
Customer: Angel Block
Date: 18 May, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Angel Block

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type Staking

Platform EVM

Language Solidity

Methodology Link

Website https://angelblock.io/

Changelog 10.04.2023 – Initial Review
18.05.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://angelblock.io/

Table of contents
Introduction 4
Scope 4
Severity Definitions 6
Executive Summary 7
Risks 8
System Overview 9
Checked Items 11
Findings 14

Critical 14
High 14

H01. Denial Of Service 14
H02. Invalid Calculations; Requirements Violation 15

Medium 16
M01. Requirements Violation 16

Low 16
L01. Solidity Style Guide Violation 16
L02. Missing Zero Address Validation 17
L03. State Variables Default Visibility 17
L04. State Variables That Can Be Declared As Immutable 17
L05. Typo in Comments 18
L06. Redundant Code 18
L07. Gas Optimization 18
L08. Code Consistency 19
L09. OpenZeppelin Deprecated Function 19
L10. Code Clarity 19
L11. Unchecked Transfer 19
L12. Gas Optimization 20

Disclaimers 21

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Angel Block (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/angel-block/angelblock-contracts

Commit ea726f7

Whitepaper https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-doc
umentation/

Functional
Requirements

https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-doc
umentation/

Technical
Requirements

https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-doc
umentation/

Contracts File: ./contracts/staking/AbstractStaking.sol
SHA3: 78fddfe57d130b80d28d2367c0766bb46bb86926c7039118c8021cd9c62eec57

File: ./contracts/staking/NFTDataOperator.sol
SHA3: 3ecf9e322ea6eed29ab0a2728be4a2c084693dca7f1399ea713d95112d08290b

File: ./contracts/staking/TholosStaking.sol
SHA3: 4efa4fe71acbcbac5ec6e248f0cbd77c2cc1423aa810eafce8f0f7599a5537cf

File: ./contracts/pools/AbstractPool.sol
SHA3: ba714443e71fe30e866c598cbc5db9bb00ed3bd6d644dcf394178d0cbbf19286

File: ./contracts/pools/DepositPool.sol
SHA3: 8d58e9125c0bbe6a6309b1fe6daa446b6c88412440d94a2406d30de87cf8cf28

File: ./contracts/utils/Configurable.sol
SHA3: 77c4c02f76ae5a3e60fad15fc0b3f105e60cc98f3cca83b59834d7a2c8f1aacb

File: ./contracts/interfaces/INFTDataOperator.sol
SHA3: 8286505c002b73742d63a99d0f11466cd8e51443e048ed131f6959b35597accf

File: ./contracts/interfaces/IPool.sol
SHA3: 8c4ce6698e2ed8c36cde856fdf97c279244f92e5293e3579b04150be34a13902

File: ./contracts/interfaces/IPool721.sol
SHA3: 78f30fa1dd6ff1932ee775e1a0e9e68fcbcdc3d224d9de8dee17de6f31690178

File: ./contracts/interfaces/IStaking.sol
SHA3: 0a630fa3048ffd1c7982cb935b9d0b47ff0673d7a7dbfb20e101f6d9ee4db6da

File: ./contracts/interfaces/ITholosStaking.sol

www.hacken.io
4

https://github.com/angel-block/angelblock-contracts
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/

SHA3: e85a7c6d32ad617bb545660c8b303982312e60f3ae1143daddadb8dd24731109

Second review scope

Repository https://github.com/angel-block/angelblock-contracts

Commit 90c3de501

Whitepaper https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-doc
umentation/

Functional
Requirements

https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-doc
umentation/
https://angelblock.io/blog/introducing-thol-and-nft-staking/
https://github.com/angel-block/angelblock-contracts/blob/master/docs/c
ontracts/README.md
https://github.com/angel-block/angelblock-contracts/blob/master/docs/c
ontracts/staking/README.md
https://github.com/angel-block/angelblock-contracts/blob/master/docs/c
ontracts/pools/README.md

