639ffe2c8dba220d244406bc6c9f253261

File: ./contracts/proxy/authority/TREXImplementationAuthority.sol
SHA3:
b36e911d7a054347d6fded0e0c31188dacaa0234293073f4087b1cf30a73de2a

File: ./contracts/proxy/ClaimTopicsRegistryProxy.sol

www.hacken.io
10

https://github.com/TokenySolutions/T-REX/tree/hacken-corrections
https://github.com/TokenySolutions/T-REX/tree/hacken-corrections


SHA3:
ebe85cc6f3c44fea18b61f7d3d76b61afb51ce8cef24320c2135f48c9f3f49a2

File: ./contracts/proxy/IdentityRegistryProxy.sol
SHA3:
8eb4c24ecf9262fa91c62c854aae615587b1fc39a7294ec88a0d2495e7262449

File: ./contracts/proxy/IdentityRegistryStorageProxy.sol
SHA3:
dc312224f2855bea1c642f88d3aafbcb649c1ae49e33d8984b433ed9f4689ea6

File: ./contracts/proxy/interface/IProxy.sol
SHA3:
4162cea8f46c08837f9141c44c5aa28897482ca67e8332856543ea9f2945ba43

File: ./contracts/proxy/ModularComplianceProxy.sol
SHA3:
6c0d643d02743911184c1ab42aebd15a56157c01be239b9d2a23e79803e8d49e

File: ./contracts/proxy/TokenProxy.sol
SHA3:
f793ce2a1e312ffbd7f15905edc424dc85fd6753ad858dcb4a1ce46084349760

File: ./contracts/proxy/TrustedIssuersRegistryProxy.sol
SHA3:
1d04c2d027c051ef69b782350f3a59e57fa2d9f2a2fba5abaae757a48d3888d9

File: ./contracts/registry/implementation/ClaimTopicsRegistry.sol
SHA3:
a473480a122d02bf7aad923844e9942b31e1db07fe6b0775b0fa0870cbce30f7

File: ./contracts/registry/implementation/IdentityRegistry.sol
SHA3:
3ae6274aa9ff6d9fc2ed7d855b707d97c237263ec96ca19ca57bb655cd7f6c82

File:
./contracts/registry/implementation/IdentityRegistryStorage.sol
SHA3:
f6c839ee853fd6fc0dbae9e0840d6a81439b00aef6b01d1a944c553de75f7ea6

File: ./contracts/registry/implementation/TrustedIssuersRegistry.sol
SHA3:
ed2033bf75681776302f8a4b3aa03de5a1d4c731e68888376e6f1d34a10115e6

File: ./contracts/registry/interface/IClaimTopicsRegistry.sol
SHA3:
66358e9ae51db5f4c3045b65cca496fa0be36fd47e9780c33a516829d19cb9d3

File: ./contracts/registry/interface/IIdentityRegistry.sol
SHA3:
d4004e445a827ab746f416369c62c79d5eb0d491e0ef4e673facea79a2a1ba2a

File: ./contracts/registry/interface/IIdentityRegistryStorage.sol
SHA3:
797971a9ab8f56f3fbddf638cf274aa6c53e58a8acca4906b070f2fbeacf8345

File: ./contracts/registry/interface/ITrustedIssuersRegistry.sol
SHA3:
7a39d1e73c6774d7e430955c757e75659dd711808325677aea864ec9e035a5ea

File: ./contracts/registry/storage/CTRStorage.sol
SHA3:
4d5b265c637542931ee88891a7bddaffb3b91ccd743e9b4913759802115f2675

File: ./contracts/registry/storage/IRSStorage.sol

www.hacken.io
11



SHA3:
e0e5ae5a5330874554bb1f81d8e8b61e2ea2e2aec37f81196433bfece2f7b437

File: ./contracts/registry/storage/IRStorage.sol
SHA3:
e17931cd92fa76327d4b04370e6418475f39dbf7a4b0cf2fa4e774ba7a27d504

File: ./contracts/registry/storage/TIRStorage.sol
SHA3:
d90ae384e7f3290e32c845aa5c1824eab54a0f3608e0d0ffc5b06649d851fdd5

