
Customer: LitLab Games
Date: May 5, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for LitLab Games

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; Staking; Vesting; Gaming;

Platform EVM

Language Solidity

Methodology Link

Website https://litlabgames.com/

Changelog
21.03.2023 – Initial Review
13.04.2023 - Second Review
05.05.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://litlabgames.com/

Table of contents
Introduction 5
Scope 5
Third review scope 6
Severity Definitions 8
Executive Summary 9
Risks 10
System Overview 11
Checked Items 13
Findings 16

Critical 16
C01. Data Consistency 16
C02. Invalid Calculations 16
C03. Invalid Calculations 17
C04. Data Consistency 17
C05. Data Consistency 17
C06. Invalid Calculations 18

High 18
H01. Invalid Hardcoded Value 18
H02. Insufficient Balance 19
H03. Invalid Calculations 19
H04. Requirements Violation 20
H05. Undocumented Behavior 20
H06. Coarse-Grained Authorization Model 21
H07. Non-Finalized Code 21
H08. Requirements Violation 21
H09. Undocumented Behavior 22
H10. Denial of Service 22
H11. Requirement Violation 23
H12. Data Consistency 24
H13. Data Consistency 24
H14. Requirements Violation 25
H15. Requirements Violation 25
H16. Non-Finalized Code 26
H17. Data Consistency 26

Medium 26
M01. Missing Events for Critical Value Update 26
M02. Undocumented Behavior 27
M03. Inefficient Gas Model: Uncontrolled Loop of Storage Interactions 27
M04. Inefficient Gas Model: Uncontrolled Loop of Storage Interactions 28
M05. Inefficient Gas Model: Storage Abuse 28
M06. Inefficient Gas Model: Storage Abuse 29
M07. Inefficient Gas Model: Storage Abuse 29
M08. Inefficient Gas Model: Cache Length 29
M09. Inefficient Gas Model: Cache Length 29

www.hacken.io
3

M10. Inefficient Gas Model: Non-specific View Function 30
M11. Inefficient Gas Model: Non-specific View Function 30
M12. Unscalable Functionality: Duplicate Code 30
M13. Unscalable Functionality: Duplicate Code 31
M14. Inconsistent Data: Rounding Error 31
M15. Inconsistent Data: Rounding Error 31
M16. Inconsistent Data: Rounding Error 32
M17. Invalid Calculations 32
M18. Contradiction: Missing Validation 32
M19. Contradiction: Documentation Mismatch 33
M20. Contradiction: Documentation Mismatch 33

Low 34
L01. Floating Pragma 34
L02. Style Guide: Order of Functions 34
L03. Style Guide: Order of Layout 34
L04. Style Guide: Event Names 35
L05. Recommendation: Indexed Inputs in Events 35
L06. Missing Zero Address Validation 35
L07. State Variable Default Visibility 36
L09. Style Guide: Maximum Line Length 36
L10. Use of Hard-Coded Values 36
L11. Boolean Equality 37
L12. Unused Variable 37
L13. Unnecessary Variable Declaration 37
L14. Variables That Can Be Set as Immutable 37
L15. Variables That Can Be Set as Constant 38
L16. Error Messages 38
L17. Incorrect NatSpec 39
L18. Typos 39
L19. Misleading Name 39
L20. Best Practice Violation: Explicit Uint Size 40
L21. Variables That Can Be Set as Immutable 40
L22. Duplicate Code 40

Disclaimers 41

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by LitLab Games (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/jgomes79/LitLabGames/

Commit 1b7b59ccdb29c3d95ebdb9080819abbb707a93ba

Whitepaper https://litlabgames.com/Whitepaper.pdf

Functional
Requirements

https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NX
w3/edit#gid=1583403091

Technical
Requirements

https://litlabgames.com/Whitepaper.pdf

Contracts File: ./contracts/game/CyberTitansGame.sol
SHA3: 8032895ea8f8d411f55f6714bb834f153297b6f287fb4b006dd35693c1bd58bf

File: ./contracts/game/CyberTitansTournament.sol
SHA3: bb4ec5e67021da96bb20c24ae46d3eeaf15341698f6b69d58bb71160d45e16a8

File: ./contracts/metatx/LitlabContext.sol
SHA3: c313cdcf186261a8ab45420b272a1780740f127c99abdf303ce2cae50e55f4d0

File: ./contracts/metatx/LitlabForwarder.sol
SHA3: 97a18cb51e98bec06c7659fe8e2a1752f7e9b11c715d3706de02eb453ccf5539

File: ./contracts/staking/LitlabPreStakingBox.sol
SHA3: 47d64cbad8a1d18c0814fa50a2e4ba03099318a1108f24ea033ad950b3a4cbe2

File: ./contracts/token/ILitlabGamesToken.sol
SHA3: 45a745f0068b21916d0d0576d409d5cbb6c69150ce013c41d0e8ca2a42d95f20

File: ./contracts/token/LitlabGamesToken.sol
SHA3: 2132366d7464aa235dc87b375402f45724059c0b1f5a9f39d492a717e04098bc

File: ./contracts/utils/Ownable.sol
SHA3: 833038cf88fddc1119f0d74b0063bbfd2655234af618db626ad1354a9dde0342

File: ./contracts/vesting/LITTAdvisorsTeam.sol
SHA3: 87d0bccd8e5a0c6912a00d977404800310e93af7eebb6fcdb00d89ce7cf94fac

File: ./contracts/vesting/LITTVestingContract.sol
SHA3: 7f37499d7a04276396f356b3323ada88637b07b3752db4b5bb060b9dc24e7946

www.hacken.io
5

https://github.com/jgomes79/LitLabGames/
https://litlabgames.com/Whitepaper.pdf
https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NXw3/edit#gid=1583403091
https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NXw3/edit#gid=1583403091
https://litlabgames.com/Whitepaper.pdf

Second review scope

Repository https://github.com/jgomes79/LitLabGames/

Commit 454e3b0f7aa8150a93a19c85d8d7e40fcaa052e8

Whitepaper https://litlabgames.com/Whitepaper.pdf

Functional
Requirements

https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NX
w3/edit#gid=1583403091

Technical
Requirements

https://litlabgames.com/Whitepaper.pdf

Contracts File: ./smartcontracts/contracts/game/CyberTitansGame.sol
SHA3: 3e676530b560919f39f6c7a3a7f3368c10719d891c8b8f0f67e51c7da97a4dba

File: ./smartcontracts/contracts/game/CyberTitansTournament.sol
SHA3: 0f52e05343b49f99ad43cc4a00c84ec524a162e4a9775e384961599f6600e9e9