Technical
Requirements

https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-doc
umentation/

Contracts File: ./contracts/staking/AbstractStaking.sol
SHA3: 88cabb5446fd10b81b6c74dcaf9e9fe3c8166ce0db0b7616d2d8d15816c9c180

File: ./contracts/staking/NFTDataOperator.sol
SHA3: 8c0c203d1f08cc025307620138690e676e083b4c0993a579970949d65e2c1b0f

File: ./contracts/staking/TholosStaking.sol
SHA3: 9549f225e8f463aef37848e9de126ad520d63525f43538959c2b7f9bc26e9846

File: ./contracts/pools/AbstractPool.sol
SHA3: c0d17f81437b3dca70e068e20203b98814298e8670cb276d32deca87987fe071

File: ./contracts/pools/DepositPool.sol
SHA3: 4b61b58f2d91aff48035e0b397c0042c67c6d4d309633a821ea6e07cc148eaf5

File: ./contracts/utils/Configurable.sol
SHA3: cea2b2e858ad5a382779e3931cf730d236a53493b77409fed32cab3588ff4473

File: ./contracts/interfaces/INFTDataOperator.sol
SHA3: ef9ccb15961ee32a02b7f692ecece502c1cf5e491aef78acb77e5f6b722d8a09

File: ./contracts/interfaces/IPool.sol
SHA3: 3248617e1455b9c78de4de9b7fab7a942f4686e9f4c849d676314004de065943

File: ./contracts/interfaces/IPool721.sol
SHA3: 654ca7211f426dabb64afab0006396863fafc914c6911d6060056a0119bfc6ca

File: ./contracts/interfaces/IStaking.sol
SHA3: f5234a40d2267778f584e330544bdc6893a3623c78b323a422dbfde6ce30351f

File: ./contracts/interfaces/ITholosStaking.sol
SHA3: 43fcad84166fbc3fd945438f5b51d49ee5c49f49e3b3cedf783d0860a9c1686a

www.hacken.io
5

https://github.com/angel-block/angelblock-contracts
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblock.io/blog/introducing-thol-and-nft-staking/
https://github.com/angel-block/angelblock-contracts/blob/master/docs/contracts/README.md
https://github.com/angel-block/angelblock-contracts/blob/master/docs/contracts/README.md
https://github.com/angel-block/angelblock-contracts/blob/master/docs/contracts/staking/README.md
https://github.com/angel-block/angelblock-contracts/blob/master/docs/contracts/staking/README.md
https://github.com/angel-block/angelblock-contracts/blob/master/docs/contracts/pools/README.md
https://github.com/angel-block/angelblock-contracts/blob/master/docs/contracts/pools/README.md
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided and detailed.
● Technical description is sufficient:

○ NatSpec is provided and sufficient.
○ Run instructions are provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● The code is well organized and follows best practices.

Test coverage
Code coverage of the project is 100.0% (branch coverage).

● Test coverage is sufficient.

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

The system users should acknowledge all the risks summed up in the risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

10 April 2023 12 1 2 0

18 May 2023 2 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Risks

● The TholosStaking smart contract uses a queue to handle unstake
requests. If the unstake queue size equals ten (10), it is impossible
to withdraw assets.

● The deposit and withdrawal of ERC721 assets are only supported for
the EOA wallets. In case of using Multi-sig or other smart contracts
for interaction with staking contracts, it is a user responsibility
to check if ERC721 tokens are supported.

● The vulnerability in AbstractStaking.sol could manifest when the
rewardPool's balance is depleted or its transfer allowance is
insufficient, potentially preventing users from withdrawing their
funds. Additionally, this system presents a risk of gas inefficiency
due to the unnecessary storage updates and token transfers in its
design.

www.hacken.io
8

System Overview

AngelBlock is a non-custodial, protocol based fundraising infrastructure
that allows to conduct token based raises in a more transparent,
decentralized, and democratized manner.

The audit is focused on the Staking part of the system. It consists of
following contracts:

● AbstractPool – an abstract smart contract which basically describes
the pool for accumulating deposited funds.

