
Customer: Delorean
Date: May 19, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Delorean

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type DEX; Futures Yield Market

Platform EVM

Language Solidity

Methodology Link

Website delorean.exchange

Changelog 20.04.2023 – Initial Review
19.05.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://delorean.exchange/


Table of contents
Introduction 4
Scope 4
Severity Definitions 7
Executive Summary 8
Risks 9
System Overview 10
Checked Items 12
Findings 15

Critical 15
High 15

H01. Highly Permissive Role Access 15
H02. Data Consistency 15
H03. Data Consistency 16
H04. Highly Permissive Role Access - Undocumented Behavior 16
H05. Denial of Service - Loops Gas Limit 17
H06. Undocumented Behavior 17

Medium 17
M01. Non-Finalized Code 17
M02. Missing Event for Critical Value Update 18

Low 18
L01. Floating Pragma 18
L02. Unused Import 19
L03. Interface Mismatch 19
L04. Style Guide Violation 19
L05. Functions that Can Be Declared External 20
L06. Unused Variables 20
L07. Missing Zero Address Validation 20
L08. Variable Shadowing 21
L09. NatSpec Typo 21
L10. NatSpec Contradiction 21
L11. Repeatable Require Statement 22

Disclaimers 23

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Delorean (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/delorean-exchange/dlx-contracts

Commit 0f21779ac0de4f91256dc1ecb711d3d76e565707

Whitepaper

Functional
Requirements Link

Technical
Requirements Link

Contracts File: core/NPVSwap.sol
SHA3: 7081f6cee975a176f956d9af987b984562ee40217def8b28971bfca75023deb8

File: core/YieldSlice.sol
SHA3: 56b5d81690add771f2c7dbb259f8a904905a9f1e21d45059ad803bdb62510eb5

File: data/Discounter.sol
SHA3: 30b452100a0617f0fbc3060971905af19e5e42a111a7d3e2743db7b7159a0c9c

File: data/YieldData.sol
SHA3: b35eeb750baf6f021450df12b81801979b6f32e3477a3046cf08b712969003c9

File: interfaces/IDiscounter.sol
SHA3: 4e62f1d2848bc6f3ffc7476d44784bf7ac816c6118c8cb2d962ecdd76024668c

File: interfaces/IGLPRewardTracker.sol
SHA3: 845042a7292d5e2f90900ca61dfaf78f90dd96030701d9794e18a11cc5a4bdc6

File: interfaces/ILiquidityPool.sol
SHA3: 3b73d05aa137a1fa931118831602ace12736868952204da9d19b91607ce2488b

File: interfaces/IYieldSlice.sol
SHA3: 9da055dd16ea17e5eb4bcc7b2b605febb0024c262c23f57b19763d2a3a17648a

File: interfaces/IYieldSource.sol
SHA3: c7525c19126fb7b2f60822e41cc04c7c851095a2ec0d789097efd2de1787e111

File: interfaces/uniswap/IQuoterV2.sol
SHA3: ea11eb72f6abe02b260362df550771230069b88c45556a5ea740863ac256a390

File: interfaces/uniswap/ISwapRouter.sol
SHA3: f280975d73530056124d74c56b77fa14dbe16e07d1eabcd884d0a9511b60083f

www.hacken.io
4

https://delorean.gitbook.io/delorean/introduction/what-is-delorean
https://delorean.gitbook.io/delorean/introduction/what-is-delorean


File: interfaces/uniswap/IUniswapV3Factory.sol
SHA3: aedfca34aadf5f9a1e72e1891039f2a119e3fba7a1d7e512cea07e23d573c61e

File: interfaces/uniswap/IUniswapV3Pool.sol
SHA3: c55b1b0dfdb0f3f14ee1b308782c87d0ecebd7226c436c7f0283c5fb2d596d02

File: sources/StakedGLPYieldSource.sol
SHA3: 8acf3d3d1916f22699b462b0a872e55d0e7a6be1f2f0301a1bbbc1dbfaa5c7b8

File: tokens/NPVToken.sol
SHA3: 5c2b15fd56173001b5c3ebd85c37e98b5b6034a2de2511bbde5307e8459943af

