
Customer: Cinch Protocol
Date: 12 May, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Cinch
Protocol

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type Yield Farming;

Platform EVM

Language Solidity

Methodology Link

Website https://www.cinchprotocol.io/

Changelog
19.04.2023 – Initial Review
09.05.2023 - Second Review
12.05.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.cinchprotocol.io/


Table of contents
Introduction 4
Scope 4
Severity Definitions 7
Executive Summary 8
Risks 9
System Overview 10
Checked Items 12
Findings 15

Critical 15
High 15

H01. Invalid Calculations 15
H02. Data Consistency 16
H03. Denial of Service; Ambiguous Third-Party Integration 17
H04. Race Condition; Data Consistency 17

Medium 18
M01. Gas Limit in Loops 18
M02. Unchecked Approve 18

Low 19
L01. Missing Zero Address Validation 19
L02. Function State Mutability Can Be Changed to Pure 19
L03. Style Guide Violation - Order of Functions 19
L04. Style Guide Violation - Order of Layout 20
L05. Gas Optimization 20
L06. Best Practice Violation: Checks-Effects-Interactions 21
L07. Contradiction: Missing Validation 21
L08. Missing Event for Critical Value Update 21
L08. Missing Event for Critical Value Update 22
L09. Contradiction: Parameter Name 22
L10. Best Practice Violation: Interface Declaration 22
L11. Use Of Hard-coded Values 23
L12. Redundant Code 23
L13. Commented Code 23
L14. Redundant Import 23
L15. Redundant Code 24

Disclaimers 25

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Cinch Protocol (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/cinchprotocol/contracts

Commit ab6639e019f64ca27c22876c9b62a3ca2baedf73

Functional
Requirements

https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-
iaBaloqv0/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBI
d5bz2a2Do/

Technical
Requirements

https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/i
ndex.md

Contracts File: ./v1/hardhat/contracts/revenueshare/GeneralRevenueShareLogic.sol
SHA3: b59f843ca1d7f206a22c2e0eef250b70a7593dc21c1ed750af4dada157479b18

File:
./v1/hardhat/contracts/revenueshare/GeneralYieldSourceAdapter.sol
SHA3: a9d3455976e3acf3935e9c1114831ce172e6d0c4e6368dcebd637c58e27a25f1

File: ./v1/hardhat/contracts/revenueshare/RevenueShareVault.sol
SHA3: 6b0a01a05a96fa1ba73e17c209b729bb52d0db2412b710689ae5443bc95870ab

File: ./v1/hardhat/contracts/revenueshare/RevenueShareVaultDHedge.sol
SHA3: 13610f7ac82f8bc752a851d59bc66eb8e5f5d31261617282bc8e3ae0397ad79a

File:
./v1/hardhat/contracts/revenueshare/RevenueShareVaultRibbonEarn.sol
SHA3: bca0f9d8b9d30753f0118142c19b52e32bf41a05a78f06aa940e6d44f26b1efb

File:
./v1/hardhat/contracts/revenueshare/interfaces/IYieldSourceContract.so
l
SHA3: 8b5417483fd0526d13805bb2e3d5dc74a9e816112653e7dccfdd40f5cfc53bc4

File:
./v1/hardhat/contracts/revenueshare/interfaces/IYieldSourceDHedge.sol
SHA3: 2f125bc2a4d6c51cd75233c04b9c62f63ecef55cccd23924f64676401fe90fc4

Second review scope

Repository https://github.com/cinchprotocol/contracts

www.hacken.io
4

https://github.com/cinchprotocol/contracts
https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-iaBaloqv0/
https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-iaBaloqv0/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBId5bz2a2Do/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBId5bz2a2Do/
https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/index.md
https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/index.md
https://github.com/cinchprotocol/contracts


Commit 3c7974006129490c308bb04856b98ad0c82fc522

Functional
Requirements

https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-
iaBaloqv0/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBI
d5bz2a2Do/
https://docs.cinchprotocol.io/cinch-protocol-documentation/