File: ./smartcontracts/contracts/metatx/LitlabContext.sol
SHA3: c313cdcf186261a8ab45420b272a1780740f127c99abdf303ce2cae50e55f4d0

File: ./smartcontracts/contracts/metatx/LitlabForwarder.sol
SHA3: 97a18cb51e98bec06c7659fe8e2a1752f7e9b11c715d3706de02eb453ccf5539

File: ./smartcontracts/contracts/staking/LitlabPreStakingBox.sol
SHA3: 99d06dc8ecb68f015c22f3ef8c42426b3ddaebbc52f05ab3fdfaa3945fa50681

File: ./smartcontracts/contracts/token/ILitlabGamesToken.sol
SHA3: 45a745f0068b21916d0d0576d409d5cbb6c69150ce013c41d0e8ca2a42d95f20

File: ./smartcontracts/contracts/token/LitlabGamesToken.sol
SHA3: be5ba8d86fc1dbb001cf3da7e54d0b722a42f42c2a53cc4c29dd91f7a4493025

File: ./smartcontracts/contracts/utils/Ownable.sol
SHA3: 65d3bb6971cd315b2dea7558920386795287394e5d0c177b2600fbf94e019e78

File: ./smartcontracts/contracts/vesting/LITTAdvisorsTeam.sol
SHA3: 12a7116c5b6b08f6a478badca8b74aa667a7c4d80100caa35c2c32385e1d0adb

File: ./smartcontracts/contracts/vesting/LITTVestingContract.sol
SHA3: 81488c37b5bb2b0f0b5b5880cdbdd2f00b342c3c74bdf1e5b1edd2eafdc938e2

Third review scope

Repository https://github.com/jgomes79/LitLabGames/

Commit ab293ecaf7ed754f964b7c7b5e31985883db4504

Whitepaper https://litlabgames.com/Whitepaper.pdf

Functional
Requirements

https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NX
w3/edit#gid=1583403091

Technical
Requirements

https://litlabgames.com/Whitepaper.pdf

www.hacken.io
6

https://github.com/jgomes79/LitLabGames/
https://litlabgames.com/Whitepaper.pdf
https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NXw3/edit#gid=1583403091
https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NXw3/edit#gid=1583403091
https://litlabgames.com/Whitepaper.pdf
https://github.com/jgomes79/LitLabGames/
https://litlabgames.com/Whitepaper.pdf
https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NXw3/edit#gid=1583403091
https://docs.google.com/spreadsheets/d/1RRhlJmAlpxNtDiE5yHsmWqggSeV3NXw3/edit#gid=1583403091
https://litlabgames.com/Whitepaper.pdf

Contracts File: ./contracts/game/CyberTitansGame.sol
SHA3: 8caa12e77012578ee57d9e59d102aa76badd4729e2b102c8353d7e46db633a1f

File: ./contracts/game/CyberTitansTournament.sol
SHA3: 45a1caf1add204ea0e0615500e59c12ca3a6913d1644105abb5e96ae99ee5082

File: ./contracts/metatx/LitlabContext.sol
SHA3: c313cdcf186261a8ab45420b272a1780740f127c99abdf303ce2cae50e55f4d0

File: ./contracts/metatx/LitlabForwarder.sol
SHA3: 97a18cb51e98bec06c7659fe8e2a1752f7e9b11c715d3706de02eb453ccf5539

File: ./contracts/staking/LitlabPreStakingBox.sol
SHA3: 08aeab5b7c18fc313c98deaa5d2cb7dc40670069b4c1d4f25075e855b1bdb273

File: ./contracts/token/ILitlabGamesToken.sol
SHA3: 45a745f0068b21916d0d0576d409d5cbb6c69150ce013c41d0e8ca2a42d95f20

File: ./contracts/token/LitlabGamesToken.sol
SHA3: b99f916e641f5c8b9548ad681f37435aa86fa2eec18060e12f66654abcbf22d2

File: ./contracts/utils/Ownable.sol
SHA3: 65d3bb6971cd315b2dea7558920386795287394e5d0c177b2600fbf94e019e78

File: ./contracts/vesting/LITTAdvisorsTeam.sol
SHA3: 77572b5cdd4ac4bf87eabefb03fba02ea4a0ddc3a1adbea8ca6fe9c592d2f521

File: ./contracts/vesting/LITTVestingContract.sol
SHA3: bf79347cb39da1f7ba100a75d7f39e05b17d3c54f497e12d08de205b586ba457

www.hacken.io
7

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
8

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Overall system requirements are provided.
● No run instructions.
● Technical specification is provided.
● NatSpec is not fully provided.

Code quality
The total Code Quality score is 8 out of 10.

● Development environment is not configured.

Test coverage
Code coverage of the project is 49.16% (branch coverage).

● Test coverage is insufficient.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 7.2.

The system users should acknowledge all the risks summed up in the risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

21 March 2023 20 20 15 5

13 April 2023 6 5 5 2

5 May 2023 0 0 0 0

www.hacken.io
9

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Risks

● The project implements an Antisnipe functionality in LitlabGamesToken
from Gotbit which cannot be validated by Hacken since it has not been
provided as part of the audit scope. This functionality is meant to
authorize and control transactions happening during the token
generation event (TGE) by the Gotbit team.

● Both CyberTitansGame and CyberTitansTournament work in multiples of 8
players, but there is no code provided that checks and makes the
groups. Instead, those player groups are imputed by the LitlabGames
server off-chain and cannot be verified. This affects the functions
createGame(), finalizeGame(), checkWallets(), startTournament(),
finalizeTournament().

● The flow of the project is not wholly on-chain (i.e. defined in smart
contracts) since the project server holds a big part of it, and hence
it's not completely verifiable.

● The system is fully centralized, an owner can withdraw any available
number of ERC20 tokens from the smart contracts by the use of the
emergencyWithdraw() function.

● The system is accepting arbitrary tokens in the CyberTitansGame and
CyberTitansTournament contracts. If those tokens are a
fee-on-transfer or reflection tokens the system will not work
correctly.

● After the project team responded to the issues, some of them were
marked as Mitigated; those issues are not fixed, the project accepted
and acknowledged those findings and took responsibility for their
correctness.

www.hacken.io
10

https://gotbit.io/

System Overview

LitLab Games is a mixed-purpose system with the following contracts:
● LitlabGamesToken — ERC-20 token. With permit and burn mechanism.

Extended by the external Antisnipe functionality. Total supply is
minted to the deployer address.
It has the following attributes:

○ Name: LitlabToken
○ Symbol: LITT
○ Decimals: 18
○ Total supply: 3b tokens.

