
Customer: Leancoin
Date: May 29, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another
Party. Any subsequent publication of this report shall be without
mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Leancoin

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OÜ

Type Fungible token; Vesting; Migration

Platform Solana

Language Rust

Methodology Link

Website https://leancoin.io/

Changelog
31.03.2023 – Initial Review
25.04.2023 – Second Review
22.05.2023 – Third Review
29.05.2023 – Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://leancoin.io/


Table of Contents
Introduction 4
Scope 4
Severity Definitions 8
Executive Summary 9
Risks 10
System Overview 11
Checked Items 12
Findings 15

Critical 15
C01. Denial of Service State 15
C02. Denial of Service 15
C03. Denial of Service State 16

High 16
H01. Requirements Violation 16
H02. Denial of Service State 17

Medium 17
M02. Inconsistent Data 17
M03. Eager Division 18
M04. Documentation Mismatch 18
M05. Immutable Ownership 19
M06. Best Practice Violation 19

Low 19
L02. Redundant Code 19
L03. Usage Of Star Imports 20
L04. Floating Language Version 20
L05. Vulnerable Dependency (Informational) 21
L06. Redundant Architecture 21
L07. Redundant Architecture 21
L08. Redundant Calculations 21
L09. Misleading Architecture 22
L10. Contradiction 22
H03. Documentation Mismatch 22
L11. Redundant Code 23

Disclaimers 24

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Leancoin (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project includes review and security analysis of the
following smart contracts from the provided repository:

Initial review scope

Repository https://github.com/Leancoin/Leancoin/

Commit 7a155aac8da784746962499de1846390b91ab3fb

Whitepaper https://docs.leancoin.io/leancoin-white-paper/

Functional
Requirements https://docs.leancoin.io/swap-lean/

Technical
Requirements ./README.md

Contracts File: ./programs/LeanManagementToken/src/account.rs
SHA3: 74d4fac5d659d5216af687cb9e47d40cb00bbb6f2b0da743ff7b8f8b1a6d8361

File: ./programs/LeanManagementToken/src/context.rs
SHA3: c470d636727c093941479005e6fb13471e3b03194e7b7409e31ae50deaa790c1

File: ./programs/LeanManagementToken/src/error.rs
SHA3: 89e7875d373ae70f1eed8620f7ff0296a1344371c72fd22343fec1a38440a621

File: ./programs/LeanManagementToken/src/lib.rs
SHA3: 8d6d6c153f43c29959719e08ee8cb2185f4029d0a7738aa54a4fbde29bd31473

File: ./programs/LeanManagementToken/src/utils.rs
SHA3: 9516bdcd6b555c3474a595dcb4ee7a76ad0cd8fe1d0765df4f9cdbf53e64e83b

www.hacken.io
4

https://github.com/Leancoin/Leancoin/
https://github.com/Leancoin/Leancoin/tree/7a155aac8da784746962499de1846390b91ab3fb
https://docs.leancoin.io/leancoin-white-paper/
https://docs.leancoin.io/swap-lean/
https://github.com/Leancoin/Leancoin/blob/7a155aac8da784746962499de1846390b91ab3fb/README.md


Second review scope

Repository https://github.com/Leancoin/Leancoin/

Commit 0e060f54bfd7dacbd01d802a72824bd980b1d346

Whitepaper https://docs.leancoin.io/leancoin-white-paper/

Functional
Requirements https://docs.leancoin.io/swap-lean/

Technical
Requirements ./README.md

Contracts File: ./programs/LeanManagementToken/src/account.rs
SHA3: 87cd8efd48b9738b990f4e76b715648599e4a3861ada23624925bc223e3ffb31

File: ./programs/LeanManagementToken/src/context.rs
SHA3: 2c921a5b3b7f69466819ab01e47cfc22ed8883f8cab2630802a637c26d0c2649

File: ./programs/LeanManagementToken/src/error_codes.rs
SHA3: 79f71282fb242d001dcfbad2c072bd7674d08db46048231208411be8a7921e4e