File: ./contracts/roles/AgentRole.sol
SHA3:
a573c0c8f1a0758fcc38feb522eedf27f4cbfe683dfecf1cfd15011a32e5abbe

File: ./contracts/roles/AgentRoleUpgradeable.sol
SHA3:
abd34390d79e49318a021b902665a25b06b554468b0a737bdc66a7b3924cc8e2

File: ./contracts/roles/Roles.sol
SHA3:
711d40dbd3b1f82619eb6a4f0175bda877d87682208057b72c9a98648547eb88

File: ./contracts/token/IToken.sol
SHA3:
426e369754a989a9d828914687dacb75c1971ce3c24dc9715860188544b5966c

File: ./contracts/token/Token.sol
SHA3:
fc091084f57434f87619c1550fffefed84aed52fa76d6c50fee67deec71e1daa

File: ./contracts/token/TokenStorage.sol
SHA3:
fbc4b62c44694e61dcc3d0c7af34924b5d531b94371488290b0da79e7149ab3c

www.hacken.io
12



Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to assets loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect the code
quality

www.hacken.io
13



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● White paper is provided.
● Functional requirements are clearly defined.
● Technical description is provided, but not for all contracts (i.e.

TREXFactory and proxy approach).
● NatSpec implementation in Smart Contracts.

Code quality
The total Code Quality score is 9 out of 10.

● The code duplicates commonly known contracts instead of reusing them
(ERC20).

● The development environment is configured.

Test coverage
Test coverage of the project is 83.64% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions by several users are not tested thoroughly.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

06 December 2022 12 4 4 2

30 December 2022 0 1 1 0

www.hacken.io
14

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


30 March 2023 0 0 0 0

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
15

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
16

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
17



System Overview

TREX is an infrastructure to manage ERC20-based permissioned tokens by
means of a decentralized validator. It is based on 4 pillars:

- ONCHAINID: external on-chain identity management system.
- Validation Certificates: referred to as claims. These are ERC734 and

ERC735 based certificates, emitted by trusted third parties and
signed on-chain. Each of them is linked to a single ONCHAINID.

- Compliance Rules: set of rules for a particular token, according to
the issuer’s requirements and any additional feature. These are
checked and managed by a transfer manager role.

- Eligibility Verification System (EVS): validator that filters the P2P
transactions of permissioned tokens, according to the claims each
peer holds and the compliance rules of the tokens. These rules are
linked to the identities of transaction receivers and the global
distribution of tokens at a certain time.

*from the TREX Whitepaper

Privileged roles
● The owner and the agent roles have huge control over the contract’s

properties, including pausing, unpausing, minting, burning, forced
transfers, adding/removing agents/compliances, changing the
implementation, and so on.

Risks
● The repository contains out-of-scope contracts, the secureness and

reliability of which could not be verified by the current audit.

www.hacken.io
18

https://docs.onchainid.com/


Findings

Critical

1. Access Control Violation / Denial of Service

The bindCompliance(address _compliance) function in the
AbstractModule.sol contract is available for calling by everyone as
long as they give their own address as input. This results in the
complianceBound mapping variable to be updated so that the new given
address returns true. This means that the attacker can now call the
unbindCompliance() function, bypassing the onlyComplianceCall
modifier and unbind any compliance contract from the module.

This results in the mint() function of Token.sol contract to give
DoS(Denial of Service). The error flow is the following:

● mint() is called in the Token.sol contract.
● canTransfer() is called on the tokenCompliancein the

ModularCompliance.sol contract
● moduleCheck() is called for every module in the compliance
● onlyBoundCompliance modifier will revert because even though

the module is checked in the for loop in canTransfer() function
of ModularCompliance.sol contract, there will be no such
compliance stored in the target module.

Paths:

./contracts/token/Token.sol : mint()

./contracts/compliance/modular/ModularCompliance.sol : canTransfer()

./contracts/compliance/modular/modules/AbstractModule.sol :
bindCompliance(), unbindCompliance()

./contracts/compliance/modular/modules/CountryRestrictModule.sol :
moduleCheck()

Recommendation: as stated in the doc comments for bindCompliance()
function, it should only be callable by compliance contracts
themselves and no other address or contract. A check for this should
be added. Architectural changes, such as defining roles in the module
contracts, might be considered.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

2. Access Control Violation

In IdentityRegistryStorage.sol, two critical functions
bindIdentityRegistry and unbindIdentityRegistry have no restricted
access. However, their corresponding NatSpec defines that these
functions can only be called by the IdentityRegistryStorage contract
owner.

www.hacken.io
19



In Token.sol, transferFrom() has no restricted access,
although it is a critical function.