● LitlabGamesToken — an interface for a burnable ERC20 token.
● Ownable – an abstract smart contract that implements the possibility

of ownership.
● LitlabPreStakingBox – a vesting smart contract, which is used to

issue an initial token offer to a limited number of users. Wheezing
participants can only be added by the owner. Only the owner assigns
the amount of the reward received as a result of staking. The smart
contract has an option of the extra over the time rewards program for
no withdrawal.

● LITTAdvisorsTeam – a vesting smart contract which is used to
distribute tokens for advisors and the team. The smart contract uses
a linear distribution of tokens. A team needs to verify three
different wallets in order to withdraw their rewards.

● LITTVestingContract – a vesting smart contract which is used to
distribute the supply of tokens in accordance with the white paper
and distribution schedule.

● CyberTitansGame – a smart contract used for creating and managing
games. The game in this case is an abstract thing, it stores a list
of players and winners. Winners are chosen outside the blockchain.
The contract calculates and sends the rewards for the winners.

● CyberTitansTournament – a smart contract used for creating and
managing tournaments. The tournaments, in this case, is an abstract
thing, it stores a number of participants, calculate rewards
according to the amount of players. Anyone can join the tournament,
winners are chosen outside the blockchain.

● LitlabContext – an instance of simple ERC2771Context smart contract.
● LitlabForwarder – a forwarder smart contract which will be used for

metatransactions.

Privileged roles
● The owner of the CyberTitansGame contract can change addresses of

manager role, address for fee collecting, native game ERC20 token
address. The owner can change game winners, fees percentage,

www.hacken.io
11

withdrawal delay, maximum bet amount, pause/unpause smart contract
and withdraw any amount of tokens from the contract.

● The manager of the CyberTitansGame can create and end games.
● The owner of the CyberTitansTournament contract can change addresses

of manager role, address for fee collecting, native game ERC20 token
address. The owner can change reward matrix, fees percentage,
pause/unpause smart contract and withdraw any amount of tokens from
the contract.

● The manager of the CyberTitansGame can start and end tournaments.
● The owner of the LitlabGamesToken can disable antisnipe system, which

is not in the scope.
● The owner of the LitlabPreStakingBox can add new investors to

staking. The owner can withdraw any amount of tokens from the
contract.

● The owner of LITTAdvisorsTeam can set start time of vesting, add and
remove advisors, set advisors’ rewards, set approval wallets for team
rewards withdrawing and change address of team wallet. The owner can
withdraw any amount of tokens from the contract.

● The owner of LITTVestingContract can set the start time of vesting,
change the company wallet. The owner can withdraw any amount of
tokens from the contract.

Recommendations
● Owner private keys should be ⅗ multi-sig.
● Test coverage should be updated.

www.hacken.io
12

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
13

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
14

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Failed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
15

Findings

Critical

C01. Data Consistency

The function startTournament() incorrectly compares _cttPlayers with
LITTPlayers in the check:

require(_cttPlayers == tournament.numOfTokenPlayers,
"BadLITTPlayers")

This will lead to incorrect data management since the checked
variable is not the correct one. As a consequence, this function does
not work as intended.

Path:
./contracts/game/CyberTitansTournament.sol : startTournament()

Recommendation: correct the check so that it compares _litPlayers
instead of _cttPlayers.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

C02. Invalid Calculations

In the withdraw() function of the LitlabPreStakingBox contract, the
totalRewards value is updated incorrectly.

The pendingReward amount deducted from the totalRewards is
insufficient in a case where the user is collecting their rewards
using the withdrawRewards() function.

The already-collected user rewards should also be extracted from the
totalRewards to not break the calculations of the rewardsTokensPerSec
value in the _getData() function.

The invalid update of the totalRewards leads to invalid calculations
of the other user rewards, resulting in too many tokens being
distributed compared to the initial totalRewards value.

Path:
./contracts/staking/LitlabPreStakingBox.sol : withdraw()

Recommendation: track the claimed rewards amount in the
withdrawRewards() function for each user, and extract this value from
the totalRewards value in the case of the user's first vesting
withdrawal.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

www.hacken.io
16

C03. Invalid Calculations

In the _executeVesting() function, the tokensPerSecond value is being
counted incorrectly. This is because the calculation does not take
into account the portion of the tokens that are released on the TGE.

This leads to situations in which tokens are released too quickly.

Path:
./contracts/vesting/LITTVestingContract.sol : _executeVesting()

Recommendation: when calculating the tokensPerSecond, subtract the
amount of tokens issued at TGE from the data._amount value. Use the
same logic as in the _calculateVestingTokens() function.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

C04. Data Consistency

The setListingDate() function can be called, at any time after the
beginning of the TGE described in the documentation. Calling this
function during ongoing vesting may disrupt the schedule for issuing
tokens.

Path:
./contracts/vesting/LITTAdvisorsTeam.sol : setListingDate()

Recommendation: the setListingDate() function should only be called
once or called in the constructor as an internal function.

Found in: 1b7b59c

Status: Fixed (Revised commit: ab293ec)

C05. Data Consistency

The functions joinTournament(), startTournament(), and
finalizeTournament() take as an argument an id value, which is used
to interact with an array of created tournaments stored in the
CyberTitansTournament contract.

The value passed as id is not validated.

This issue leads to the possibility of interacting with non-existent
tournaments.

For instance, a user can call the joinTournament() function and be
able to join non-existent tournaments, tokens will be transferred
from him, which essentially means their loss.

In other mentioned functions, this leads to an unexpected state of
the contract data.

www.hacken.io
17

Path:
./contracts/game/CyberTitansTournament.sol : joinTournament(),
startTournament(), finalizeTournament()

Recommendation: check if the value from the id parameter does not
exceed the tournamentCounter value.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

C06. Invalid Calculations

In the _calculateVestingTokens() function, the tokensPerSecond value
is being counted incorrectly. This is because the calculation does
not take into account the portion of the tokens that can be released
on the TGE.

This deduction needs to be done always, not optionally, as in the
line:

uint256 amountMinusFirstWithdraw = balances[_user].amount -
(balances[_user].claimedInitial ? balances[_user].amount *
INITIAL_WITHDRAW_PERCENTAGE / 100 : 0);

This leads to situations in which more tokens can be released than
the vested amount. Users can wait the whole vesting period and call
withdraw() first and withdrawInitial() afterward to extract 115% of
the vested amount.

Path:
./contracts/staking/LitlabPreStakingBox.sol :
_calculateVestingTokens()

Recommendation: when calculating the tokensPerSecond value, always
subtract the balances[_user].amount * INITIAL_WITHDRAW_PERCENTAGE /
100 from the balances[_user].amount.