File: ./programs/LeanManagementToken/src/lib.rs
SHA3: 587f8a2049543fd2a3d6282ccbe2676044c28aa2fe92b978b715fcf16e94aa9c

File: ./programs/LeanManagementToken/src/utils.rs
SHA3: ca901abb88aca20d3371851a7b1171dc6643157657eb358d0b2a85c3f98f3aea

www.hacken.io
5

https://github.com/Leancoin/Leancoin/
https://github.com/Leancoin/Leancoin/tree/0e060f54bfd7dacbd01d802a72824bd980b1d346
https://docs.leancoin.io/leancoin-white-paper/
https://docs.leancoin.io/swap-lean/
https://github.com/Leancoin/Leancoin/blob/0e060f54bfd7dacbd01d802a72824bd980b1d346/README.md


Third review scope

Repository https://github.com/Leancoin/Leancoin/

Commit 52746b8fee5780e38c93f3ee5b202049cf4e5666

Whitepaper https://docs.leancoin.io/leancoin-white-paper/

Functional
Requirements https://docs.leancoin.io/swap-lean/

Technical
Requirements ./README.md

Program Id CeFVa5iijJASnRmMCvrHep8wVYRZ3XxAmgXArNJhpjmx

SPL-token
mint address 7297kX7SEZ1do223VsjTAC2MS9gLxPJoxFs9UMwiG4oS

Contracts File: ./programs/LeanManagementToken/src/account.rs
SHA3: bda0484adf3ca234d3b668d82ca381d2464207f314bf05018a7bdf7b7fc671a0

File: ./programs/LeanManagementToken/src/context.rs
SHA3: ce4eab2a24dffb79890f730e17047d22550e02d1d3b260b060c586ab1076f439

File: ./programs/LeanManagementToken/src/error_codes.rs
SHA3: 81322272435c5e8b2597b4dbbd53bb30022e20f1716c4642409e101ebce57309

File: ./programs/LeanManagementToken/src/lib.rs
SHA3: 4752febf3ca2e8b2f57502eb39dc050edf581fc6f9552ca1ffdd09e2bce37888

File: ./programs/LeanManagementToken/src/utils.rs
SHA3: da7daa072b790ac241c0d4bec0c95c501335636295c7d9cb44f00067b1e63a5e

Fourth review scope

Repository https://github.com/Leancoin/Leancoin/

Commit c5102aa2fba7fb9044b7d88dfcea3c026a8f1d8e

Whitepaper https://docs.leancoin.io/leancoin-white-paper/

Functional
Requirements https://docs.leancoin.io/swap-lean/

Technical
Requirements ./README.md

Program Id CeFVa5iijJASnRmMCvrHep8wVYRZ3XxAmgXArNJhpjmx

SPL-token
mint address 7297kX7SEZ1do223VsjTAC2MS9gLxPJoxFs9UMwiG4oS

Contracts File: ./programs/LeanManagementToken/src/account.rs
SHA3: bda0484adf3ca234d3b668d82ca381d2464207f314bf05018a7bdf7b7fc671a0

www.hacken.io
6

https://github.com/Leancoin/Leancoin/
https://github.com/Leancoin/Leancoin/tree/52746b8fee5780e38c93f3ee5b202049cf4e5666
https://docs.leancoin.io/leancoin-white-paper/
https://docs.leancoin.io/swap-lean/
https://github.com/Leancoin/Leancoin/blob/52746b8fee5780e38c93f3ee5b202049cf4e5666/README.md
https://github.com/Leancoin/Leancoin/
https://github.com/Leancoin/Leancoin/tree/c5102aa2fba7fb9044b7d88dfcea3c026a8f1d8e
https://docs.leancoin.io/leancoin-white-paper/
https://docs.leancoin.io/swap-lean/
https://github.com/Leancoin/Leancoin/blob/c5102aa2fba7fb9044b7d88dfcea3c026a8f1d8e/README.md


File: ./programs/LeanManagementToken/src/context.rs
SHA3: 8fc675d7bf3ef6cdfdb37f368f99634c02f3bf9c4c1a2ef6080a51a867839efc