Path:

./contracts/registry/implementation/IdentityRegistryStorage.sol:

● bindIdentityRegistry()
● unbindIdentityRegistry()

Recommendation: add an access control mechanism to those functions.

Status: Fixed

High

1. Requirements Violation / Missing Validation

In Token.sol, the function burn does not check the amount to burn is
smaller than the balance of the user (both free and frozen tokens) as
it is specified in the NatSpec of that function.

Path:

./contracts/token/Token.sol: burn().

Recommendation: add a require to prevent the amount to burn is not
exceeding the user’s token balance.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

2. Non-Finalized Code

In transferred(), the call IModule().moduleTransferAction() has no
function body in most modules. The expected behavior is then not
clear or seems not to be finalized. It is defined in
ConditionalTransferModule.sol, which is out of the audit scope.

In created(), the call IModule().moduleMintAction() has no function
body in any module. The expected behavior is then not clear or seems
not to be finalized.

In destroyed(), the call IModule().moduleBurnAction() has no function
body in any module. The expected behavior is then not clear or seems
not to be finalized.

Path:

./ModularCompliance.sol: transferred(), created(), destroyed().

Recommendation: define the function body of the in-scope contracts or
define their behavior if this is intended.

Status: Fixed

3. Unverifiable Logic

www.hacken.io
20



The module onchain-id, integrated in several
contracts, is out of the audit scope, and therefore
its behavior cannot be considered safe.

Paths:

.contracts/registry/implementation/IdentityRegistry.sol:
● identity()
● isVerified()
● registerIdentity()
● batchRegisterIdentity()
● updateIdentity()
● deleteIdentity()

.contracts/registry/implementation/IdentityRegistryStorage.sol:
● storedIdentity()
● addIdentityToStorage()
● modifyStoredIdentity()
● removeIdentityStorage().

.contracts/registry/implementation/TrustedIssuersRegistry.sol:
● addTrustedIssuer()
● removeTrustedIssuer()
● updateIssuerClaimTopics()
● getTrustedIssuers()
● getTrustedIssuerClaimTopics().

.contracts/registry/storage/IRSStorage.sol.

.contracts/registry/storage/TIRStorage.sol.

.contracts/registry/interface/IIdentityRegistry.sol.

.contracts/registry/interface/IdentityRegistryStorage.sol.

.contracts/registry/interface/ITrustedIssuersRegistry.sol.

.contracts/token/Token.sol: recoveryAddress().

Recommendation: define the function body of the in-scope contracts or
define their behavior if this is intended.

Status: Fixed

(Revised commit: e32436b93927c5efb4454e8baf14d904f7f14c45)

4. Standard Violation

The contract inherits AgentRoleUpgradeable and TokenStorage, but
neither is designed to support upgradability. Though the
AgentRoleUpgradeable contract inherits an upgradable contract, it
does not have “gaps” to support the future addition of new fields.

In a case when new variables will be added, the storage will be
mixed.

The same situation is with other contracts that potentially can be
upgraded since they are used through proxies.

Paths: Token.sol

www.hacken.io
21



Recommendation: add “gaps” into parent contracts to
allow addition of new variables in future upgrades.
Follow the upgradability best practices.

Status: Mitigated (with Customer notice)(Since AgentRoleUpgradeable
is already deployed, changes cannot be made. However, the provided
recommendation was applied for storage contracts) | Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

Medium

1. Denial of Service (DoS)

In various parts of the contracts, for loops that depend on variable
array lengths are used. These arrays are not capped in length and can
get as large as privileged roles want.

In TREXFactory, when calling deployTREXSuite, the block Gas limit can
be overcome since it is performing so many costly operations related
to contract deployments.

This may result in Denial of Service in the corresponding functions
if the arrays get too large to the point that Gas needed to execute
and iterate through the arrays get larger than the maximum Gas the
EVM allows.