File: liquidity/UniswapV3LiquidityPool.sol
SHA3: 89ca835c5d27364b65f60de948feee1f8f8548f09f86a5e742e9b629c633ff19

www.hacken.io
5



Second review scope

Repository https://github.com/delorean-exchange/dlx-contracts

Commit 767fb3182ea8f2aa6a2606be285a776059ce8434

Whitepaper

Functional
Requirements Link

Technical
Requirements Link

Contracts File: core/NPVSwap.sol
SHA3: 533ed046015a566955b27961a58490be3da5977a1ff23a4b2f664196f30edbbc

File: core/YieldSlice.sol
SHA3: 81e741b0ce1ab49de63d75b30e2e303cef879f949cfc715e00f50a159e7422c6

File: data/Discounter.sol
SHA3: 9908eff3da870a7b3db6914a32a8a8ee88d3d438eda2f548970bd1de6d6af9d6

File: data/YieldData.sol
SHA3: e59e50f5ffa975db9f7bc25a4efc40b7a83e16a69884a4b0b2167f1c182bd6a6

File: interfaces/IDiscounter.sol
SHA3: d90bb1976244d5dc31ad26a378ac14af36a01cbcaff57651a3389cd4bb2ab726

File: interfaces/IGLPRewardTracker.sol
SHA3: 845042a7292d5e2f90900ca61dfaf78f90dd96030701d9794e18a11cc5a4bdc6

File: interfaces/ILiquidityPool.sol
SHA3: 11c1934132843d46dd9a3119bab6af6539a4ab3f4971fba86fd62d059a717f07

File: interfaces/IYieldSource.sol
SHA3: c7525c19126fb7b2f60822e41cc04c7c851095a2ec0d789097efd2de1787e111

File: interfaces/uniswap/IQuoterV2.sol
SHA3: ea11eb72f6abe02b260362df550771230069b88c45556a5ea740863ac256a390

File: interfaces/uniswap/ISwapRouter.sol
SHA3: f280975d73530056124d74c56b77fa14dbe16e07d1eabcd884d0a9511b60083f

File: interfaces/uniswap/IUniswapV3Factory.sol
SHA3: aedfca34aadf5f9a1e72e1891039f2a119e3fba7a1d7e512cea07e23d573c61e

File: interfaces/uniswap/IUniswapV3Pool.sol
SHA3: c55b1b0dfdb0f3f14ee1b308782c87d0ecebd7226c436c7f0283c5fb2d596d02

File: liquidity/UniswapV3LiquidityPool.sol
SHA3: 5fa4b0a3f76e5568ffbcceb73ccf51199da73c6b5d28c5df961131589184ae8f

File: sources/StakedGLPYieldSource.sol
SHA3: dbc7f74e425d3f1ff4b0581fc7fb87f871146167f48ca1884194cf99c97666db

File: tokens/NPVToken.sol
SHA3: 7c80078edea0af226be123b74940ab15f69c5584c523f8cf371e9f4f994707e1

www.hacken.io
6

https://delorean.gitbook.io/delorean/introduction/what-is-delorean
https://delorean.gitbook.io/delorean/introduction/what-is-delorean


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements:
○ Overall system requirements are provided.
○ Use cases are described and detailed.

● Technical description:
○ Run instructions are provided.
○ Technical specification is provided.
○ NatSpec is satisfactory.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Solidity Style Guide is not followed perfectly, but the functions

order makes sense.

Test coverage
Code coverage of the project is 100.0% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases covered with tests.
● Interactions by several users are tested thoroughly.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0. The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

20 April 2023 11 2 6 0

19 May 2023 1 0 0 0

Risks

● Some functions within the contracts have nested loops, which could
potentially lead to Gas limit issues in specific scenarios.

● Users may face longer lock-up periods for their tokens if the yield
rate decreases, reducing their ability to access or trade the
underlying tokens.

● The project's contracts interact with external third-party contracts
that were not within the scope of this audit. As such, the stability,
security, and correct functioning of these external contracts cannot
be guaranteed.