File: ./programs/LeanManagementToken/src/error_codes.rs
SHA3: 81322272435c5e8b2597b4dbbd53bb30022e20f1716c4642409e101ebce57309

File: ./programs/LeanManagementToken/src/lib.rs
SHA3: 24638d8b5a1a007474656ff04bffc0d31d4cc6da14ef87d4002addd9f6fabd44

File: ./programs/LeanManagementToken/src/utils.rs
SHA3: da7daa072b790ac241c0d4bec0c95c501335636295c7d9cb44f00067b1e63a5e

www.hacken.io
7



Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused code
or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality.

www.hacken.io
8



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● The technical description is clear and contains all essential
commands on how to build/test/deploy the project.

● The functional requirements fully describe the user interaction flow
and system-owned functionality.

Code quality
The total Code Quality score is 10 out of 10.

● Development environment is configured.
● Architecture and code purpose are clear.
● There is minor duplication of code and redundancy.
● Redundant version field in ./rust-toolchain.toml.

Test coverage
Code coverage of the project is ~90%.

● All contract methods are called during testing.
● Comments representing human-readable representation of used

timestamps are incorrect.
● The Rust tests for set_token_metadata(..) are vacuous. However, the

typescript integration tests are satisfactory; yet, an extra effort
(the steps are not provided in the docs) is required to make them
work.

Security score
As a result of the audit, the code does not contain security issues. The
security score is 10 out of 10.

All found issues are displayed in the Findings section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

www.hacken.io
9

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

March 31, 2023 9 5 3 1

April 25, 2023 2 0 0 2

May 22, 2023 0 0 0 0

May 29, 2023 0 0 0 0

Risks

● The deployed code may differ from the one audited.
● Unless the smart contract is deployed with the --final parameter, it

could be upgraded and its functionality may be changed.
● Anyone is able to initialize the program by calling initialize (can

be called only once). It is recommended to perform deployment and
initialization in one transaction.

● The correctness of migration via
leancoin::import_ethereum_token_state() cannot be statically verified
in the scope of the audit. Therefore, users should ensure that the
contract state after the migration meets expectations.

● In case no one called the leancoin::burn() function in the first five
days of the month, the “burning” wallet balance is not changed.

● It may be impossible to migrate a lot of accounts from Ethereum to
Solana using the leancoin::import_ethereum_token_state() function.

www.hacken.io
10



System Overview

Leancoin is a fungible token that is migrated from Ethereum (ERC20) to
Solana (SPL-Token based).

After contract deployment, a special migration function is supposed to be
executed (no more than once). Its goal is to reflect the system wallet
balances from the token on Ethereum, scaled by a constant factor (which
represents the difference between the old and the new token precision/total
supply).

Four special wallets are migrated: “community”, “partnership”, “marketing”,
and “liquidity”. Each of the special wallet balances is locked according to
a corresponding vesting schedule, whereby the contract owner can trigger a
transfer of an unlocked vested amount to the designated externally-owned
“deposit” wallet.

There is also a “burning” wallet which allows burning 5% of held funds in
the first 5 days of each month.

Therefore, the token comes into circulation in two ways:
● By the initial migration. Some migrated accounts may be owned by

general market participants.
● By vesting unlocks. The token amounts are moved from the special

vesting wallets to the externally-owned deposit wallet, which in turn
can distribute its balance to general market participants.

Privileged roles
Owner (represented by account::ContractState::authority) has the exclusive
right to execute:

● leancoin::importn_s_ethereum_toketate(..) — allows the owner to
import balances from implementation on Ethereum (only once)

● leancoin::withdraw_tokens_from_community_wallet(..) — allows the
owner to withdraw vested funds from the community wallet

● leancoin::withdraw_tokens_from_partnership_wallet(..) — allows the
owner to withdraw vested funds from the partnership wallet

● leancoin::withdraw_tokens_from_marketing_wallet(..) — allows the
owner to withdraw vested funds from the marketing wallet