Technical
Requirements

https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/i
ndex.md

Contracts File: ./GeneralRevenueShareLogic.sol
SHA3: a5fe161a257ea342ba840d4f9216e435e652db40d701966a65cf8814586ab56b

File: ./GeneralYieldSourceAdapter.sol
SHA3: 2eed6405702f9f5d058e1965a05cd32dea06264a60cdfc2a40d53e3b42611691

File: ./RevenueShareVault.sol
SHA3: 1a1094f1cf804d8ba651d92db63454f42f8c3ff0b02e3dd94786d64c629d8778

File: ./RevenueShareVaultDHedge.sol
SHA3: df45c34251280d1450c5cc364646727c9255edc634fc3081dc278fb634540e43

File: ./RevenueShareVaultRibbonEarn.sol
SHA3: dc7d15ea6b4be81bb2f28c657a3e21b063886a4115850082c046f876dd820376

File: ./interfaces/IYieldSourceContract.sol
SHA3: c6b8d8fe6f75f83c8abce7d1a656ece683fd110999b82d744f74079e203e9cf2

File: ./interfaces/IYieldSourceDHedge.sol
SHA3: ed5e167c1ed0995bbd159125bebd92c67abce2f45ef7c6df6eee23575e3eb5b7

File: ./interfaces/IYieldSourceRibbonEarn.sol
SHA3: 3601384088ac4090e6370910b9caf49f78ec6c8a8ca7e2f204660451f0a23c97

File: ./security/DepositPausableUpgradeable.sol
SHA3: 60bc8be155fc79a3e620363fef9dc58bc96289ba61dd2b36ce1e2d2ce066ee76

Third review scope

Repository https://github.com/cinchprotocol/contracts

Commit 91a2896f7f6675471326ba4b7e6d3700eb81c314

Functional
Requirements

https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-
iaBaloqv0/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBI
d5bz2a2Do/
https://docs.cinchprotocol.io/cinch-protocol-documentation/

Technical
Requirements

https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/i
ndex.md

Contracts File: ./GeneralRevenueShareLogic.sol
SHA3: 8f9d85b364991f21d6a825ba4e872238f8eb1a94d0aec5e3b2a4490cbe604ec4

File: ./GeneralYieldSourceAdapter.sol
SHA3: a5c0d045635ebdfb3f0dffc72bc567265b2f5ccf17116a52e83ade903d842f44

File: ./RevenueShareVault.sol

www.hacken.io
5

https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-iaBaloqv0/
https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-iaBaloqv0/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBId5bz2a2Do/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBId5bz2a2Do/
https://docs.cinchprotocol.io/cinch-protocol-documentation/
https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/index.md
https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/index.md
https://github.com/cinchprotocol/contracts
https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-iaBaloqv0/
https://docs.google.com/document/d/1PTq_WxOf-07qjiAOD10d6FHtDdB3GeEBK-iaBaloqv0/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBId5bz2a2Do/
https://docs.google.com/document/d/12nkopFwwz0xqZGNzzpnlJ63a--mSYwqaBId5bz2a2Do/
https://docs.cinchprotocol.io/cinch-protocol-documentation/
https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/index.md
https://github.com/cinchprotocol/contracts/blob/main/v1/hardhat/docs/index.md


SHA3: 1a1094f1cf804d8ba651d92db63454f42f8c3ff0b02e3dd94786d64c629d8778

File: ./RevenueShareVaultDHedge.sol
SHA3: f60c4b8ef0b5ab56388554717064ca35e67694a2f8977b9c7863072bf6428a1d

File: ./RevenueShareVaultRibbonEarn.sol
SHA3: 2bee323d68cba419061a02595b94bd11909e4d4d08048eb4a59b02f88b0f8bf9

File: ./interfaces/IYieldSourceContract.sol
SHA3: c6b8d8fe6f75f83c8abce7d1a656ece683fd110999b82d744f74079e203e9cf2