Paths:

● ./contracts/compliance/modular/ModularCompliance.sol
○ removeModule()
○ canTransfer()
○ destroyed()
○ created()
○ transferred()

● ./contracts/compliance/modular/modules/CountryRestrictModule.so
○ batchRestrictCountries()
○ batchUnrestrictCountries()

● ./contracts/factory/TREXFactory.sol
○ deployTREXSuite() : lines 165, 168, 173, 176, 179

● ./contracts/registry/implementation/ClaimTopicsRegistry.sol
○ addClaimTopics()
○ removeClaimTopics()

● ./contracts/registry/implementation/IdentityRegistryStorage.sol
○ unbindIdentityRegistry()

● ./contracts/registry/implementation/TrustedIssuersRegistry.sol
○ removeTrustedIssuer()
○ isTrustedIssuer()
○ hasClaimTopics()

● ./contracts/registry/implementation/IdentityRegistry.sol
○ isVerified() : Lines 204, 209

www.hacken.io
22

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#modifying-your-contracts


Recommendation:

the variable arrays that the for loops depend on could be given hard
caps so that they cannot be larger than some value, which would
ensure there are no Gas limit excesses.

In the case of deployTREXSuite, a modular approach where each
contract is deployed by a different function (and thus transaction)
can sort a possible DOS.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

2. Check Effects Interaction Violation

During the functions execution, some state variables are updated
after the external calls, which is against best practices.

This may lead to reentrancies, race conditions, and denial of service
vulnerabilities during the implementation of new functionality.

In Token.sol contract;

● In transferFrom() function, _tokenCompliance.transferred()
external function call is done before internal _transfer()
function.

● In transfer() function, _tokenCompliance.transferred() external
function call is done before internal _transfer() function.

● In forcedTransfer(), function, _tokenCompliance.transferred()
external function call is done before internal _transfer()
function.

● In mint(), if tokenCompliance.created() suppose any effects for
this action (although in this commit, there is no functionality
associated with this call), then it is performed before _mint()
(interactions).

● In burn(), _tokenCompliance.destroyed() external call is done
before the burn of tokens (interactions).

● In the recoveryAddress() function the
tokenIdentityRegistry.registerIdentity() and
tokenIdentityRegistry.deleteIdentity() external calls are made
before contract state changes.

In ModularCompliance.sol contract;

● In addModule() function, the IModule(_module).bindCompliance()
external call is done before state variable changes.

● In removeModule() function, the
IModule(_module).unbindCompliance() external call is done
before state variable changes.

Paths:

● ./contracts/compliance/modular/ModularCompliance.sol
○ addModule()
○ removeModule()

www.hacken.io
23



● ./contracts/token/Token.sol
○ transfer()
○ transferFrom()
○ forcedTransfer()
○ mint()
○ burn()
○ recoveryAddress()

Recommendation: common best practices should be followed, functions
should be implemented according to the Check-Effect-Interaction
pattern. In transferFrom() and transfer(), call
tokenCompliance.transferred() after _transfer(). In forcedTransfer(),
call tokenCompliance.transferred() after _transfer(). In mint(), call
tokenCompliance.created() after _mint(). In burn(), call
tokenCompliance.destroyed() after _burn(). Use a similar approach in
the rest of the indicated functions.

Status: Fixed

(Revised commit: e32436b93927c5efb4454e8baf14d904f7f14c45)

3. Unscalable Functionality: Copy of Well-Known Contracts

In Token.sol, pausable functionality is integrated manually instead
of using OpenZeppelin library.

In Token.sol, ERC20 functionality is integrated manually instead of
using OpenZeppelin library.

Well-known contracts from projects like OpenZeppelin should be
imported directly from the source as the projects are in development
and may update the contracts in the future. This can lead to
unexpected errors in case of accidental or inattentive modification.

Paths:

./contracts/token/Token.sol: paused(), pause(), unpause(),
whenPaused(), whenNotPaused(), transfer(), transferFrom(), init()
./contracts/token/TokenStorage.sol: tokenPaused
./contracts/token/IToken.sol: Paused, Unpaused, paused(), pause(),
unpause()

Recommendation: import the contract directly from the source, avoid
modifying them.