● The project's smart contracts allow setting Epoch intervals during
deployment. This interval, once set, cannot be changed and can
significantly influence the contract's performance on the Arbitrum
network.
A low Epoch interval may lead to a high number of Epochs being
created, which can result in computationally intensive loops in
contract functions. This could lead to high transaction costs or even
risk of the Denial of Service.
On the other hand, a high Epoch interval may affect the precision of
the contract's computations.
Therefore, it is crucial to carefully select an Epoch interval that
ensures efficient functioning of the contract without causing
excessive computational load.

www.hacken.io
9



System Overview

Delorean is a decentralized finance (DeFi) protocol that focuses on tokens
generating real yield. The protocol aims to demonstrate the utility and
efficiency of a blockchain-based financial system through its focus on
real-yield tokens.
The system enables users to lock yield-generating tokens into debt slices,
in exchange for Net Present Value (NPV) tokens. Users can manage their
credit positions based on these NPV tokens. The protocol features
discounting mechanisms for calculating the present value of future cash
flows and yield calculation functions.

The files in the scope:
● NPVSwap.sol - the main entry point for the users where they can swap

future yield for upfront tokens.
● YieldSlice.sol - slice and transfer future yield based on net present

value.
● Discounter.sol - computes net present value of future yield based on

a fixed discount rate.
● YieldData.sol - keeps track of historical average yields on a

periodic basis. It uses this data to return the overall average yield
for a range of time in the `yieldPerTokenPerSlock` method.

● StakedGLPYieldSource.sol - wrapper interface for managing yield from
sGLP.

● NPVToken.sol - NPV tokens are used to track the net present value of
future yield.

● UniswapV3LiquidityPool.sol - wrapped interface to a Uniswap V3
liquidity pool.

● IDiscounter.sol - interface inherited by Discounter.sol, used in
YieldSlice.sol.

● IGLPRewardTracker.sol - used in StakedGLPYieldSource.sol.
● ILiquidityPool.sol - interface for UniswapV3LiquidityPool, inherited

by UniswapV3LiquidityPool.sol, used in NPVSwap.sol.
● IYieldSource.sol - interface inherited by StakedGLPYieldSource.sol,

used in YieldSlice.sol.
● IUniswapV3Pool.sol - interface for interacting with UniswapV3Pool,

used in UniswapV3LiquidityPool.sol. Inherits 6 files that are out of
the scope.

● IUniswapV3Factory.sol - interface for interacting with
UniswapV3Factory

● ISwapRouter.sol - interface for interacting with Uniswap SwapRouter,
used in UniswapV3LiquidityPool.sol.

● IQuoterV2.sol - interface for interacting with Uniswap QuoterV2, used
in UniswapV3LiquidityPool.sol.

www.hacken.io
10



Privileged roles
● YieldSlice :

○ Gov :
■ Can set the gov role.
■ Can set the treasury address.
■ Can set the dust limit.
■ Can set the debt fee.
■ Can set the credit fee.

● YieldData :
○ Owner :

■ Can Set the writer address.
○ Writer :

■ Can Record new data.
● Discounter :

○ Owner :
■ Can Set the projected daily yield rate.
■ Can Set the max days of projected future yield to sell.

● StakedGLPYieldSource :
○ Owner :

■ Can Set a new owner.
■ Can Deposit sGLP.
■ Can Withdraw sGLP.
■ Can harvest.

● NPVToken :
○ Owner (YieldSlice.sol):

■ Can mint tokens.
■ Can burn own tokens.

www.hacken.io
11



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
12

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
13

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
14



Findings

Critical

No critical severity issues were found.

High

H01. Highly Permissive Role Access

The owner of the YieldData.sol contract can change the writer from
the YieldSlice contract to any desired address. The writer is the
only address responsible for recording new data (debt data or credit
data). The YieldSlice contract is designed to work with two trackers
debtData and creditData, both set during the construction of the
YieldSlice contract.

If the owner changes the writer to a malicious or compromised
address, unauthorized manipulation of the data could occur, resulting
in incorrect yield calculations for both debt and credit sides. This
may cause unexpected behavior within the protocol, undermining its
overall functionality and reliability.

Path: ./src/data/YieldData.sol : setWriter()

Recommendation: Permit changing the writer for the YieldData contract
only once after deployment or implement access control mechanisms
such as OpenZeppelin's Ownable and utilize a multi-signature wallet
for owner operations to minimize single points of failure.
Additionally, consider introducing a timelock for critical owner
actions like changing the writer. This would allow the community to
review changes and respond accordingly. Providing public
documentation on the purpose and usage of this functionality would
further enhance transparency and ensure the integrity of the yield
tracking process for both debt and credit sides.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

H02. Data Consistency

Using a hardcoded deadline of 1 second (block.timestamp + 1) for a
swap on Uniswap V3 leaves very little time for the transaction to be
included in a block. It also exposes users to the potential risk of
miner timestamp manipulation.