File: ./interfaces/IYieldSourceDHedge.sol
SHA3: ed5e167c1ed0995bbd159125bebd92c67abce2f45ef7c6df6eee23575e3eb5b7

File: ./interfaces/IYieldSourceRibbonEarn.sol
SHA3: 3601384088ac4090e6370910b9caf49f78ec6c8a8ca7e2f204660451f0a23c97

File: ./security/DepositPausableUpgradeable.sol
SHA3: 60bc8be155fc79a3e620363fef9dc58bc96289ba61dd2b36ce1e2d2ce066ee76

www.hacken.io
6



Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● NatSpec is detailed.
● Run instructions are provided.
● Project overview is detailed.
● Use cases are described.
● The technical documentation for integration implementation is

partially provided.

Code quality
The total Code Quality score is 10 out of 10.

● Development environment is configured.
● Code follows best practices.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions by several users are tested.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

19 April 2023 10 2 3 0

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


09 May 2023 6 0 1 0

12 May 2023 0 0 0 0

Risks

● Integration with Ribbon Finance is only done in a limited form,
allowing users to forward deposits in their name. Withdrawal of funds
is left to be managed by users outside of the Cinch Protocol.
Integration is centralized and requires maintenance operations from
the contract owner.

● Cinch protocol integrates external protocols into its system, which
can introduce various risks and security concerns. The correctness of
the integrations is out of the audit scope.

www.hacken.io
9



System Overview

Cinch Protocol – is referral system for blockchain applications aimed at
democratizing economic opportunity by providing accessible decentralized
financial products through seamless integration with wallets, with the
following contracts:

● GeneralRevenueShareLogic – an abstract smart contract that implements
revenue share business logic with a referral system.

● GeneralYieldSourceAdapter - an abstract smart contract that serves as
a template for creating yield source adapters that interact with
various yield source vaults in a revenue-sharing system. The contract
provides a set of functions to interact with yield source vaults,
such as depositing assets, redeeming assets based on shares,
converting assets to shares, and converting shares to assets.

● RevenueShareVault – a smart contract inherited from
GeneralRevenueShareLogic and GeneralYieldSourceAdapter enables
users to deposit and withdraw assets into a yield source product,
with support for referrals. It provides functionalities for managing
asset deposits, share minting, asset redemptions, and querying
account balances with pausable and access control features.

● RevenueShareVaultDHedge – a smart contract that extends
RevenueShareVault and specializes in depositing and redeeming assets
in dHedge yield source vaults. It provides conversion functions for
assets to yield source shares, calculating share price, and querying
account balances in the yield source.

● RevenueShareVaultRibbonEarn – a smart contract that extends
RevenueShareVault and specializes in depositing assets into Ribbon
Earn yield source vaults. It provides functions for depositing
assets, querying share price and balances, and converting assets to
and from yield source shares.

● IYieldSourceContract – an interface for a yield source contract that
enables depositing and redeeming assets, as well as querying share
price, total supply, and individual account balances.

● IYieldSourceDHedge – an interface that enables depositing funds,
withdrawing funds, querying token price, total supply, and account
balances.

● IYieldSourceDHedgeSwapper – an interface that enables withdrawing
underlying assets while swapping them to a specified asset with
slippage protection.

Privileged roles
● The owner of the GeneralRevenueShareLogic can manage referrals,

adjust share allocations, and modify the Cinch performance fee

www.hacken.io
10



percentage, allowing them to control revenue share distribution and
enable deposits and withdrawals for the revenue shares.

● The owner of the GeneralYieldSourceAdapter can update the address of
the yield source vault.

www.hacken.io
11



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
12

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
13

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
14



Findings

Critical

No critical severity issues were found.

High

H01. Invalid Calculations

In the _convertAssetsToYieldSourceShares() and
_convertYieldSourceSharesToAssets() functions, calculations are done
incorrectly.