● leancoin::withdraw_tokens_from_liquidity_wallet(..) — allows the
owner to withdraw vested funds from the liquidity wallet

● leancoin::change_authority(..) — allows the owner to transfer
ownership

● set_token_metadata(..) – allows the owner to change the name, symbol
and uri parameters of the token metadata.

www.hacken.io
11



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Integer
Overflow and
Underflow

If unchecked math is used, all math operations
should be safe from overflows and underflows. Passed

Unchecked Call
Return Value

The return value of a message call should be
checked. Passed

Access Control
& Authorization

Ownership takeover should not be possible. All
crucial functions should be protected. Users
could not affect data that belongs to other
users.

Passed

Assert
Violation

Properly functioning code should never reach a
failing assert statement. Passed

Deprecated Rust
Functions

Deprecated built-in functions should never be
used. Passed

DoS (Denial of
Service)

Execution of the code should never be blocked by
a specific contract state unless required. Passed

Block values as
a proxy for
time

Block numbers should not be used for time
calculations. Not Relevant

Signature
Unique Id

Signed messages should always have a unique id. A
transaction hash should not be used as a unique
id. Chain identifiers should always be used.

Not Relevant

Weak Sources of
Randomness

Random values should never be generated from
Chain Attributes or be predictable. Not Relevant

Race Conditions Race Conditions and Transactions Order Dependency
should not be possible. Passed

Calls Only to
Trusted
Addresses

All external calls should be performed only to
trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused variables if
this is not justified by design. Passed

Assets
Integrity

Funds are protected and cannot be withdrawn
without proper permissions or be locked on the
contract.

Passed

User Balances
Manipulation

Contract owners or any other third party should
not be able to access funds belonging to users. Passed

www.hacken.io
12



Data
Consistency

Smart contract data should be consistent all over
the data flow. Passed

Flashloan
Attack

When working with exchange rates, they should be
received from a trusted source and not be
vulnerable to short-term rate changes that can be
achieved by using flash loans. Oracles should be
used.

Not Relevant

Token Supply
Manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Passed

Gas and Loops
Transaction execution costs should not depend
dramatically on the amount of data stored on the
contract.

Passed

Compiler
Warnings

The code should not force the compiler to throw
warnings. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and deploy
the code.

Passed

Secure Oracles
Usage

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Tests Coverage

The code should be covered with unit tests. Test
coverage should be sufficient, with both negative
and positive cases covered. The usage of
contracts by multiple users should be tested.

Passed

Stable Imports The code should not reference draft contracts,
that may be changed in the future. Passed

Unsafe Rust
code

The Rust type system does not check the memory
safety of unsafe Rust code. Thus, if a smart
contract contains any unsafe Rust code, it may
still suffer from memory corruptions such as
buffer overflows, use after frees, uninitialized
memory, etc.

Passed

Missing rent
exemption
checks

All Solana accounts holding an Account, Mint, or
Multisig must contain enough SOL to be considered
rent exempt. Otherwise, the accounts may fail to
load.

Passed

Unset or
unsettable
SPL-token
metadata

If a contract defines an SPL-token, it should
ensure that the token metadata is set or can be
set later. If that is not the case, it would be
impossible to properly integrate with blockchain

Passed

www.hacken.io
13



explorers, exchanges, etc.

Too recent
Solana
libraries used

Due to Solana release conventions, there may be
several latest standard library crate versions
that are not ready for mainnet.

Passed

www.hacken.io
14



Findings

Critical

C01. Denial of Service State

In the calculate_month_difference function, the end.month -
start.month action is performed, where DateTime.month is u8. The case
end.month < start.month is not processed, so an underflow (or panic,
depending on the compiler configuration) may happen.

This may lead to the inability to perform vesting withdrawal if the
current month is lower than the month of vesting start (for example,
if the start date is in April 2023 and a withdrawal is done in
January 2024).