Status: Mitigated (with Customer notice)(Since the deployment of some
contracts has been done, it cannot be changed; however,
implementation and storage functions are separated)

4. Missing Validation

In CountryRestrictModule.sol, batchRestrictCountries() and
batchUnrestrictCountries() should require whether the country is
already restricted or not, as in addCountryRestriction() and
removeCountryRestriction().

www.hacken.io
24



In Token.sol, the function forcedTransfer does not
check that balanceOf(_from) is bigger or equal to the
input _amount. This can lead to errors when updating
frozenTokens[_from] for the case in which _amount > freeBalance.

Paths:

./contracts/compliance/modular/modules/CountryRestrictModule.sol:
● batchRestrictCountries()
● batchUnrestrictCountries()

./contracts/token/Token.sol :

● forcedTransfer()

Recommendation: add require conditions in the mentioned functions to
make sure the code behaves as intended.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

Low

1. Floating Pragma

In every Solidity file in the scope, the expression of pragma
solidity ^0.8.0; is used while specifying the pragma version.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively.

Paths:

./contracts/token/IToken.sol

./contracts/token/Token.sol

./contracts/token/TokenStorage.sol

./contracts/roles/AgentRole.sol

./contracts/roles/AgentRoleUpgradeable.sol

./contracts/roles/Roles.sol

./contracts/registry/implementation/ClaimTopicsRegistry.sol

./contracts/registry/implementation/IdentityRegistry.sol

./contracts/registry/implementation/IdentityRegistryStorage.sol

./contracts/registry/implementation/TrustedIssuersRegistry.sol

./contracts/registry/interface/IClaimTopicsRegistry.sol

./contracts/registry/interface/IIdentityRegistry.sol

./contracts/registry/interface/IIdentityRegistryStorage.sol

./contracts/registry/interface/ITrustedIssuersRegistry.sol

./contracts/registry/storage/CTRStorage.sol

./contracts/registry/storage/IRSStorage.sol

./contracts/registry/storage/IRStorage.sol

./contracts/registry/storage/TIRStorage.sol

./contracts/proxy/authority/ITREXImplementationAuthority.sol

./contracts/proxy/authority/TREXImplementationAuthority.sol

./contracts/proxy/ClaimTopicsRegistryProxy.sol
www.hacken.io

25



./contracts/proxy/IdentityRegistryProxy.sol

./contracts/proxy/IdentityRegistryStorageProxy.sol

./contracts/proxy/ModularComplianceProxy.sol

./contracts/proxy/TokenProxy.sol

./contracts/proxy/TrustedIssuersRegistryProxy.sol

./contracts/factory/ITREXFactory.sol

./contracts/factory/TREXFactory.sol

./contracts/compliance/modular/IModularCompliance.sol

./contracts/compliance/modular/MCStorage.sol

./contracts/compliance/modular/ModularCompliance.sol

./contracts/compliance/modular/modules/AbstractModule.sol

./contracts/compliance/modular/modules/CountryRestrictModule.sol

./contracts/compliance/modular/modules/IModule.sol

Recommendation: lock the pragma version and consider known bugs
(https://github.com/ethereum/solidity/releases) for the compiler
version that is chosen.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

2. Inefficient Gas Model: SafeMath

In some cases, SafeMath is unnecessary since over/under-flow is
protected by require statements and other checks. Performing the
operations as unchecked will save some Gas.

In Token.sol’s _transfer() the update of token balances can be
calculated as unchecked. In _mint(), the balances can be calculated
as unchecked since it cannot exceed totalSupply (it will act as an
overflow check). In _burn(), the update of token balances can be
calculated as unchecked.

Path:

./contracts/token/Token.sol: _transfer(), _mint(), _burn().

Recommendation: perform the operations under unchecked.

Status: Mitigated (with Customer notice)

3. Inefficient Gas Model: Unnecessary Variable Definition

In TREXFactory.sol, function deploy, a new variable is defined
instead of reusing the input parameter bytecode, resulting in the
expense of unnecessary Gas.

Path:

./contracts/factory/TREXFactory.sol: deploy().

Recommendation: use the input argument bytecode directly instead of
defining the new variable implInitCode.