The calculations in the _convertAssetsToYieldSourceShares() and
_convertYieldSourceSharesToAssets() functions are highly dependent on
the integrated protocol and are prone to error.

The implementations done in the GeneralYieldSourceAdapter contract
are not taking into account the assets already stored in the
integrated protocol or the total supply of the shares.

In the GeneralYieldSourceAdapter abstract contract, those functions
should not contain a body and should be virtual without any
implementation.

Implementation of those functions should only be done in top-level
contracts where the protocol integration is done, this is the case in
the RevenueShareVaultRibbonEarn and RevenueShareVaultDHedge contracts
by overriding the implementation from abstract contract.

Unfortunately, the invalid logic is copied from the abstract contract
to the final implementation.

As the Cinch Protocol Revenue Share Vaults are only an intermediary
for the user funds to the integrated protocols, all the calculations
for conversions between assets and shares should be implemented based
on the integrated protocol conversions implementations.

The incorrect calculations in those functions affect the accuracy of
the mint(), withdraw(), and withdrawWithReferral() functions
initially. However, other functions are also affected.

The Cinch Protocol has been heavily tested, but it is using incorrect
and limited mock implementations of integrated protocols. The
assumptions in mock implementations that the share price is always 1
wei, or that the conversion ratio from asset to share and from share
to asset is always 1-to-1 are incorrect.

Paths:
./contracts/revenueshare/GeneralYieldSourceAdapter.sol:
_convertAssetsToYieldSourceShares(),
_convertYieldSourceSharesToAssets()
./contracts/revenueshare/RevenueShareVaultDHedge.sol:

www.hacken.io
15



_convertAssetsToYieldSourceShares(),
_convertYieldSourceSharesToAssets()
./contracts/revenueshare/RevenueShareVaultRibbonEarn.sol:
_convertAssetsToYieldSourceShares(),
_convertYieldSourceSharesToAssets()

Recommendation: Remove the implementation body of the
_convertAssetsToYieldSourceShares() and
_convertYieldSourceSharesToAssets() functions from the abstract
contract; this will also require marking the RevenueShareVault as
abstract.

Update the conversion calculations in the RevenueShareVaultDHedge and
RevenueShareVaultRibbonEarn based on those protocols'
implementations, directly extract the assets' value and total supply
of shares from those protocols, and use them to correctly perform the
conversion.

Update the mock protocol implementations to better reflect the real
values. For example, the share price should be equal to
1289033757439016251 and the total shares supply should be
7454095482755680176243. Conversion ratios cannot be 1-to-1.

Consider other functions implemented in the GeneralYieldSourceAdapter
that should be abstract, with implementation done in the specific
yield source vault.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

H02. Data Consistency

In the setYieldSourceVault() function, the yieldSourceVault storage
variable can be changed.

Changing this variable in already operating Revenue Share Vaults will
lead to the user funds being locked, as the shares stored in the
Revenue Share Vaults will not reflect the participation in the new
Yield Source Vault.

Only the yieldSourceSwapper storage variable appears to be
changeable, but there is no functionality for it.

Path:
./contracts/revenueshare/GeneralYieldSourceAdapter.sol:
setYieldSourceVault()

Recommendation: Remove the ability to change the yieldSourceVault
variable for Revenue Share Vaults in which shares of the integrated
protocol are stored in the contract.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

www.hacken.io
16



H03. Denial of Service; Ambiguous Third-Party Integration

In the _redeemFromYieldSourceVault() function in the
RevenueShareVaultDHedge contract, the integration with
DhedgeEasySwapper is done incorrectly.

The calculation of the expectedAmountOut value uses an incorrect
_convertYieldSourceSharesToAssets() function, which returns the USD
value of the shares with 18 decimal places.

The underneath asset of the Revenue Share Vault can be any asset, and
as such, the expectedAmountOut will be incorrect if the asset is not
a stablecoin.

