
Customer: Inqubeta
Date: 19 May, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Inqubeta

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website https://inqubeta.ai

Changelog 17.05.2023 – Initial Review
19.05.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
C01. Access Control Violation 10

High 10
Medium 10
Low 10

L01. Copying of Well-Known Contract 10
Informational 11

I01. Style Guide Violation / Function Order 11
Disclaimers 12
Appendix 1. Severity Definitions 13

Risk Levels 13
Impact Levels 14
Likelihood Levels 14
Informational 14

Appendix 2. Scope 15

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Inqubeta (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The scope of this audit is an ERC20 token contract with a fixed supply and
burn functionality, that has additional functionality to take fees from
UniSwapV2 pairs. The fee amounts and pair addresses are controlled by the
fee distributor role, which can be set and changed by the owner of the
contract.
The files in the scope:

● IFeeCollector.sol: The interface for recording buy and sell fees that
took place.

● InQubeta.sol: The ERC20 token with fixed supply, burnability, and fee
functionality for transfers involving UniswapV2 pairs.

Privileged roles
● Default Admin: Set FEE_DISTRIBUTOR_ROLE, set fees, add/remove pairs.
● FEE_DISTRIBUTION_ROLE: Disable/enable fees, collect fees.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● Functional requirements are detailed.
● Technical description is provided, but fee logic is not explained

precisely.
● Description of the development environment is present.
● NatSpec is present.

Code quality
The total Code Quality score is 9 out of 10.

● The development environment is configured.
● Solidity style guides are not followed.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Since the audit scope has lines of code less than 250, the test
coverage does not contribute to the final score.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7.

The system users should acknowledge all the risks summed up in the risks
section of the report.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

17 May 2023 1 0 0 1

19 May 2023 0 0 0 0

Risks

● The fee amounts can be changed by the Default Admin Role at any
moment.

● The fee-on-transfer mechanism will significantly increase the Gas
cost of the DEX swaps for pairs added to the fee mechanism.

● The implementation of IFeeCollector.sol is out of this audits scope
and the safety of its usage in InQubeta.sol contract cannot be
verified.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not
Relevant

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Not

Relevant

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not
Relevant

Style Guide
Violation

Style guides and best practices should
be followed. Failed I01

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

C01. Access Control Violation

Impact High

Likelihood High

The burn(address addr, uint256 amount) function is implemented in a
way that allows anyone to call burn for tokens belonging to any other
address.

This can lead to losses of funds and issues with access control.

Path: ./contracts/tokens/InQubeta.sol : burn()

Recommendation: Implement the external burn(address addr, uint256
amount) function so that it does not have a burn address as input; it
should burn tokens from the caller directly.

Found in: e05db0adf7637bda3443f1125467d510894abb08

Status: Fixed (Revised commit: 6bbaa3c) (ERC20Burnable OpenZeppelin
library is used for burning functionality.)

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

L01. Copying of Well-Known Contract

Impact Low

Likelihood Medium

The burnability functionality is implemented from scratch instead of
importing from Openzeppellin.

It is best practice to use well-known contracts directly.

Path: ./contracts/tokens/InQubeta.sol : burn(), burnFrom()

Recommendation: Consider using ERC20Burnable directly from
Openzeppellin.

www.hacken.io
10

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Burnable.sol


Found in: e05db0adf7637bda3443f1125467d510894abb08

Status: Fixed (Revised commit: 6bbaa3c) (ERC20Burnable OpenZeppelin
library is used for burning functionality.)

Informational

I01. Style Guide Violation / Function Order

The project should follow the official code style guidelines.
Inside each contract, library, or interface, use the following order:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be grouped according to their visibility and
ordered:

● constructor
● receive function (if exists)
● fallback function (if exists)
● external
● public
● internal
● private

Within a grouping, place the view and pure functions at the end.

Path: ./contracts/tokens/InQubeta.sol

Recommendation: The official Solidity style guidelines should be
followed.

Found in: e05db0adf7637bda3443f1125467d510894abb08

Status: Reported (Solidity style guides are not followed.)

www.hacken.io
11



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
12



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
13



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
14



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/techbandorg/InQubeta-smartcontract

Commit e05db0adf7637bda3443f1125467d510894abb08

Requirements Link

Technical
Requirements Link

Contracts File: contracts/interfaces/IFeeCollector.sol
SHA3: 0b29b3b64a1990a3ebe8037a1b3b7150157f52e6b832ebc8fc760962a3ff3e81

File: contracts/tokens/InQubeta.sol
SHA3: 45192a126dbe14970c4bb5cdb4839f5519904db529efe15a269d7e01219346bb

Second review scope

Repository https://github.com/techbandorg/InQubeta-smartcontract

Commit 6bbaa3cead90678115377eadcf7188d1e823f223

Requirements Link

Technical
Requirements Link

Contracts
Addresses

https://etherscan.io/address/0xE77473C4973ad064E04C80959dd56DD4886efcA
9#code

Contracts File: contracts/interfaces/IFeeCollector.sol
SHA3: 0b29b3b64a1990a3ebe8037a1b3b7150157f52e6b832ebc8fc760962a3ff3e81

File: contracts/tokens/InQubeta.sol
SHA3: 1de4bd1f0c5d9773572b8dad1a190121f5b4048c7c3a633e889f50197c937623

www.hacken.io
15

https://github.com/techbandorg/InQubeta-smartcontract
https://docs.google.com/document/d/1HxXKwHZgOewIWBf5ami1VRy8hpJ-cLZ1KV10-VCdsLA/edit?usp=sharing
https://docs.google.com/document/d/1HxXKwHZgOewIWBf5ami1VRy8hpJ-cLZ1KV10-VCdsLA/edit?usp=sharing
https://github.com/techbandorg/InQubeta-smartcontract
https://docs.google.com/document/d/1HxXKwHZgOewIWBf5ami1VRy8hpJ-cLZ1KV10-VCdsLA/edit?usp=sharing
https://docs.google.com/document/d/1HxXKwHZgOewIWBf5ami1VRy8hpJ-cLZ1KV10-VCdsLA/edit?usp=sharing
https://etherscan.io/address/0xE77473C4973ad064E04C80959dd56DD4886efcA9#code
https://etherscan.io/address/0xE77473C4973ad064E04C80959dd56DD4886efcA9#code