With such a short deadline, there is a higher chance of transactions
failing due to network congestion, delays in transaction inclusion,
or miner timestamp manipulation. This can cause inconvenience for
users, who would need to resend their transactions.

Path: ./src/liquidity/UniswapV3LiquidityPool.sol : swap()

www.hacken.io
15



Recommendation: Allow users to pass their own deadline from the
frontend, providing them with the flexibility to set a more
appropriate deadline based on network conditions and their own risk
tolerance. This reduces the risk of failed transactions and potential
manipulation while improving the user experience.

Found in: 0f21779

Status: Mitigated (The deadline for transactions was extended from 1
to 10 seconds, reducing the risk of failure. Price fluctuations are
managed by user-defined parameters 'amountOutMinimum' and
'sqrtPriceLimitX96', enhancing transaction safety.)

H03. Data Consistency

The transferOwnership function in the YieldSlice contract does not
prevent transferring ownership of credit or debt slices to the
YieldSlice contract itself or redundant transfers to the current
owner.

Additionally, functions debtSlice, mintFromYield, creditSlice and
receiveNPV() do not prevent setting the YieldSlice contract as a
recipient.

This can lead to potential issues like loss of control, unintended
behavior or permanently locked assets.

Path: ./src/core/YieldSlice.sol : transferOwnership(), debtSlice(),
mintFromYield(), creditSlice(), receiveNPV()

Recommendation: Create a modifier to check if the recipient is not
the address of the YieldSlice contract. Apply this modifier to the
functions transferOwnership, debtSlice, mintFromYield, creditSlice,
and receiveNPV.

Additionally, add a check for transferOwnership to prevent redundant
transfer ownership to the current slice owner.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

H04. Highly Permissive Role Access - Undocumented Behavior

The Gov role in YieldSlice can set the debt fee and the credit fee.
These fees are limited to extremely high values (Max debt fee: 50%,
Max credit fee: 20%).

There is no documentation about the level of these fees.

Path: ./src/core/YieldSlice.sol

Recommendation: Lower the maximum fees or inform the users about
these maximums in the public documentation.

www.hacken.io
16



Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

H05. Denial of Service - Loops Gas Limit

Transaction execution costs should not depend dramatically on the
amount of data stored on the contract. There should not be any cases
when execution fails due to the block Gas limit.

generatedDebt() and generatedCredit() perform a loop that can reach
the Gas limit and then revert. Even if these two functions are view
functions, they are used by mutative functions; therefore, they can
create a Denial of Service.

Path: ./src/core/YieldSlice.sol : generatedDebt(), generatedCredit()

Recommendation: Prevent these loops from reaching the Gas limit.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

H06. Undocumented Behavior

According to the documentation, NPVSwap.sol is supposed to be the
entry point contract for the users. However, the users can interact
directly with the YieldSlice contract.

Path: ./src/

Recommendation: Align the documentation with the implementation.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

Medium

M01. Non-Finalized Code

The code should not contain forge-std/console.sol imports. The code
should be finalized for production.

Paths: ./src/core/NPVSwap.sol

./src/core/YieldSlice.sol

./src/data/YieldData.sol

./src/liquidity/UniswapV3LiquidityPool.sol

./src/sources/StakedGLPYieldSource.sol

Recommendation: Remove unfinalized code, which is only for
development purposes.

www.hacken.io
17



Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

M02. Missing Event for Critical Value Update

Critical state changes should emit events for tracking things
off-chain.

The functions do not emit events on change of important values.

This may lead to the inability for users to subscribe events and
check what is going on with the project.

Paths: ./src/data/Discounter.sol : setDaily(), setMaxDays()

./src/core/YieldSlice.sol : setDebtFee(), setCreditFee(), setGov(),
setDustLimit(), setTreasury(), _harvest(), recordData(), debtSlice(),
mintFromYield(), transferOwnership()

./src/core/NPVSwap.sol : lockForNPV(), swapNPVForSlice(),
lockForYield(), swapForSlice(), mintAndPayWithYield()

./src/sources/StakedGLPYieldSource.sol : setOwner()

./src/data/YieldData.sol : setWriter()

Recommendation: Emit events on critical state changes.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

Low

L01. Floating Pragma

The project uses floating pragmas ^0.8.13.