Path: ./programs/LeanManagementToken/src/utils.rs:
calculate_month_difference()

Recommendation: Convert the values to signed integers to avoid an
integer underflow.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

C02. Denial of Service

The functions perform subtraction of unsigned integers to compute
already_withdrawn_amount as: initial_wallet_balance -
wallet_account.amount

For example, for the community wallet, already_withdrawn_amount is
set as: vesting_state.initial_community_wallet_balance -
ctx.accounts.community_account.amount

It is possible to increase wallet_account.amount by directly
transferring tokens there. Once the migration is performed,
initial_wallet_balance equals to wallet_account.amount, so it is
enough to send 1 to wallet_account to make the computation of
already_withdrawn_amount cause an integer underflow and panic.

The withdrawal functions attacked this way would be blocked forever,
and the vested funds would become stuck.

Path: ./programs/LeanManagementToken/src/lib.rs:

● withdraw_tokens_from_community_wallet()
● withdraw_tokens_from_partnership_wallet()
● withdraw_tokens_from_marketing_wallet()
● withdraw_tokens_from_liquidity_wallet()

Recommendation: Process the case consciously. Consider making
already_withdrawn_amount a signed integer. Alternatively - track

www.hacken.io
15



already_withdrawn_amount in a separate variable, instead of deriving
it from the account balance.

Found in: 7a155aa

Status: Fixed (Revised commit: b5f7fa1)

C03. Denial of Service State

It is stated in the official documentation that the total supply of
LEAN is 10 billion, and that the community wallet share is 10%;
therefore, the initial community wallet balance is 1 billion or 10^9.

According to InitializeContext (at src/context.rs), 1 LEAN is equal
to 10^9 base units (note mint::decimals = 9 at the mint field
declaration). Therefore, the initial community wallet balance is
10^(9 + 9) base units.

Because the computation of amount_unlocked is done in u64, the
overflow in the expression
vesting_start_account_balance * (months_since_vesting_start + 1)
will happen when months_since_vesting_start becomes greater than or
equal to ceil(2^64 / vesting_start_account_balance - 1), where
vesting_start_account_balance is equal to 10^18. Therefore,
months_since_vesting_start needs to be at least 18 for the overflow
to happen.

Consequently, after 18 months since the vesting started, the
community wallet withdrawal function
withdraw_tokens_from_community_wallet() will become blocked
indefinitely.

Note that the vesting period duration is supposed to be 39 months.
Therefore, about 5.5% of the total supply would be blocked.

Path: ./programs/LeanManagementToken/src/lib.rs:
calculate_unlocked_amount_community_wallet()

Recommendation: Do the computations in u128, then map the result back
to u64.

Found in: 0e060f5

Status: Fixed (Revised commit: b5f7fa1)

High

H01. Requirements Violation

According to the vesting requirements, for each vesting wallet, it
should not be possible to withdraw more funds than have been unlocked
up to this moment.

www.hacken.io
16



The functions allow the withdrawal of funds that are not unlocked
yet. This is because unlocked_amount equals the total unlocked amount
of tokens at the moment, and the value is not modified by already
withdrawn funds.

Once unlocked_amount is greater than zero, the wallet can be fully
drained.

Path: ./programs/LeanManagementToken/src/lib.rs:

● withdraw_tokens_from_community_wallet()
● withdraw_tokens_from_partnership_wallet()
● withdraw_tokens_from_marketing_wallet()
● withdraw_tokens_from_liquidity_wallet()

Recommendation: Consider the amount that has been withdrawn up to the
current point in time during the amount_available_to_withdraw value
calculation.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

H02. Denial of Service State

In the function, the loop over the year variable may never exit.

This happens when the days variable equals 365, and the year variable
contains a leap year. In this case, no actions with days and year
variables are performed within the cycle, and the break condition is
not reached, so an infinite loop happens.

This may lead to the unavailability of some smart contract methods on
December 31 of a leap year.

Path: ./programs/LeanManagementToken/src/utils.rs: parse_timestamp()

Recommendation: Add a break instruction for this case.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

Medium

M02. Inconsistent Data

In the function, the match statement should not process special
wallets (“community”, “partnership”, “marketing”, “liquidity”) twice
i.e. it should require that a wallet name is not duplicated.