Even if the underlying asset is a stablecoin such as USDC, the
integration is potentially vulnerable to a Denial of Service.

Function expects that assets withdrawn from shares after all swaps
done in the DhedgeEasySwapper contract will be worth more or equal to
the expectedAmountOut; however, in most cases, this will not be true,
as slippage needs to be accounted for in the calculation of the
expectedAmountOut.

The real price of the underneath asset must also be taken into
account in calculations, as even stablecoins can depeg, so the use of
an Oracle will be beneficial.

Path:
./contracts/revenueshare/GeneralYieldSourceAdapter.sol

Recommendation: The _convertYieldSourceSharesToAssets() function
needs to be updated to work correctly for any underlying asset and
calculate the maximum expected amount out of any asset.

Minimal slippage should be accounted to the expectedAmountOut, for
example, 1% to mitigate the potential DoS when redeeming.

Consider using Oracles in expectedAmountOut calculations.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

H04. Race Condition; Data Consistency

In the depositToRevenueShare() function, the assetsFrom_ function
parameter is not checked to see if it is equal to the msg.sender.

This leads to a situation where any approval given to the
RevenueShareVault contract by any user can be exploited by a
malicious actor by running the depositToRevenueShare() on their
behalf.

For example, the user is giving approval to deposit funds to the
RevenueShareVault contract, and before the user performs the deposit,

www.hacken.io
17



a malicious actor will perform depositToRevenueShare() with
assetsFrom_ set to the example user address.

Even though there is no financial gain for the malicious actor, the
state of the contract data is corrupted and user funds are lost.

Path:
./contracts/revenueshare/GeneralRevenueShareLogic.sol :
depositToRevenueShare()

Recommendation: Remove the assetsFrom_ function parameter and use
msg.sender as the ‘from’ for the depositToRevenueShare() function
execution.

Found in: 3c79740

Status: Fixed (Revised commit: 91a2896)

Medium

M01. Gas Limit in Loops

In the setTotalSharesInReferralAccordingToYieldSource() function,
there are two nested for loops that are not bounded; the first loop
operates on the limited length of the _referralSet variable, which is
controlled by the contract owner.

However, the second for loop is taken from an unlimited length of the
_userSetByReferral variable, which will constantly increase during
the contract lifetime, resulting in the Denial of Service of the
setTotalSharesInReferralAccordingToYieldSource() function, as the Gas
cost of the execution will be more than the block limit.

Path:
./contracts/revenueshare/RevenueShareVaultRibbonEarn.sol:
setTotalSharesInReferralAccordingToYieldSource()

Recommendation: Consider introducing a function that operates on a
bounded size and a predictable Gas consumption.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

M02. Unchecked Approve

The function does not use SafeERC20 library for checking the result
of ERC20 token approval. Tokens may not follow ERC20 standard and
return false in case of approve failure or not returning any value at
all.

Paths:
./contracts/revenueshare/GeneralYieldSourceAdapter.sol:
_depositToYieldSourceVault()
./contracts/revenueshare/RevenueShareVaultDHedge.sol:

www.hacken.io
18



_depositToYieldSourceVault(), _redeemFromYieldSourceVault()
./contracts/revenueshare/RevenueShareVaultRibbonEarn.sol:
_depositToYieldSourceVault()

Recommendation: Use SafeERC20 library to interact with tokens safely.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

Low

L01. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./contracts/revenueshare/RevenueShareVault.sol: initialize()
./contracts/revenueshare/GeneralYieldSourceAdapter.sol:
setYieldSourceVault()
./contracts/revenueshare/GeneralRevenueShareLogic.sol:
setTotalSharesByReferral()

Recommendation: Implement zero address checks.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L02. Function State Mutability Can Be Changed to Pure

The function redeemWithReferral() does not read or modify the
variables of the state and, due to that, can be declared pure.

This can lower Gas taxes.