Found in: 454e3b0

Status: Fixed (Revised commit: ab293ec)

High

H01. Invalid Hardcoded Value

According to the documentation, the values stored in the
two-dimensional array prizes[][8] are the percentages of awards for
achieving winning places in tournaments.

The values of the prizes[5] array, when summed up after
multiplication by the number of winners per place, make a result of
more than 100%.

www.hacken.io
18

This leads to more tokens being allocated for rewards than necessary,
which can lead to an insufficient balance in the smart contract.

Path:
./contracts/game/CyberTitansTournament.sol: _buildArrays()

Recommendation: values in the prizes[5] array should be rounded down,
for example, by replacing 164063 with 164062.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

H02. Insufficient Balance

In the CyberTitansGame contract, the finalizeGame() function first
sends rewards to the winners, then takes fees and burns some amount
of tokens.

The function does not validate the sum of these operations; it can be
greater than the number of tokens allocated for the game, as there is
no limit on the values used for computation: winners[], fee, and
rake.

This can lead to an insufficient balance in the smart contract.

Path:
./contracts/game/CyberTitansGame.sol: finalizeGame()

Recommendation: validate the amount of tokens distributed in the
finalizeGame() function and check if it does not exceed the totalBet
amount.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

H03. Invalid Calculations

In the _getData() function, rewardsTokensPerSec is calculated. To do
so, there are two divisions by 10**18 which are unnecessary, as they
cancel each other out mathematically.

However, the way that calculation is set right now, leads to two
errors:

First, Solidity language does not have floating point numbers and
thus the result of the calculation will not be accurate, leaving some
residual leftover tokens.

Second, the if (totalStakedAmount > 0) check is incorrect, as for 0 <
totalStakedAmount < 1e18 range there will be a case of the division
by 0, which will result in Denial of Service violation.

Path:

www.hacken.io
19

./contracts/staking/LitlabPreStakingBox.sol: _getData().

Recommendation: remove the divisions by 10**18.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

H04. Requirements Violation

In the NatSpec, it is specified that the rake value is used for the
burn amount calculation and the fee for fee calculation.

In the finalizeGame() function, the number of tokens needed for
burning is taken as fees, and the number of fees is burned (lines
141,142).

This leads to the expected number of commissions received and tokens
burned diverging from their actual values.

Path:
./contracts/game/CyberTitansGame.sol : finalizeGame()

Recommendation: change the code as per requirement.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

H05. Undocumented Behavior

In the CyberTitansGame contract, if the token used is not $LITT, the
code implementation will transfer a 5% of the game.totalBet to the
team wallet instead of 2.5% burned and 2.5% sent to the team wallet.

This particular case is not reflected in the documentation. The code
should not contain undocumented functionality.

Paths:
./contracts/game/CyberTitansGame.sol: finalizeGame()
./contracts/game/CyberTitansTournament.sol: finalizeTournament()

Recommendation: the provided documentation should match the code.

Found in: 1b7b59c

Status: Mitigated (with Customer notice:

“CyberTitans would be able to create games with USDCs, USDTs and
other ERC20 tokens. To do that we design the createGame and
createTournament functions to allow any token”.)

www.hacken.io
20

H06. Coarse-Grained Authorization Model

The function changeWallets() in both CyberTitansGames.sol and
CyberTitansTournament.sol sets three critical state variables at
once, which can lead to dangerous situations.

A project should have a fine-grained access control system if it has
multiple layers of auth-related functionality. In this case, the
variable wallet is the company wallet receiving the fees; the manager
has a critical access control role; and litlabToken corresponds to
the token.

Additionally, this design is not efficient in terms of Gas expense,
since three storage variables must be accessed every time, even if
only one of them has to be set.

The code should not contain undocumented functionality.

Path:
./contracts/game/CyberTitansGame.sol: changeWallets()

Recommendation: it is recommended to use specific functions for each
functionality.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

H07. Non-Finalized Code

The function retireFromTournament() and the Event onRetiredTournament
are present in the code as a draft, suggesting there will be an
upgrade of the provided contracts.

This means that the code is not finalized and additional changes will
be introduced in the future, which cannot be validated.

Path:
./contracts/game/CyberTitansTournament.sol: retireFromTournament(),
onRetiredTournament()

Recommendation: the provided code should be final.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

H08. Requirements Violation

Users can only join a tournament using joinTournament() if they make
a LITT token transfer, but not if they hold the CTT tickets.

The code should match the provided documentation and intended
behavior.

Path:
./contracts/game/CyberTitansTournament.sol: joinTournament().

www.hacken.io
21

Recommendation: the provided documentation should match the code.

Found in: 1b7b59c

Status: Mitigated (with Customer notice:

“CTT tickets are the soft currency of the game. Gamers join free
games, and they can win CTT tickets to join tournaments without
spending LITT tokens. The server handles in the backend the CTT
tickets, so there’s no interaction with SmartContracts for gamers
using CTT tickets.

When starting a tournament, the server informs the SmartContract the
number of players that used CTT ticket, just to add them to the
players count to calculate the prizes when tournament finalizes. So,
we don’t need to handle users that join tournaments using CTT in the
SmartContract.”.)

H09. Undocumented Behavior

In order to perform a teamWithdraw(), a minimum numTeamApprovals must
be reached. However, this functionality is not described in the
documentation and thus a proper evaluation is not possible.

It is not clear how many approvals are needed, although the state
variable MAX_SIGNATURES_TEAM points towards no more than three.

On the other hand, the function setApprovalWallets() has an input
array of up to 5 wallets. If this function is used to set 5 new
wallets, the state variable numTeamApprovals should be reset to make
sure old wallets are not taken into account anymore. Otherwise, old
wallets should be checked and removed from the count if they are
indeed not allowed anymore.

Path:
./contracts/vesting/LITTAdvisorsTeam.sol : teamWithdraw(),
setApprovalWallets(), MAX_SIGNATURES_TEAM

Recommendation: provide a clear and consistent method and
documentation for a proper evaluation of this case.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

H10. Denial of Service

The contracts LitlabPreStakingBox, LITTAdvisorsTeam and
LITTVestingContract all rely on the token balance in order to perform
the following critical operations:

withdrawInitial()
withdraw()
teamWithdraw()

www.hacken.io
22

addAdvisor()
advisorWithdraw()
withdrawNewGames()
withdrawMarketing()
withdrawLiquidReserves()
withdrawAirdrops()
withdrawInGameRewards()
withdrawFarming()

However, there is no check in those functions that makes sure that
the token balance of the contract is sufficient.