Status: Fixed

www.hacken.io
26

https://github.com/ethereum/solidity/releases


(Revised commit:
3491272c566bfc0de37411858f9780e098b162bf)

4. Inefficient Gas Model: Function Visibility

In ModularCompliance.sol, the visibility getTokenBound() can be set
as external.

In TREXFactory.sol, all deploy functions’ visibility can be set as
private.

In TREXImplementationAuthority.sol, all functions can be set as
external.

In ModularCompliance.sol, ClaimTopicsRegistry.sol,
IdentityRegistry.sol, IdentityRegistryStorage.sol,
TrustedIssuersRegistry.sol and Token.sol the visibility of init() can
be set as external.

Paths:

./contracts/compliance/modular/ModularCompliance.sol: init(),
getTokenBound().
./contracts/factory/TREXFactory.sol: deploy(), deployTIR(),
deployCTR(), deployMC(), deployIRS(), deployIR(), deployToken().
.contracts/proxy/authority/TREXImplementationAuthority.sol: all
functions.
./contracts/token/Token.sol: init().
./contracts/registry/implementation/ClaimTopicsRegistry.sol: init().
./contracts/registry/implementation/IdentityRegistry.sol: init().
./contracts/registry/implementation/IdentityRegistryStorage.sol:
init().
./contracts/registry/implementation/TrustedIssuersRegistry.sol:
init().

Recommendation: specify function visibilities according to best
practices or document current behavior.

Status: Mitigated (with Customer notice)

5. Unused Import

The import of AgentRole.sol in the contract AbstractModule.sol is
unnecessary. The functionality is not used.

In Token.sol, the imported interfaces IERC734, IERC735 and
IClaimTopicsRegistry are not used.

Paths:

./contracts/compliance/modular/modules/AbstractModule.sol

./contracts/token/Token.sol

Recommendation: unused import should be removed.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)
www.hacken.io

27



6. Style Guide: Order of Functions

The provided projects should follow the official guidelines.
Functions should be grouped according to their visibility and
ordered:

1. Constructor
2. Receive function (if exists)
3. Fallback function (if exists)
4. External
5. Public
6. Internal
7. Private

Paths:
./contracts/compliance/modular/modules/CountryRestrictModule.sol
./contracts/compliance/modular/ModularCompliance.sol
./contracts/factory/TREXFactory.sol
./contracts/registry/implementation/ClaimTopicsRegistry.sol
./contracts/registry/implementation/IdentityRegistry.sol
./contracts/registry/implementation/IdentityRegistryStorage.sol
./contracts/registry/implementation/TrustedIssuersRegistry.sol
./contracts/token/Token.sol

Recommendation: follow the official Solidity guidelines.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

7. Style Guide: Order of Layout

The provided projects should follow the official guidelines. Inside
each contract, library or interface, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Paths:
./contracts/compliance/modular/modules/CountryRestrictModule.sol
./contracts/factory/ITREXFactory.sol
./contracts/proxy/authority/TREXImplementationAuthority.sol
./contracts/roles/AgentRole.sol
./contracts/roles/AgentRoleUpgradeable.sol
./contracts/token/Token.sol

Recommendation: follow the official Solidity guidelines.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

8. Style Guide: Quotes

The provided projects should follow the official guidelines. Strings

should be quoted with double-quotes instead of single-quotes.

www.hacken.io
28



Paths:

./contracts/token/IToken.sol

./contracts/token/Token.sol

./contracts/token/TokenStorage.sol

./contracts/roles/AgentRole.sol

./contracts/roles/AgentRoleUpgradeable.sol

./contracts/roles/Roles.sol

./contracts/registry/implementation/ClaimTopicsRegistry.sol

./contracts/registry/implementation/IdentityRegistry.sol

./contracts/registry/implementation/IdentityRegistryStorage.sol

./contracts/registry/implementation/TrustedIssuersRegistry.sol

./contracts/registry/interface/IIdentityRegistry.sol

./contracts/registry/interface/IIdentityRegistryStorage.sol

./contracts/registry/interface/ITrustedIssuersRegistry.sol

./contracts/registry/storage/IRSStorage.sol

./contracts/registry/storage/IRStorage.sol

./contracts/registry/storage/TIRStorage.sol

./contracts/proxy/authority/TREXImplementationAuthority.sol

./contracts/proxy/ClaimTopicsRegistryProxy.sol

./contracts/proxy/IdentityRegistryProxy.sol

./contracts/proxy/IdentityRegistryStorageProxy.sol

./contracts/proxy/ModularComplianceProxy.sol

./contracts/proxy/TokenProxy.sol

./contracts/proxy/TrustedIssuersRegistryProxy.sol

./contracts/factory/TREXFactory.sol

./contracts/compliance/modular/ModularCompliance.sol

./contracts/compliance/modular/modules/AbstractModule.sol

./contracts/compliance/modular/modules/CountryRestrictModule.sol

Recommendation: follow the official Solidity guidelines.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

