
Customer: KAIF DAO Platform
Date: January 06, 2023



This report may contain confidential information about IT
systems and the intellectual property of the Customer, as well as
information about potential vulnerabilities and methods of their
exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for KAIF
DAO Platform

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token; Vesting

Platform EVM

Language Solidity

Methodology Link

Changelog
07.12.2022 – Initial Review
14.12.2022 – Second Review
06.01.2023 – Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0


Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 14

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by KAIF DAO Platform (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://gitlab.com/kaif-cabinet/kaif-smart-contract/

Commit 56ddd932843b754b5d8cdd222ecea3435f11286a

Functional
Requirements

Link

Technical
Requirements

Link

Contracts File: ./contracts/Vesting.sol
SHA3:078ed60266c2802e8cb9790aa6b0934596d3a33bf7ebe643a9b55984a4ce9eee

File: ./contracts/Token.sol
SHA3:ac33ad31f47fb65268c9a142c73300b13ea74c9e4d16ccad2c7af5a4da437d4c

File: ./contracts/interface/ITokenVesting.sol
SHA3:ef39aaa1755821c47f20c4de96d4b330dd46b98e9073ca3f55197cbbf1ede5d1

Second review scope
Repository https://gitlab.com/kaif-cabinet/kaif-smart-contract/

Commit 9686cadb4c4d3839f81f06ed3325fd58bc804c23

Functional
Requirements

Link

Technical
Requirements

Link

Contracts File: ./contracts/Vesting.sol
SHA3:190d6b47fb1872408b216237cf13f10677693b1f484f97bc48f63f3f73c03317

File: ./contracts/Token.sol
SHA3:d9a9d7190127e6caf3555dce91e0f13b9c2ca4cdc038b24470705079ce428ba4

File: ./contracts/interface/ITokenVesting.sol
SHA3:ef39aaa1755821c47f20c4de96d4b330dd46b98e9073ca3f55197cbbf1ede5d1

Third review scope
Repository https://gitlab.com/kaif-cabinet/kaif-smart-contract/

www.hacken.io
4

https://docs.google.com/document/d/1zBeXb5UW-63OirWWUH6Kr4vc1a50oZZ0hq7A-HqTPMs
https://gitlab.com/kaif-cabinet/kaif-smart-contract/-/blob/56ddd932843b754b5d8cdd222ecea3435f11286a/README.md
https://docs.google.com/document/d/1zBeXb5UW-63OirWWUH6Kr4vc1a50oZZ0hq7A-HqTPMs
https://gitlab.com/kaif-cabinet/kaif-smart-contract/-/blob/e45d0c0d1afc334024b07a302b295b6071f0dd0e/README.md


Commit 5fb5a1780b8cbda1c5c4ce9441d0dc3b679012f9

Functional
Requirements

Link

Technical
Requirements

Link

Contracts File: ./contracts/Vesting.sol
SHA3:053968881f5d57b27bc3e350203d88a5c50afaf0d162e3ddb490ea594ece7c1d

File: ./contracts/Token.sol
SHA3:d9a9d7190127e6caf3555dce91e0f13b9c2ca4cdc038b24470705079ce428ba4

File: ./contracts/interface/ITokenVesting.sol
SHA3:ef39aaa1755821c47f20c4de96d4b330dd46b98e9073ca3f55197cbbf1ede5d1

www.hacken.io
5

https://docs.google.com/document/d/1zBeXb5UW-63OirWWUH6Kr4vc1a50oZZ0hq7A-HqTPMs
https://gitlab.com/kaif-cabinet/kaif-smart-contract/-/blob/e45d0c0d1afc334024b07a302b295b6071f0dd0e/README.md


Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to assets loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect the code
quality

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional description is provided.
● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● The code follows the official Solidity style guides.

Test coverage
Code coverage of the project is 100% (branch coverage).

● The testing environment is set up.
● Deployment and basic user interactions are covered with tests.
● Positive and negative cases are covered.
● Interactions by several users are tested thoroughly.

Security score
As a result of the audit, the code does not contain issues. The security
score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

7 December 2022 4 0 0 0

14 December 2022 0 0 0 0

06 January 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114


Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10



System Overview

KAIF DAO Platform is a vesting system with the following contracts:
● Token — ERC-20 token that mints all initial supply to a specified

address. Additional minting is not allowed. Contains a custom method
for setting the start of the vesting TGE (Token Generation Event). It
has the following attributes:

○ Name: specified as constructor parameter during deployment
○ Symbol: specified as constructor parameter during deployment
○ Decimals: 18
○ Total supply: 809.710.000 tokens.

● Vesting - a vesting contract for managing token generation events,
participants and destinations. It is focused on multisig wallets.

● ITokenVesting - an interface that exposes the “setStartAt” method
from the Vesting contract.

Privileged roles
● DEFAULT_ADMIN_ROLE: Contract deployer.

○ Can set a public round vest for custom addresses and amounts.
○ Can set a seed round vest for custom addresses and amounts.
○ Can set a private round one vest for custom addresses and

amounts.
○ Can set a private round two vest for custom addresses and

amounts.
○ Can set a marketing vest for a custom address and amount.
○ Can set a main team vest for custom addresses, amounts and

percentages.
○ Can set a foundation vest for custom addresses and amounts.
○ Can withdraw all withdrawable tokens (token balance not meant

to be claimed by any vest).
● MULTISIG_ROLE: EOA wallet that represents the participant of vesting.

○ Can add a vesting schedule for additional users other than the
original vesting founders.

● STARTER_ROLE: The Token address.
○ Can set the “startAt” variable to the current block timestamp.

Risks
No potential risks were found.

www.hacken.io
11



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

1. Unindexed Events

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

Paths: ./contracts/Vesting.sol : event Claimed(), event
VestingCreated(), event BatchVestingCreated()

Recommendation: Use the “indexed” keyword to at least one of the
event parameters.

Status: Fixed (Revised commit: 9686cad)

2. Style Guide Violation

The project should follow the official guidelines.

Inside each contract, library or interface, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be grouped according to their visibility and
ordered:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

Scientific notation in the form of 2e10 is recommended to aid
readability if using literals with too many digits, underscores can
be used to separate the digits of a numeric literal as well.

Path: ./contracts/Vesting.sol

www.hacken.io
12



Recommendation: Follow the official Solidity
guidelines.

Status: Fixed (Revised commit: 9686cad)

3. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths: ./contracts/Vesting.sol ./contracts/Token.sol

Recommendation: Implement zero address checks.

Status: Fixed (Revised commit: 9686cad)

4. Reading State Variables in a Loop

Reading a state variable or an attribute of it may be costly, in
terms of Gas fees.

Path: ./contracts/Vesting.sol : setMainTeamVestFor(),
setAdditionalTeamVestFor(), claim(), getVestedAmount(),
_batchVestFor()

Recommendation: Save the state variable or its attribute into a local
variable and perform updates after the loop.

Status: Fixed (Revised commit: 9686cad)

www.hacken.io
13

https://docs.soliditylang.org/en/v0.8.13/style-guide.html


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
14