The documentation provided does not clarify how the tokens are going
to be transferred into the different contracts since there is no
function in them to deposit tokens during the contract creation or in
other functions such as stake().

As a consequence, it cannot be guaranteed that the state variables
tracking the token balance of the contracts have any effect at all
(e.g. totalRewards). It is the same case for constant variables that
represent the total amount of tokens (e.g. TEAM_AMOUNT,
LIQUID_RESERVES_AMOUNT).

Paths:
./contracts/vesting/LITTVestingContract.sol
./contracts/vesting/LITTAdvisorsTeam.sol
./contracts/staking/LitlabPreStakingBox.sol

Recommendation: provide a clear documentation about how the tokens
will be sent to the contract and/or add a deposit function to add
said tokens. Add additional checks to make sure the contract balance
is enough to send out the tokens in the mentioned functions.

Found in: 1b7b59c

Status: Mitigated (with Customer notice:

“- After smartcontract is deployed, we will send all the investor
tokens plus the rewards amount manually to the smartcontract

- Then we will call the stake() function with the investors data.

- This is a centralized action performed by us and nobody will add
more investors or tokens.”.)

H11. Requirement Violation

The function stake() should be called after the deployment of the
contract only once.

However, there is no check that makes sure that this is the case.

www.hacken.io
23

Additionally, the stake() function can be called after the end of
staking date, which leads to the fact that rewards can be received
instantly.

Path:
./contracts/staking/LitlabPreStakingBox.sol : stake()

Recommendation: redesign the function flow or add additional checks
to make sure this functionality matches the idea behind it.
Alternatively, the function could also be set as internal and called
by the constructor.

Found in: 1b7b59c

Status: Fixed (Revised commit: ab293ec)

H12. Data Consistency

In the finalizeTournament() function, there is no check to prevent
finalizing an already finalized tournament.

This can lead to a situation where rewards are being paid multiple
times for the same tournament.

Path:
./contracts/game/CyberTitansTournament.sol : finalizeTournament()

Recommendation: add a validation that already finalized tournaments
cannot be finalized again.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

H13. Data Consistency

In the removeAdvisor() function, the removal of the advisor's vesting
is done incorrectly.

The advisor vesting amount should not be reset to the default value
of 0 by using delete advisors[_wallet];, but should be updated to the
amount that the advisor has already claimed, taken from
advisorsWithdrawn[_wallet].

This is needed to prevent data consistency issues and to correctly
track data with the getAdvisorData() view function, and to prevent
underflow in the require(advisors[msg.sender] -
advisorsWithdrawn[msg.sender] > 0, "NotAllowed").

Path:
./contracts/vesting/LITTAdvisorsTeam.sol : removeAdvisor()

Recommendation: update the functionality of advisor removal in a way
that will not break other functions.

Found in: 1b7b59c
www.hacken.io

24

Status: Fixed (Revised commit: 454e3b0)

H14. Requirements Violation

In the withdrawNewGames(), withdrawInGameRewards(), and
withdrawFarming() functions, the vesting schedule is not in line with
the tokenomics presented in the whitepaper.

This can lead to trust issues with the community and more tokens
being in circulation than described in the documentation.

Path:
./contracts/vesting/LITTVestingContract.sol : withdrawNewGames(),
withdrawInGameRewards(), withdrawFarming()

Recommendation: update the whitepaper/tokenomics or update the code
to be in line with the vesting schedules.

Found in: 1b7b59c

Status: Mitigated (Based on new documentation:

- New Games 9 months cliff, linearly over 54 months
- Withdraw from InGame pool (not vested)
- Withdraw from Farming pool (not vested)

with Customer notice:

“New games, marketing, liquid reserves, ingame rewards, airdrops are
managed in the vesting smartcontract.

Farming is managed by external providers out of the scope of this
audit.)

H15. Requirements Violation

In the _executeVesting() function, there is an invalid validation
that prevents users from claiming TGE tokens before the cliff time.

require(block.timestamp >= listing_date + (data._cliffMonths * 30
days), "TooEarly");

This leads to a situation where the TGE tokens will not be claimable
at the listing date.

Path:
./contracts/vesting/LITTVestingContract.sol: _executeVesting()

Recommendation: update the code to accurately reflect the desired
functionality.

Found in: 1b7b59c

Status: Mitigated (with Customer notice:

www.hacken.io
25

“We’ve written in the documentation that cliff and TGE are not
compatible. If a vesting has cliff never will have TGE % and
opposite.”)

H16. Non-Finalized Code

The smart contract LITTAdvisorsTeam.sol uses truffle/console.sol and
console.log() functions inside. This means that the code is submitted
in a non-final version.

Path:
./contracts/vesting/LITTAdvisorsTeam.sol : teamWithdraw()

Recommendation: remove truffle integrations from code.

Found in: 454e3b0

Status: Fixed (Revised commit: ab293ec)

H17. Data Consistency

During the withdrawInitial() function execution data used in rewards
calculation is not updated.

Resulting in a situation where users who did not withdraw their TGE
tokens are rewarded equally as those who had withdrawn.

Path:
./contracts/staking/LitlabPreStakingBox.sol : withdraw()

Recommendation: consider updating the withdrawInitial() function with
functionality that will decrease users' participation in the reward
program by the withdrawal amount, or document this behavior as
intended.

Found in: 454e3b0

Status: Mitigated (Desired behavior. Users are not punished for
initial withdrawal and are encouraged to withdraw the initial tokens.

with Customer notice:

“Call withdrawInitial() doesn’t affect the rewards as documented. As
commented in C06 issue, we’ve added a require in withdraw function to
ensure nobody can call it before calling withdrawInitial, but, as
documented, call withdrawInitial doesn’t affect to the rewards.”.)

Medium

M01. Missing Events for Critical Value Update

The following functions do not emit relevant events after executing
the sensitive actions of setting the fundingRate, updateTime and
proposalTime, and transferring the rewards.

www.hacken.io
26

Paths:
./contracts/game/CyberTitansGame.sol: constructor(), changeWallets(),
changeWinners(), updateFees(), updateWaitMinutes(),
updateMaxBetAmount(), changePause()
./contracts/game/CyberTitansTournament.sol: constructor(),
changeWallets(), updateFees(), changeArrays(), changePause(),
_buildArrays()
./contracts/staking/LitlabPreStakingBox.sol: constructor(), stake().
./contracts/token/LitlabGamesToken.sol: disableAntisnipe()
./contracts/vesting/LITTAdvisorsTeam.sol: constructor(),
setListingDate(), addAdvisor(), removeAdvisor(),
setApprovalWallets(), setTeamWallet(), approveTeamWithdraw()
./contracts/vesting/LITTVestingContract.sol: constructor(),
setListingDate(), changeWallet()

Recommendation: consider emitting events after sensitive changes take
place, to facilitate tracking and notify off-chain clients following
the contract’s activity.