● DepositPool – a pool smart contract inherited AbstractPool, which
stores deposited assets and ERC721(NFTs) from staking. Tokens and
NFTs are part of the ecosystem and are clearly defined in the smart
contract. A smart contract has a keeper who can withdraw funds from
the smart contract.

● AbstractStaking – an abstract smart contract which basically
describes a staking mechanism. It is available to update the state of
the contract based on the compounding interest and rewards. It
ensures that the compounding process only happens if there are
sufficient rewards and an hour has passed since the last compounding
action. As a deposit are accepted ERC20 and ERC721(NFTs) tokens.

● TholosStaking – a staking smart contract inherited AbstractStaking.
It has extended functionality for calculating rewards. Unstaking is
only possible after a 10 day period after the unstake request.

● NFTDataOperator – a smart contract calculates the ERC20 tokens
equivalent for a given amount of WETH tokens based on the current and
previous NFT collection floor prices and volumes. It also ensures
that the calculated ERC20 per ERC721(NFTs) value is within the
allowed local cap range. The contract allows updating the local cap
values and is configurable by the owner..

● INFTDataOperator – an interface for NFTDataOperator smart contract.
● ITholosStaking – an interface for TholosStaking smart contract.
● IStaking – an interface describes basic staking functions.

TholosStaking smart contract inherits this interface.
● IPool – an interface for the deposit pool. Describes ERC20

interactions.
● IPool721 – an interface for the deposit pool. Describes ERC721(NFTs)

interactions.

Privileged roles
● The `keeper` of the DepositPool smart contract is able to withdraw

native ERC20 and ERC721(NFTs) tokens from the balance of the smart
contract.

● The `owner` of the NFTDataOperator is available to change cap range.
www.hacken.io

9

● The `admin` of the TholosStaking is available to configure the state
of the smart contract.

● The `manager` of the TholosStaking is available to set
maxNftRewardCap value.

● The `nft operator` of the TholosStaking is available to set the rate
between ERC20 native token and ERC721(NFT).

● The `upgrader` of the TholosStaking is available to upgrade the smart
contract.

Recommendations
● Provide more documentation and explanation of the project's

technical part.

www.hacken.io
10

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
12

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
13

Findings

Critical

No critical severity issues were found.

High

H01. Denial Of Service

The rewardPool value is an address of a smart contract or EOA wallet
with some balance of THOL ERC20 tokens. The flow of the staking
system is dependent on the balance of this address and the allowance
given to the staking contract.

There are many places in the staking system where this dependency
leads to a Denial of Service vulnerability, in which users, in the
worst case, are unable to withdraw deposited funds.

When the compound() function is performed, the balance of the
rewardPool address is checked and rewards are calculated based on its
value. Unfortunately, rewards are not transferred to the depositPool
during compound() execution, but are only stored virtually in the
pendingSum variable.

If the THOL balance of the rewardPool is depleted by actors other
than the staking contract, there will be no tokens to transfer for
the execution of the accrue() internal function, which will block the
deposit() and withdraw() external functions.

Additionally, if the allowance to transfer THOL tokens from the
rewardPool is dropped or insufficient, the same issue will happen.

The design choice to transfer the user pending rewards during the
accrue() internal function is Gas-inefficient for the users, as many
unneeded storage updates and token transfers are made.

Path:
./contracts/staking/AbstractStaking.sol : compound(), deposit(),
withdraw()

www.hacken.io
14

Recommendation: Rewards calculated during the execution of the
compound() function should be transferred to the depositPool at the
end of that execution. The transfer of rewards tokens in the accrue()
internal function should be removed.

This will prevent Denial of Service on the user-facing functions
deposit() and withdraw().

The lack of rewards in the rewardsPool or missing approval will only
affect the compound() function, but this will be desired and
expected.

The increment of the depositSum should be done when rewards are
added, and the use of pendingSum can be omitted as it will not be
needed.

Found in: ea726f7

Status: Mitigated (with Customer notice:

That’s intentional security design. rewardPool is a Gnosis Multisig 3
out of 5, that we are regularly using and maintaining appropriate
level of allowance. We plan on monthly basis to extend allowance for
more rewards needed for staking contract.