Path:
./contracts/revenueshare/RevenueShareVaultRibbonEarn.sol:
redeemWithReferral()

Recommendation: Change function state mutability to pure.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L03. Style Guide Violation - Order of Functions

The provided projects should follow the official guidelines.
According to the Solidity Style Guide - Order of Functions section,
contracts should follow this order: constructor, receive function,
fallback function, external, public, internal, private. Functions
should be grouped according to their visibility. Additionally, within
a grouping, place the view and pure functions last.

www.hacken.io
19



Paths:
./contracts/revenueshare/GeneralRevenueShareLogic.sol
./contracts/revenueshare/GeneralYieldSourceAdapter.sol
./contracts/revenueshare/RevenueShareVault.sol
./contracts/revenueshare/DepositPausableUpgradeable
./contracts/revenueshare/RevenueShareVaultDHedge
./contracts/revenueshare/RevenueShareVaultRibbonEarn

Recommendation: Follow the official Solidity Guidelines for Order of
Functions.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L04. Style Guide Violation - Order of Layout

The provided projects should follow the official guidelines.
According to the Solidity Style Guide - Order of Layout section,
contracts should follow this order: Type declarations, State
variables, Events, Errors, Modifiers, Functions. In contracts
mentioned below, Events are declared before State variables.

Paths:
./contracts/revenueshare/GeneralRevenueShareLogic.sol
./contracts/revenueshare/GeneralYieldSourceAdapter.sol
./contracts/revenueshare/RevenueShareVault.sol
./contracts/revenueshare/DepositPausableUpgradeable

Recommendation: Follow the official Solidity Guidelines for Order of
Layout.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L05. Gas Optimization

In the depositToRevenueShare() function, the for loop is unbounded
and operates on the length of the added referrals; this value is
limited by the contract owner.

Inside the for loop, the totalSharesInReferral storage variable is
read multiple times, which is Gas inefficient.

Path:
./contracts/revenueshare/GeneralRevenueShareLogic.sol:
depositToRevenueShare()

Recommendation: Consider assigning the totalSharesInReferral storage
variable to a local memory variable.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

www.hacken.io
20

https://docs.soliditylang.org/en/v0.8.19/style-guide.html#order-of-functions
https://docs.soliditylang.org/en/v0.8.19/style-guide.html#order-of-functions
https://docs.soliditylang.org/en/v0.8.19/style-guide.html#order-of-layout
https://docs.soliditylang.org/en/v0.8.19/style-guide.html#order-of-layout


L06. Best Practice Violation: Checks-Effects-Interactions

Events should be emitted before interactions with external contracts.

In the withdrawFromRevenueShare() function, an event is emitted after
calling safeTransfer().

Path:
./contracts/revenueshare/GeneralRevenueShareLogic.sol:
withdrawFromRevenueShare()

Recommendation: Events should be emitted before the external calls.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L07. Contradiction: Missing Validation

The cinchPerformanceFeePercentage storage variable is set in the init
function, but it is not validated in the same way as in the
setCinchPerformanceFeePercentage() function.

Missing validation can lead to the contract being configured
incorrectly and potentially to underflow calculations in the
depositToRevenueShare() function.

Path:
./contracts/revenueshare/GeneralRevenueShareLogic.sol:
__GeneralRevenueShareLogic_init_unchained()

Recommendation: Consider adding validation checks in the
__GeneralRevenueShareLogic_init_unchained() function.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L08. Missing Event for Critical Value Update

In the __GeneralRevenueShareLogic_init_unchained() function, the
value of the cinchPerformanceFeePercentage variable is updated, but
no event is emitted.

As a result, users cannot subscribe to the events and check what is
happening within the project.

Path:
./contracts/revenueshare/GeneralRevenueShareLogic.sol:
__GeneralRevenueShareLogic_init_unchained()

Recommendation: Critical state changes should emit events for
tracking things off-chain.

www.hacken.io
21



Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L08. Missing Event for Critical Value Update

In the __GeneralYieldSourceAdapter_init_unchained() function, the
value of the yieldSourceVault variable is updated, but no event is
emitted.