Found in: 1b7b59c

Status: Fixed (Revised commit: ab293ec)

M02. Undocumented Behavior

Although the documentation refers to LitlabToken $LITT as the token
to be used in the project, the following contracts allow the use of
different addresses as token inputs.

The code should not contain undocumented functionality.

Path:
./contracts/game/CyberTitansGame.sol: GameStruct.token,
changeWallets(), checkWallets(), createGame()

Recommendation: the provided documentation should match the code.

Status: Mitigated (with Customer notice:

“Contracts are prepared to allow users to bet using other ERC20
tokens as USDC in future games or tournaments.”)

M03. Inefficient Gas Model: Uncontrolled Loop of Storage Interactions

The function changeArrays() performs loops of uncontrolled
iterations.

Since those loops interact with storage variables, the block gas
limit can be reached and the function may fail.

Additionally, this design is not efficient in terms of Gas expense,
since different storage variables must be accessed every time, even
if only one of them has to be set.

Path:
./contracts/game/CyberTitansTournament.sol: changeArrays()

www.hacken.io
27

Recommendation: divide functionality of changeArrays() into
changePrizes(), changePlayers(), changeTops(), changeWinners().

Found in: 1b7b59c

Status: Mitigated (with Customer notice:

“Understanding the gas problem, we’ve decided to keep the function.
If we split the function in 5 functions as recommended, we need to
send 5 transactions to update the prizes matrixes and we’ve decided
is worthier to have only one function to update everything even if
it’s more expensive in gas cost (the matrixes will change once per
one or two years, so, we don’t worry about the gas cost)”.)

M04. Inefficient Gas Model: Uncontrolled Loop of Storage Interactions

The following functions perform highly expensive storage operations
inside a loop, which can reach the block Gas limit and make the
functions fail:

createGame()
finalizeGame()
finalizeTournament()
stake()

Paths:
./contracts/game/CyberTitansGame.sol: createGame(), finalizeGame()
./contracts/game/CyberTitansTournament.sol: finalizeTournament()
./contracts/staking/LitlabPreStakingBox.sol: stake()

Recommendation: a redesign of the mentioned functions should be
implemented in order to minimize their Gas impact: use of local
variables, splitting of the body function into smaller functions that
are called independently, use of bonded input variables, etc. The
Customer should choose the solution that works better for the
project.

Found in: 1b7b59c

Status: Fixed (Revised commit: ab293ec)

M05. Inefficient Gas Model: Storage Abuse

In the finalizeTournament() function, the state variables
tournament.tournamentAssuredAmount and tournament.token are accessed
multiple times, consuming Gas unnecessarily.

Path:
./contracts/game/CyberTitansTournament.sol: finalizeTournament()

Recommendation: consider creating new local memory variables to save
Gas.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)
www.hacken.io

28

M06. Inefficient Gas Model: Storage Abuse

In the finalizeGame() function, the state variables game.token and
game.totalBet are accessed multiple times, consuming Gas
unnecessarily.

Path:
./contracts/game/CyberTitansGame.sol: finalizeGame()

Recommendation: consider creating new local memory variables to save
Gas.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M07. Inefficient Gas Model: Storage Abuse

In the _executeVesting() function, the state variable data._amount is
accessed multiple times, consuming Gas unnecessarily.

Path:
./contracts/vesting/LITTVestingContract.sol: _executeVesting()

Recommendation: consider creating new local memory variables to save
Gas.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M08. Inefficient Gas Model: Cache Length

In the approveTeamWithdraw() function, a for loop iterates through
approvalWallets.length. The storage variable approvalWallets will be
thus read at every iteration, consuming Gas unnecessarily.

Path:
./contracts/vesting/LITTAdvisorsTeam.sol: approveTeamWithdraw()

Recommendation: consider caching the array length by creating a new
memory variable length = approvalWallets.length.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M09. Inefficient Gas Model: Cache Length

In the teamWithdraw() function, a for loop iterates through
approvalWallets.length. The storage variable approvalWallets will be
thus read at every iteration, consuming Gas unnecessarily.

Path:
./contracts/vesting/LITTAdvisorsTeam.sol: teamWithdraw()

www.hacken.io
29

Recommendation: consider caching the array length by creating a new
memory variable length = approvalWallets.length.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M10. Inefficient Gas Model: Non-specific View Function

In the withdrawRewards() function, there is a call to the view
function _getData() in order to get pendingRewards. Said function
computes a lot of variables, but only one of them is used. Although
it is a view function, it will spend Gas when called by a non-view
function.

Path:
./contracts/staking/LitlabPreStakingBox.sol: withdrawRewards(),
_getData().

Recommendation: consider using a specific function that returns
pendingRewards in order to save Gas.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M11. Inefficient Gas Model: Non-specific View Function

In the withdraw() function, there is a call to the view function
_getData() in order to get userAmount and pendingRewards. Said
function computes a lot of variables, but only two of them are used.
Although it is a view function, it will spend Gas when called by a
non-view function.

Path:
./contracts/staking/LitlabPreStakingBox.sol: withdraw(), _getData()

Recommendation: consider using specific functions to return
userAmount and pendingRewards in order to save Gas.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M12. Unscalable Functionality: Duplicate Code

Same checks used in several functions overwhelm code and make further
development difficult.

Path:
./contracts/game/CyberTitansGame.sol : 105, 106, 129, 130

Recommendation: add modifiers onlyManager, notPaused to check
function state.

www.hacken.io
30

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M13. Unscalable Functionality: Duplicate Code

Same checks used in several functions overwhelm code and make further
development difficult.

Path:
./contracts/game/CyberTitansTournament.sol : 120, 121, 138, 165, 166,
178, 179

Recommendation: add modifiers onlyManager, notPaused to check
function state.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M14. Inconsistent Data: Rounding Error

Functions teamWithdraw() and advisorWithdraw() calculate tokens
amount that can be withdrawn by a trusted user.

Division is used for the calculation of tokensPerSecond, the result
of which is multiplied later.

Solidity language does not have floating point numbers, the result of
the calculation will not be accurate.

Path:
./contracts/vesting/LITTadvisorsTeam.sol : teamWithdraw(),
advisorWithdraw()

Recommendation: change the way withdrawal amounts are calculated to
give the exact amount of tokens.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M15. Inconsistent Data: Rounding Error

The function _executeVesting() calculates tokens amount that can be
withdrawn by a trusted user.