Denial of Service will never happen, since Gnosis Multisig will
always own 28M tokens and we will even top up the balance with earned
$THOL from Treasury Multisig. When we will reach around 10-15% of
free tokens available for rewards we will introduce governance token
(xTHOL, planned for future) to ensure staking is able to offer
rewards afterwards.) (Revised commit: 90c3de501)

H02. Invalid Calculations; Requirements Violation

Rewards from staking are not occurring passively; they are calculated
on demand using the compound() function.

There is a flawed logic/invalid design inside the compound()
function.

For users to receive the desired APY, the function needs to be called
every hour. When called at larger intervals (e.g. 2 hours, 24 hours),
the rewards will only be calculated for one hour.

This design leads to enormous costs (e.g., if each transaction costs
$10, the year of compounding will result in $88,000 in spending) of
maintaining the "auto-compounding" requirement from the
documentation:

“Stakers will periodically receive auto-compounded $THOL”

www.hacken.io
15

In addition, if withdraw() is done without performing the compounding
before, the user will not receive any rewards that have occurred in
the last period.

Path:
./contracts/staking/AbstractStaking.sol : compound()

Recommendation: Re-examine the auto-compounding design, add the
passage of time to the rewards calculation, and calculate the accrued
rewards for users when withdrawing.

Found in: ea726f7

Status: Mitigated (The code was updated to a reasonable value of 24
hours, and based on the on-chain activity, the project is calling the
compound() function at that interval.

Based on the changes and current price of calling the compound()
function by the protocol, the costs were reduced approximately by
95%.) (Revised commit: 90c3de501)

Medium

M01. Requirements Violation

In the project documentation:

https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-do
cumentation/staking-mechanism-and-implications

It is stated that “AngelBlock does not plan to lock, limit or take
fees on staked goods.”, however, there is a 10-day lock mechanism on
funds withdrawal.

Path:
./contracts/staking/TholosStaking.sol : _requestUnstake()

Recommendation: Consider following the requirements or updating the
documentation.

Found in: ea726f7

Status: Fixed (Revised commit: 90c3de501)

Low

L01. Solidity Style Guide Violation

The layouts of the AbstractPool, DepositPool, AbstractStaking,
TholosStaking, NFTDataOperator contracts violate the order of
functions convention.

Path:
./contracts/*

Recommendation: Follow the official Solidity code style guide.

www.hacken.io
16

https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/staking-mechanism-and-implications
https://angelblockprotocol.gitbook.io/angelblock-protocol-overview-documentation/staking-mechanism-and-implications
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-functions
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-functions
https://docs.soliditylang.org/en/v0.8.17/style-guide.html

Found in: ea726f7

Status: Mitigated (The project uses its own layout, but it is clean
and easily readable.) (Revised commit: 90c3de501)

L02. Missing Zero Address Validation

Address parameters are used without checking against the possibility
of 0x0. This issue is found in constructors and methods of every file
in the audit scope.

Path:
./contracts/*

Recommendation: Implement zero address checks.

Found in: ea726f7

Status: Mitigated (Not all zero address checks were implemented, but
contracts were correctly deployed and configured.) (Revised commit:
90c3de501)

L03. State Variables Default Visibility

The contract should specify a visibility level for all functions and
state variables. The state variable unstakeQueue has a default
visibility.

Path:
./contracts/staking/TholosStaking.sol : unstakeQueue

Recommendation: Specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Found in: ea726f7

Status: Fixed (Revised commit: 90c3de501)

L04. State Variables That Can Be Declared As Immutable

Compared to regular state variables, the gas costs of constant and
immutable variables are much lower. Immutable variables are evaluated
once at construction time and their value is copied to all the places
in the code where they are accessed.

This will lower the Gas taxes.

