
Customer: Dexalot
Date: 22 May, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Dexalot

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type Request For Quote

Platform EVM

Language Solidity

Methodology Link

Website https://dexalot.com/

Changelog
25.04.2023 – Initial Review
16.05.2023 - Second Review
22.05.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://dexalot.com/


Table of contents
Introduction 4
Scope 4
Severity Definitions 6
Executive Summary 7
Risks 8
System Overview 9
Checked Items 10
Findings 13

Critical 13
High 13

H01. Upgradeability Issues 13
Medium 13
Low 13

L01. Inefficient Gas Model - Loop of Storage Interactions 13
L02. Missing Zero Address Validation 14
L03. Functions that Can Be Declared External 14
L04. Boolean Equality 14
L05. Duplicate Code 15

Disclaimers 16

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Dexalot (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Dexalot/contracts

Commit f8881f901e3680cdf281de7ef8e2812e4a89ec8d

Whitepaper Link

Functional
Requirements Link

Technical
Requirements Link

Contracts File: contracts/MainnetRFQ.sol
SHA3: 334e4563a80a14c1707118924c89971eb32b9d407d94be8778597b06202d4ad8

Second review scope

Repository https://github.com/Dexalot/contracts

Commit 4d650f9152b5c90a63a25f13c2a0176c2632526d

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/MainnetRFQ.sol
SHA3: 36be1f2e5698e8e9b9e9c0aa7efc002d60f48d2d5eaaf83c179356b307e3c12b

Third review scope

Repository https://github.com/Dexalot/contracts

Commit e2cfd502dd25949661675f5f905f8506ae112477

Whitepaper Link

www.hacken.io
4

https://github.com/Dexalot/contracts
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://github.com/Dexalot/contracts/blob/main/README.md
https://github.com/Dexalot/contracts
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated
https://github.com/Dexalot/contracts
https://dexalot.com/docs/DEXALOT-Litepaper.pdf


Requirements Link

Technical
Requirements Link

Contracts File: contracts/MainnetRFQ.sol
SHA3: 94c7dc33ae76ba2502a07fd48760687ff4b1aa11799aad1186c2d9b7011b0a1b

www.hacken.io
5

https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are missing. Only the Litepaper is provided,
but contract specific description is limited to technical
description.

● Technical specifications, including NatSpec are provided and very
detailed.

● Description of the development environment is sufficient.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Style guides are not followed perfectly, but the function

organization makes sense.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases are covered.
● Interactions by several users are not tested thoroughly.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7. The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

25 April 2023 5 0 1 0

16 May 2023 1 0 0 0

22 May 2023 0 0 0 0

Risks

● The off-chain REST API used to get a signed quote that also
determines the swap rate of the assets is out of this audit scope and
its security can not be guaranteed.

www.hacken.io
8



System Overview

The scope of this audit consists of an upgradeable contract that handles
swapping of any two assets based on a signed quote that is generated
through an off-chain REST API. The swapping details, such as the amounts
and receivers, are determined by the quote generated by the REST API.

The files in the scope:
● MainnetRFQ.sol - The contract that handles the signature verified

swapping.

Privileged roles
● swapSigner: creates signature.
● rebalancer: rebalances inventory of the smart contract, updates quote

expiry and quote maker amount.
● default admin: manages swapSigner and rebalancer addresses. Sets

trusted contracts, changes the admin, and can pause/unpause the
contract, set slippage tolerance.

● trusted contracts: can initiate a swap manually, without the need for
user interaction.

Recommendations

● In the batchClaimBalance() function, read the rebalancer variable to
memory and use that instead of reading from storage in every
iteration.

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



Findings

Critical

No critical severity issues were found.

High

H01. Upgradeability Issues

The contract is upgradable but does not follow the upgradability best
practices by not adding a gap in the contract storage.

This may lead to contract storage layout corruption during an
upgrade.

The contract inherits EIP712Upgradeable that contains a __gap
variable, but it is a best practice to create a new __gap variable
that will be more accessible due to variables order.

Path: ./contracts/MainnetRFQ.sol

Recommendation: add a gap to the contract storage to allow future
upgradability.

Found in: f8881f901e3680cdf281de7ef8e2812e4a89ec8d

Status: Fixed

(Revised commit: 4d650f9152b5c90a63a25f13c2a0176c2632526d) (__gap
variable is added.)

Medium

No medium severity issues were found.

Low

L01. Inefficient Gas Model - Loop of Storage Interactions

In the batchClaimBalance() function, the variable rebalancer is read
from storage in every loop iteration.

Accessing storage variables multiple times is not very Gas efficient.

Path: ./contracts/MainnetRFQ.sol : batchClaimBalance()

Recommendation: read rebalancer variable to memory and use the memory
variable inside the while loop.

Found in: f8881f901e3680cdf281de7ef8e2812e4a89ec8d

Status: Fixed

www.hacken.io
13

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps


(Revised commit: 4d650f9152b5c90a63a25f13c2a0176c2632526d)
(rebalancer variable is now msg.sender and there is an access control
modifier)

L02. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/MainnetRFQ.sol : initialize(), addAdmin(),
addTrustedContract()

Recommendation: implement zero address checks.

Found in: f8881f901e3680cdf281de7ef8e2812e4a89ec8d

Status: Fixed

(Revised commit: 4d650f9152b5c90a63a25f13c2a0176c2632526d) (Zero
address checks are added)

L03. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Path: ./contracts/MainnetRFQ.sol : intialize()

Recommendation: use the external attribute for functions never called
from the contract.

Found in: f8881f901e3680cdf281de7ef8e2812e4a89ec8d

Status: Fixed

(Revised commit: 4d650f9152b5c90a63a25f13c2a0176c2632526d)
(initializer is declared external)

L04. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Path: ./contracts/MainnetRFQ.sol : simpleSwap(), claimBalance(),
batchClaimBalance()

Recommendation: remove boolean equality.

Found in: f8881f901e3680cdf281de7ef8e2812e4a89ec8d

Status: Fixed

(Revised commit: e2cfd502dd25949661675f5f905f8506ae112477)

www.hacken.io
14



L05. Duplicate Code

The check if the caller is the rebalancer is repeated several times
instead of being used in a modifier.

require(msg.sender == rebalancer, "RF-OCR-01");

Repeating require statements throughout the contract code can lead to
unnecessary code duplication. This can make the codebase harder to
maintain and more prone to errors.

Path: ./contracts/MainnetRFQ.sol : claimBalance(),
batchClaimBalance(), receive()

Recommendation: use a modifier instead of repeating require
statements. It will make code more maintainable, consistent and
readable, while potentially improving Gas efficiency.

Found in: f8881f901e3680cdf281de7ef8e2812e4a89ec8d

Status: Fixed

(Revised commit: 4d650f9152b5c90a63a25f13c2a0176c2632526d) (access
control is used and rebalancer is now the REBALANCER_ADMIN_ROLE role)

www.hacken.io
15



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
16