Division is used for the calculation of tokensPerSecond, the result
of which is multiplied later.

Solidity language does not have floating point numbers, the result of
the calculation will not be accurate.

Path:
./contracts/vesting/LITTVestingContract.sol : _executeVesting()

www.hacken.io
31

Recommendation: change the way withdrawal amounts are calculated to
give the exact amount of tokens.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M16. Inconsistent Data: Rounding Error

The functions _calculateVestingTokens() and _getData() calculate
tokens amount that can be withdrawn by a trusted user.

Division is used for the calculation of tokensPerSec and
rewardTokensPerSec, the result of which is multiplied later.

Solidity language does not have floating point numbers, the result of
the calculation will not be accurate.

Path:
./contracts/staking/LitlabPreStakingBox.sol : _getData(),
_calculateVestingToken()

Recommendation: change the way withdrawal amounts are calculated to
give the exact amount of tokens.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

M17. Invalid Calculations

The reward shares that are sent to the winners, as well as the fees,
are calculated as a percentage of the game.totalBet balance.

Solidity language does not have floating point numbers and thus the
result of the calculation will not be accurate, leaving some residual
leftover tokens.

In order to avoid that, the calculation of those percentages should
remain the same, but for the very last percentage, game.totalBalance
– “the sum of the previously transferred balances” should be used.

Paths:
./contracts/game/CyberTitansGame.sol: finalizeGame()
./contracts/game/CyberTitansTournament.sol: finalizeTournament()

Recommendation: it is recommended to optimize the token percentage
calculation to avoid having residual tokens.

Found in: 1b7b59c

Status: Mitigated (with Customer notice stating that residual tokens
are acceptable.)

M18. Contradiction: Missing Validation

According to the whitepaper:
www.hacken.io

32

In the changeWinners() function, an additional check is required to
make sure that the sum of the percentage winners is <= 95%.

In the updateFees() function, the sum of rake + fee should be checked
to be <= 5%.

Paths:
./contracts/game/CyberTitansGame.sol: changeWinners(), updateFees()
./contracts/game/CyberTitansTournament.sol: updateFees()

Recommendation: add recommended values validations.

Found in: 1b7b59c

Status: Fixed (Revised commit: ab293ec)

M19. Contradiction: Documentation Mismatch

According to the documentation, the array players[] should be of the
size 8. Therefore, additional validation should be implemented.

The require in the createGame() function require(_players.length !=
0, "BadArray") is incorrect since it should check the array length ==
8.

Path:
./contracts/game/CyberTitansGame.sol: createGame()

Recommendation: apply the mentioned checks or update the
documentation accordingly.

Found in: 1b7b59c

Status: Mitigated (with Customer notice:

“Even though in the official whitepaper we say a game is for 4/8
players, technically, the game smartcontract needs to support any
number of players, so, the validation required is invalid and doesn’t
fit with the requirements.”.)

M20. Contradiction: Documentation Mismatch

In the changeArrays() function, there is no check that the provided
values are correct and will not cause unexpected behavior or break
the contract’s logic.

Path:
./contracts/game/CyberTitansGame.sol : changeArrays()

Recommendation: implement input checks to make sure the parameters
introduced in said function are as expected.

Found in: 1b7b59c

Status: Fixed (Revised commit: ab293ec)

www.hacken.io
33

Low

L01. Floating Pragma

Contracts should be deployed with the same compiler version and flags
that they have been tested with thoroughly. Locking the pragma helps
to ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Path:
./contracts/utils/Ownable.sol

Recommendation: lock the Solidity pragma version. Find more: SWC-103.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L02. Style Guide: Order of Functions

The provided projects should follow the official guidelines.
Functions should be grouped according to their visibility and
ordered:

1. Constructor
2. Receive function (if exists)
3. Fallback function (if exists)
4. External
5. Public
6. Internal
7. Private

Path:
./contracts/game/CyberTitansTournament.sol

Recommendation: follow the official Solidity guidelines.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L03. Style Guide: Order of Layout

The provided projects should follow the official guidelines. Inside
each contract, library or interface, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Path:
./contracts/utils/Ownable.sol

Recommendation: follow the official Solidity guidelines.
www.hacken.io

34

https://swcregistry.io/docs/SWC-103
https://docs.soliditylang.org/en/v0.8.17/style-guide.html
https://docs.soliditylang.org/en/v0.8.17/style-guide.html

Found in: 1b7b59c

Status:Fixed (Revised commit: 454e3b0)

L04. Style Guide: Event Names

Events should be named using the CapWords style.

Paths:
./contracts/game/CyberTitansGame.sol
./contracts/game/CyberTitansTournament.sol
./contracts/staking/LitlabPreStakingBox.sol
./contracts/vesting/LITTAdvisorsTeam.sol
./contracts/vesting/LITTVestingContract.sol

Recommendation: follow the official Solidity guidelines.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L05. Recommendation: Indexed Inputs in Events

Events have the possibility to track their inputs as indexed. It is
recommended to use the indexed keyword for better tracking of
sensitive data.

Paths:
./contracts/game/CyberTitansGame.sol
./contracts/game/CyberTitansTournament.sol
./contracts/staking/LitlabPreStakingBox.sol
./contracts/vesting/LITTAdvisorsTeam.sol
./contracts/vesting/LITTVestingContract.sol

Recommendation: consider adding the indexed keyword to track token
addresses in events.

Found in: 1b7b59c

Status: Fixed (Revised commit: ab293ec)

L06. Missing Zero Address Validation

Address input parameters are being used without checking against the
possibility of 0x0. This can lead to unwanted external calls to 0x0.

Paths:
./contracts/game/CyberTitansGame.sol : constructor(),
changeWallets(), createGame(), finalizeGame(), emergencyWithdraw()
./contracts/game/CyberTitansTournament.sol : constructor(),
changeWallets(), finalizeTournament(), emergencyWithdraw()
./contracts/staking/LitlabPreStakingBox.sol : constructor(), stake(),
emergencyWithdraw()
./contracts/vesting/LITTAdvisorsTeam.sol : constructor(),
addAdvisor(), removeAdvisor(), setApprovalWallets(), setTeamWallet(),
emergencyWithdraw()

www.hacken.io
35

https://docs.soliditylang.org/en/latest/style-guide.html#event-names

./contracts/vesting/LITTVestingContract.sol : constructor(),
changeWallet()

Recommendation: add zero address checks.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L07. State Variable Default Visibility

Specifying state variables’ visibility helps catching incorrect
assumptions about who can access the variable.