This may lead to the wallets obtaining more funds than their initial
balances are assigned, causing an inconsistent state situation.

www.hacken.io
17



Path: ./programs/LeanManagementToken/src/lib.rs:
import_ethereum_token_state()

Recommendation: Implement the check for wallet duplicates.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

M03. Eager Division

Division is done too early, which worsens the rounding error.

● In utils::calculate_unlocked_amount_marketing_wallet(..), the
division by 100 on lines 330, 331 could be done as

let amount_unlocked = (vesting_start_account_balance * 40 +
(months_since_vesting_start - 12) *
(vesting_start_account_balance * 5)) / 100

● In utils::calculate_unlocked_amount_community_wallet(..), line
358 could be written as

let amount_unlocked = vesting_start_account_balance *
(months_since_vesting_start + 1) / 40

This may make it impossible to withdraw a small amount of vested
tokens.

Path: ./programs/LeanManagementToken/src/utils.rs

Recommendation: Defer division as much as possible according to the
suggestions in the description.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

M04. Documentation Mismatch

The functions contain the expression amount_unlocked.max(1) which
produces a sharp rounding-up that goes against the vesting schedule
formula declared in the documentation/comments.

Additionally, the situation hitting this rounding-up should not be
possible in practice, because otherwise it means that the initial
vesting balance is impractically small.

Path: ./programs/LeanManagementToken/src/utils.rs:
● calculate_unlocked_amount_marketing_wallet()
● calculate_unlocked_amount_community_wallet()

Recommendation: Remove .max(1) or explicitly document this behavior.

www.hacken.io
18



Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

M05. Immutable Ownership

The contract is designed in a way that ownership cannot be
transferred.

This may lead to the impossibility to update the owner in critical
situations.

Path: ./programs/LeanManagementToken/src/lib.rs

Recommendation: Implement an ability to transfer contract ownership.

Status: Fixed (Revised commit: 0e060f5)

M06. Best Practice Violation

The utils::calculate_month_difference function fully relies on start
<= end.

Assuming that this condition is true, the conversion of result value
via unsigned_abs() may lead to wrong assumptions about which input
data is accepted and unexpected hidden bugs during future
development.

Path: ./programs/LeanManagementToken/src/utils.rs:
calculate_month_difference()

Recommendation: Use try_from instead of getting absolute value for
cases where the value processed is expected to not be a negative
number. Implement a require check to ensure that start <= end.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

Low

L02. Redundant Code

● ./programs/LeanManagementToken/src/utils.rs:338: needless
return

● ./programs/LeanManagementToken/src/utils.rs:231-235: the
try_from results can be explicitly unwrapped (the panic is
impossible in those cases) to avoid having the verbose match
statement.

● ./programs/LeanManagementToken/src/utils.rs:267: try_from can
be replaced with from, and the following match statement could
be removed.

www.hacken.io
19



● ./programs/LeanManagementToken/src/utils.rs:320-321: try_from
can be replaced with from, and the match statement could be
removed.

● ./programs/LeanManagementToken/src/utils.rs:335: the try_from
result can be explicitly unwrapped (the panic is impossible in
that case, because the value is at most
vesting_start_account_balance, which is known to fit u64), and
the match statement could be eliminated.

Path: ./programs/LeanManagementToken/src/utils.rs

Recommendation: Eliminate the mentioned redundancies.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

L03. Usage Of Star Imports

*-imports are widely considered a bad style.

They complicate tracking dependencies, cause namespace pollution, and
may lead to unexpected name clashes.

Paths: ./programs/LeanManagementToken/src/*

Recommendation: Import needed objects explicitly.

Found in: 7a155aa

Status: Mitigated (Star imports are actually dictated by the Anchor
framework. Without them, it would be tricky to correctly add explicit
member imports.)

L04. Floating Language Version

It is preferable for a production project, especially a smart
contract, to have the programming language version pinned explicitly.
This results in a stable build output, and guards against unexpected
toolchain differences or bugs present in older versions, which could
be used to build the project.