As a result, users cannot subscribe to the events and check what is
happening within the project.

Path:
./contracts/revenueshare/GeneralYieldSourceAdapter.sol:
__GeneralYieldSourceAdapter_init_unchained()

Recommendation: Critical state changes should emit events for
tracking things off-chain.

Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L09. Contradiction: Parameter Name

In the _depositToYieldSourceVault() function, the parameter assets_
has confusing naming; the more relevant name should be amount_, which
will be in line with the function's NatSpec.

Path:
./contracts/revenueshare/RevenueShareVaultDHedge.sol:
_depositToYieldSourceVault()

Recommendation: Consider updating the parameter name to a more
suitable one.

Found in: ab6639e

Status: Fixed (Revised commit: 91a2896)

L10. Best Practice Violation: Interface Declaration

The IYieldSourceRibbonEarn interface is defined within the
RevenueShareVaultRibbonEarn.sol file, which also contains the
implementation for the RevenueShareVaultRibbonEarn contract.

As a best practice, it is recommended to declare interfaces in
separate files and import them as needed in relevant locations.

Path:
./contracts/revenueshare/RevenueShareVaultRibbonEarn.sol:
IYieldSourceRibbonEarn

Recommendation: Move IYieldSourceRibbonEarn interface to separate
file.

www.hacken.io
22



Found in: ab6639e

Status: Fixed (Revised commit: 3c79740)

L11. Use Of Hard-coded Values

The GeneralRevenueShareLogic abstract contract uses the hard-coded
value of 10000 in the code.

It is best practice to never use hard-coded values but declare
constants in their place.

Path:
./contracts/revenueshare/GeneralRevenueShareLogic.sol

Recommendation: Consider using a constant variable.

Found in: 3c79740

Status: Fixed (Revised commit: 91a2896)

L12. Redundant Code

After removing the setYieldSourceVault() function, the use of
OwnableUpgradeable in the GeneralYieldSourceAdapter contract is
unnecessary.

Path:
./contracts/revenueshare/GeneralYieldSourceAdapter.sol

Recommendation: Consider removing redundant code.

Found in: 3c79740

Status: Fixed (Revised commit: 91a2896)

L13. Commented Code

Within the RevenueShareVaultDHedge contract, there is a commented
code for the redeemWithReferral() function.

Commented code decreases code readability.

Path:
./contracts/revenueshare/RevenueShareVaultDHedge.sol

Recommendation: Consider removing commented code.

Found in: 3c79740

Status: Fixed (Revised commit: 91a2896)

L14. Redundant Import

Unused imports should be removed from the contracts.

www.hacken.io
23



Unused imports are allowed in Solidity and do not pose a direct
security issue. It is best practice to avoid them as they can
decrease readability.

The usage of IYieldSourceContract is unnecessary for the
GeneralYieldSourceAdapter contract.

Path:
./contracts/revenueshare/GeneralYieldSourceAdapter.sol

Recommendation: Remove the redundant import.

Found in: 3c79740

Status: Fixed (Revised commit: 91a2896)

L15. Redundant Code

In the RevenueShareVaultDHedge contract, there is redundant code:

The using MathUpgradeable for uint256; is redundant.

In the RevenueShareVaultRibbonEarn, there is redundant code:

The using MathUpgradeable for uint256; and using
EnumerableSetUpgradeable for EnumerableSetUpgradeable.AddressSet; are
redundant.

The EnumerableSetUpgradeable import in RevenueShareVaultRibbonEarn is
redundant.

Paths:
./contracts/revenueshare/RevenueShareVaultDHedge.sol
./contracts/revenueshare/RevenueShareVaultRibbonEarn.sol

Recommendation: Consider removing redundant code.

Found in: 3c79740

Status: Fixed (Revised commit: 91a2896)

www.hacken.io
24



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
25