This improves the code quality and readability of the code.

Paths:
./contracts/game/CyberTitansGame.sol : gameCounter
./contracts/game/CyberTitansTournament.sol : tournamentCounter
./contracts/vesting/LITTAdvisorsTeam.sol : numTeamApprovals

Recommendation: it is recommended to specify the visibility of all
state variables.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L09. Style Guide: Maximum Line Length

The provided projects should follow the official guidelines. Maximum
suggested line length 120 is not followed.

Paths:
./contracts/game/CyberTitansGame.sol
./contracts/game/CyberTitansTournament.sol
./contracts/vesting/LITTAdvisorsTeam.sol
./contracts/vesting/LITTVestingContract.sol

Recommendation: follow the official Solidity guidelines.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L10. Use of Hard-Coded Values

Hard-coded values are used in computations.

Paths:
./contracts/vesting/LITTAdvisorsTeam.sol : advisorWithdraw(),
teamWithdraw(), getAdvisorData()
./contracts/vesting/LITTVestingContract.sol : _executeVesting()
./contracts/token/LitlabGamesToken.sol : constructor()

Recommendation: convert these variables into constants.

www.hacken.io
36

https://docs.soliditylang.org/en/v0.8.17/style-guide.html
https://docs.soliditylang.org/en/v0.8.17/style-guide.html

Found in: 1b7b59c

Status: Fixed (Revised commit: ab293ec)

L11. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Paths:
./contracts/game/CyberTitansGame.sol : createGame(), finalizeGame()
./contracts/game/CyberTitansTournament.sol : startTournament(),
finalizeTournament(), joinTournament(), createTournament()

Recommendation: remove boolean equality.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L12. Unused Variable

The variable ADVISORS_AMOUNT is never used.

Path:
./contracts/vesting/LITTAdvisorsTeam.sol

Recommendation: remove unused variable.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L13. Unnecessary Variable Declaration

The variables user, amount is unnecessary to function execution.

Path:
./contracts/staking/LitlabPreStakingBox.sol : stake()

Recommendation: remove unnecessary variables.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L14. Variables That Can Be Set as Immutable

The variables token, stakeStartDate and stakeEndDate are only set in
the constructor and can thus be set as immutable.

Paths:
./contracts/staking/LitlabPreStakingBox.sol
./contracts/vesting/LITTAdvisorsTeam.sol
./contracts/vesting/LITTVestingContract.sol

www.hacken.io
37

Recommendation: it is recommended to set said variables as immutable
in order to save Gas.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L15. Variables That Can Be Set as Constant

The variables ADVISORS_AMOUNT, TEAM_AMOUNT, MAX_SIGNATURES_TEAM,
NEW_GAMES_AMOUNT, MARKETING_AMOUNT, LIQUID_RESERVES_AMOUNT,
AIRDROPS_AMOUNT, INGAME_REWARDS_AMOUNT and FARMING_AMOUNT never
change and can thus be set as constant.

Paths:
./contracts/vesting/LITTAdvisorsTeam.sol
./contracts/vesting/LITTVestingContract.sol

Recommendation: it is recommended to set said variables as constant
in order to save Gas.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L16. Error Messages

In the withdraw() function, the check
require(balances[msg.sender].withdrawn < balances[msg.sender].amount,
"Max") is not sending a comprehensive error message.

In the disableAntisnipe() function, the check
require(!antisnipeDisable) does not provide any error message.

Error messages are intended to notify users about failing conditions,
and should provide enough information so that the appropriate
corrections needed to interact with the system can be applied.
Uninformative error messages greatly damage the overall user
experience, thus lowering the system’s quality.

If the mentioned require statement fails the checked condition, the
transaction will revert silently without an informative error
message.

Paths:
./contracts/staking/LitlabPreStakingBox.sol : withdraw()
./contracts/token/LitlabGamesToken.sol : disableAntisnipe()

Recommendation: appropriate error messages should be provided for
both cases, that give meaningful information to the users.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

www.hacken.io
38

L17. Incorrect NatSpec

The NatSpec description of the contract CyberTitansTournament refers
to game instead of tournament in the line #13.

Path:
./contracts/game/CyberTitansTournament.sol

Recommendation: update the NatSpec so that it reflects the code.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L18. Typos

The following typos were found into the provided code:

CyberTitansGame.sol:
playes -> players

CyberTitansTournament.sol:
playes -> players
minimun -> minimum
becuase -> because
Initializate -> Initialize

LitlabPreStakingBox.sol:
splitBadLenghts -> BadLengths
splitted -> split
deployement -> deployment
witdrawRewards -> withdrawRewards

LitlabGamesToken.sol:
malicius -> malicious

Ownable.sol:
functionlity -> functionality

Paths:
./contracts/game/CyberTitansGame.sol
./contracts/game/CyberTitansTournament.sol
./contracts/staking/LitlabPreStakingBox.sol
./contracts/token/LitlabGamesToken.sol
./contracts/utils/Ownable.sol

Recommendation: correct the spelling of the mentioned typos.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L19. Misleading Name

The state variable winners is misleading since it stores percentages,
and should be named as such.

www.hacken.io
39

Path:
./contracts/game/CyberTitansGame.sol

Recommendation: it is recommended to use a name that represents
precisely the variable, like winnerShares or winnerPercentages.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L20. Best Practice Violation: Explicit Uint Size

The variables uint gameId and uint tournamentId do not explicitly set
the uint size.

Paths:
./contracts/game/CyberTitansGame.sol : createGame()
./contracts/game/CyberTitansTournament : createTournament()

Recommendation: it is recommended to explicitly set the uint size as
uint256 instead of using the default uint.

Found in: 1b7b59c

Status: Fixed (Revised commit: 454e3b0)

L21. Variables That Can Be Set as Immutable

The variables token are only set in the constructor and can thus be
set as immutable.

Paths:
./contracts/vesting/LITTAdvisorsTeam.sol
./contracts/vesting/LITTVestingContract.sol

Recommendation: it is recommended to set said variables as immutable
in order to save Gas.

Found in: 454e3b0

Status: Fixed (Revised commit: ab293ec)

L22. Duplicate Code

The lines 155 and 161 (IERC20(token).safeTransfer(msg.sender,
tokensToSend)) are the same and can be replaced by just one, below
the if statement.

Path:
./contracts/staking/LitlabPreStakingBox.sol : withdraw()

Recommendation: it is recommended to avoid code duplication in order
to save Gas.

Found in: 454e3b0

Status: Fixed (Revised commit: ab293ec)
www.hacken.io

40

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
41