The language version could be pinned in automation/CI scripts, as
well as proclaimed in README or other kinds of developer
documentation. However, in the Rust ecosystem, it can be achieved
more ergonomically via a rust-toolchain.toml descriptor (see
https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file)

Paths: ./rust-toolchain.toml

Recommendation: Pin the language version at the project level.

Found in: 7a155aa

Status: Fixed (Revised commit: b5f7fa1)

www.hacken.io
20

https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file


L05. Vulnerable Dependency (Informational)

Vulnerability info: https://rustsec.org/advisories/RUSTSEC-2020-0071

Dependency path:
time 0.1.45
<- (...) <- solana-sdk 1.15.2
<- (...) <- (the project)

Path: ./programs/LeanManagementToken/Cargo.toml

Recommendation: N/A.

Found in: 7a155aa

Status: Mitigated (The issue does not affect the program code.)

L06. Redundant Architecture

The DateTime struct contains unused fields (hours, minutes, seconds,
days). The field values are calculated and assigned in the function.

The code should not contain redundant variables and computations.

Path: ./programs/LeanManagementToken/src/utils.rs: DateTime,
parse_timestamp()

Recommendation: Use the data or do not compute and store it.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

L07. Redundant Architecture

The error is never used. It is considered best practice to remove
unused statements.

Path: ./programs/LeanManagementToken/src/error.rs: CannotGetBump

Recommendation: Remove the error declaration.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

L08. Redundant Calculations

The is_leap variable is recalculated in the cycle several times.
However, it keeps the same value.

Path: ./programs/LeanManagementToken/src/utils.rs: parse_timestamp()

Recommendation: Declare the variable outside of the cycle.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)
www.hacken.io

21

https://rustsec.org/advisories/RUSTSEC-2020-0071


L09. Misleading Architecture

The month_days variable contains 13 values including the first month,
which is zero days long. In such a way an additional cycle iteration
is performed and month numbers start with 1.

Similar purpose functionality is implemented in the same function for
the days variable but in another way: it is increased by 1 at the end
of the function.

Path: ./programs/LeanManagementToken/src/utils.rs: parse_timestamp()

Recommendation: Avoid usage of hard fixes like adding the 13th
zero-length month, and implement code similarly to improve its
readability.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

L10. Contradiction

The comment to the function contains wrong information:

So after 2 months: 5% of the initial balance is unlocked, after 3
months: 7.5%, after months: 10% etc.

However, as 2.5% is unlocked immediately after 2 months 7.5% would be
unlocked, etc.

Path: ./programs/LeanManagementToken/src/utils.rs:
calculate_unlocked_amount_community_wallet()

Recommendation: Provide correct examples to the code.

Found in: 7a155aa

Status: Fixed (Revised commit: 0e060f5)

H03. Documentation Mismatch

According to the comment, the function should return the number of
full months between the dates. However, it is implemented in a way to
return month differences ignoring DateTime.day values.

This may lead to wrong assumptions on the functionality behavior.

Path: ./programs/LeanManagementToken/src/utils.rs:
calculate_month_difference()

Recommendation: Consider the DateTime.day value during the difference
calculation or update the comment according to the implementation.

Found in: 0e060f5

Status: Fixed (Revised commit: 0e060f5)

www.hacken.io
22



L11. Redundant Code

● ./programs/LeanManagementToken/src/error_codes.rs:338: the
errors CannotConvertToI64, CannotConvertToU8,
CannotConvertToU128, CannotConvertToU64 are unused

● ./programs/LeanManagementToken/src/utils.rs:parse_timestamp():
○ The code pattern that determines whether a year is a leap

year is repeated twice.
○ The last entry in month_days is never used.
○ month_days could be const.

● ./programs/LeanManagementToken/src/utils.rs:transfer_tokens():
○ Redundant lifetime specifier ‘b

Path: ./programs/LeanManagementToken/src/

Recommendation: Eliminate the mentioned redundancies.

Found in: 0e060f5

Status: Fixed (Revised commit: b5f7fa1)

www.hacken.io
23



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
24