Paths: ./src/core/NPVSwap.sol

./src/core/YieldSlice.sol

./src/data/Discounter.sol

./src/data/YieldData.sol

./src/liquidity/UniswapV3LiquidityPool.sol

./src/sources/StakedGLPYieldSource.sol

./src/tokens/NPVToken.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

www.hacken.io
18



Found in: 0f21779

Status: Reported

L02. Unused Import

UniswapV3LiquidityPool.sol imports IUniswapV3Factory.sol but does not
use it.

Path: ./src/liquidity/UniswapV3LiquidityPool.sol

Recommendation: Remove unused import.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

L03. Interface Mismatch

IYieldSlice.sol is used to represent YieldSlice.sol but is not
inherited by it.

Path: ./src/core/YieldSlice.sol

Recommendation: YieldSlice.sol should inherit IYieldSlice.sol.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

L04. Style Guide Violation

The provided projects should follow the official guidelines.

Inside each contract, library or interface, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be grouped according to their visibility and
ordered:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

Within a grouping, place the view and pure functions last.

Constants variables should be in UPPER_CASE_WITH_UNDERSCORES
(YieldSlice.unallocId).

www.hacken.io
19



Path: ./src/

Recommendation: Follow the official Solidity guidelines.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

L05. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save gas.

Paths: ./src/core/NPWSwap.sol : previewSwapYieldForNPV(),
previewSwapYieldForNPVOut(), previewSwapNPVForYield(),
previewSwapNPVForYieldOut(), swapNPVForSlice(),
previewLockForYield(), previewSwapForSlice(), lockForYield(),
swapForSlice(), mintAndPayWithYield()

./src/core/YieldSlice.sol : recordData(), tokens(), remaining()

./src/data/YieldData.sol : yieldPerTokenPerSecond()

Recommendation: Use the external attribute for functions never called
from the contract.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

L06. Unused Variables

The variable nominalGen is never used.

The variable deposits is never used.

Paths: ./src/core/YieldSlice.sol : unlockDebtSlice()

.src/sources/StakedGLPYieldSource.sol : deposits

Recommendation: Remove unused import.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

L07. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths: ./src/core/YieldSlice.sol : constructor(), setGov(),
setTreasury(), debtSlice(), transferOwnership(), creditSlice()

./src/sources/StakedGLPYieldSource.sol : setOwner()

www.hacken.io
20

https://docs.soliditylang.org/en/v0.8.17/style-guide.html


./src/liquidity/UniswapV3LiquidityPool.sol : constructor(), swap()

Recommendation: Implement zero address checks.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

L08. Variable Shadowing

IDiscounter.pv().nominal shadows:

- IDiscounter.nominal()

IDiscounter.nominal().pv shadows:

- IDiscounter.pv()

Path: ./src/interfaces/IDiscounter.sol

Recommendation: Rename related variables/arguments.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

L09. NatSpec Typo

In the NatSpecs of the function yieldPerTokenPerSecond(), the fourth
parameter is described as “tokens” instead of “yield”.

Path: ./src/data/YieldData.sol : yieldPerTokenPerSecond()

Recommendation: Rename NatSpec parameter.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

L10. NatSpec Contradiction

In the NatSpecs of the function cumulativeYieldCredit(), it is
specified :

Amount of yield generated in the contract's lifetime, exclusive
of refunded amounts.

Instead of subtracting the refunded amounts, the function adds the
cumulative paid yield.

Path: ./src/core/YieldSlice.sol : cumulativeYieldCredit()

Recommendation: Provide more explanation about the formula used.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

www.hacken.io
21



L11. Repeatable Require Statement

The check if the caller is the owner is repeatable in the
StakedGLPYieldSource contract.

Repeating require statements throughout the contract code can lead to
unnecessary code duplication. This can make the codebase harder to
maintain and more prone to errors.

Path: ./src/sources/StakedGLPYieldSource.sol

Recommendation: Use a modifier instead of repeating require
statements. It will make code more maintainable, consistent and
readable, while potentially improving Gas efficiency.

Found in: 0f21779

Status: Fixed (Revised commit: 767fb31)

www.hacken.io
22



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
23