9. Missing Zero Address/String Input Check

Address parameters are being used without checking against the
possibility of 0x0 or empty strings. This can lead to unwanted
external calls to 0x0.

String parameters are being used without checking they are empty.

Paths:
./contracts/token/Token.sol: init(), setOnchainID(), setName(),
setSymbol().
./contracts/proxy/TrustedIssuersRegistryProxy.sol: constructor().
./contracts/proxy/TokenProxy.sol: constructor().
./contracts/proxy/IdentityRegistryProxy.sol: constructor().
./contracts/proxy/IdentityRegistryStorageProxy.sol: constructor().
./contracts/proxy/ModularComplianceProxy.sol: constructor().
./contracts/proxy/ClaimTopicsRegistryProxy.sol: constructor().
./contracts/compliance/modular/ModularCompliance.sol: bindToken(),
unbindToken(), addModule(), removeModule(), transferred(), created(),
destroyed().

www.hacken.io
29



./contracts/compliance/modular/modules/AbstractModule.sol:
bindCompliance(), unbindCompliance.
./contracts/factory/TREXFactory.sol: setImplementationAuthority().
./contracts/proxy/authority/TREXImplementationAuthority.sol:
setTokenImplementation(), setCTRImplementation(),
setIRImplementation(), setIRSImplementation(),
setTIRImplementation(), setMCImplementation().
./contracts/registry/implementation/IdentityRegistry.sol: init().
./contracts/registry/implementation/IdentityRegistryStorage.sol:
addIdentityStorage(), modifyStoredEntity(),
modifyStoredInvestorCountry(), removeIdentityFromStorage(),
bindIdentityRegistry(), unbindIdentityRegistry().
./contracts/factory/TREXFactory.sol: deployTREXSuite().
./contracts/roles/AfentRole.sol: addAgent(), removeAgent().

Recommendation: zero address check should be done before assigning
manual inputs.

Status: Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

10. NatSpec Typo

There are some errors or misplacements in several contracts that can
be easily solved.

In IToken.sol, the NatSpec of UpdatedTokenInformation describes this
event as being emitted by the token constructor instead of the init
function. In the _transfer function, NatSpec refers to ERC20-_mint.

In TIRStorage.sol, the NatSpec of trustedIssuerClaimTopics is defined
as a “mapping between trusted issuer index and its corresponding
claim topics” while the key of the mapping is an address.

In IdentityRegistry.sol, the NatSpec of TrustedIssuersRegistrySet
refers to ClaimTopicsRegistry.

Path:
./contracts/token/IToken.sol: UpdatedTokenInformation, _transfer()

Recommendation: correct the NatSpec descriptions.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

11. Error Message Typo

Some error messages contain small typos, leading to confusions.

Paths:
./contracts/registry/implementation/TrustedIssuersRegistry.sol:
removeTrustedIssuer().

www.hacken.io
30



./contracts/registry/implementation/IdentityRegistryStorage.sol:
addIdentityStorage(), modifyStoredIdentity(),
removeIdentityFromStorage().

Recommendation: correct the error messages.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

12. Unindexed Events

In some contracts, no indexed parameters are used in events. If such
events are providing relevant enough information to fetch, they
should. If this is the intended behavior, this issue should be
skipped.

Paths:
./contracts/compliance/modular/modules/CountryRestrictModule.sol.
./contracts/compliance/modular/modules/IModule.sol.
./contracts/proxy/authority/TREXImplementationAuthority.sol.

Recommendation: use indexed events if necessary.

Status: Fixed

(Revised commit: 3491272c566bfc0de37411858f9780e098b162bf)

www.hacken.io
31



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
32