Paths:
./contracts/pools/AbstractPool.sol : erc20, keeper
./contracts/pools/DepositPool.sol : nft
./contracts/staking/NFTDataOperator.sol : staking

Recommendation: Declare mentioned variables as immutable.

www.hacken.io
17

Found in: ea726f7

Status: Fixed (Revised commit: 90c3de501)

L05. Typo in Comments

There are multiple spelling errors in the comments:

fullfiled -> fulfilled
begining -> beginning
compouund -> compound
calcuate -> calculate
necesarry -> necessary

Paths:
./contracts/utils/FixedSizeQueue.sol
./contracts/staking/AbstractStaking.sol
./contracts/staking/NFTDataOperator.sol

Recommendation: Spellings should be fixed.

Found in: ea726f7

Status: Fixed (Revised commit: 90c3de501).

L06. Redundant Code

In the ITholosStaking.sol interface, the NotStakedNFT error is
declared but is never used in the code.

Path:
./contracts/interfaces/ITholosStaking.sol : NotStakedNFT

Recommendation: Consider removing redundant code for better
readability.

Found in: ea726f7

Status: Fixed (Revised commit: 90c3de501).

L07. Gas Optimization

The ts member of the Compounding struct can be a smaller uint size
and be packed together with the freeRewards member.

Path:
./contracts/interfaces/IStaking.sol : Compounding

Recommendation: Consider packing the Compounding struct more
efficiently.

Found in: ea726f7

Status: Fixed (Revised commit: 90c3de501)

www.hacken.io
18

L08. Code Consistency

It is best practice to write code uniformly.

The data emitted in the UnstakeRequested event is inconsistent with
that emitted in the UnstakeClaimed event.

Path:
./contracts/interfaces/ITholosStaking.sol : UnstakeRequested,
UnstakeClaimed

Recommendation: Consider including address indexed sender also in the
UnstakeRequested event.

Found in: ea726f7

Status: Fixed (Revised commit: 90c3de501)

L09. OpenZeppelin Deprecated Function

The AccessControl OpenZeppelin contract's _setRole() function is
deprecated in favor of the _grantRole() function.

Paths:
./contracts/staking/AbstractStaking.sol : constructor()
./contracts/staking/TholosStaking.sol : configure()

Recommendation: Consider updating the said function.

Found in: ea726f7

Status: Fixed (Revised commit: 90c3de501)

L10. Code Clarity

The place where the _requestUnstake() function is called creates
confusion, similar to the missing interaction with ERC20 tokens in
the _withdraw() function.

Path:
./contracts/staking/TholosStaking.sol : _withdraw(),
_decreaseBalance()

Recommendation: Consider moving the _requestUnstake() function call
from the _decreaseBalance() to the _withdraw() function to increase
the readability of the code and the flow of funds.

Found in: ea726f7

Status: Reported (Code was not changed) (Revised commit: 90c3de501)

L11. Unchecked Transfer

In the _deposit() and _rewardPoolWithdraw() functions, the return
value of the .transferFrom() function calls is not checked.

www.hacken.io
19

Tokens may not follow ERC20 standard and return false in case of
transfer failure or not returning any value at all.

Even when interacting with your own token, it is best practice to use
SafeERC20 library.

Paths:
./contracts/staking/TholosStaking.sol : _rewardPoolWithdraw()
./contracts/staking/TholosStaking.sol : _deposit()

Recommendation: Use SafeERC20 library to interact with tokens safely.

Found in: ea726f7

Status: Mitigated (Contracts only operate with the THOL token, which
is a correct ERC20 token, and will revert on a failed transferFrom
call.) (Revised commit: 90c3de501)

L12. Gas Optimization

Inside the deposit() function in the AbstractStaking.sol contract,
balances[_account] is updated two times. First update occurs in
accrue() and second update occurs in _increaseBalance().
Additionally, only the first value of the Balance struct should be
updated second time, rate and extraRate will have the same value
during deposit() execution.

Similar situation occurs in the withdraw() function, Balance struct
for given address is updated 2 times in withdraw() execution.

Path:
./contracts/staking/AbstractStaking.sol : deposit(), withdraw()

Recommendation: Update members of the balances[_account] only once
during deposit() and withdraw() execution.

Found in: ea726f7

Status: Reported (Double time state variable updating left in the
code) (Revised commit: 90c3de501)

www.hacken.io
20

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
21

