
RENEC SECURITY
ANALYSIS

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 2 of 14

Intro

This report may contain confidential information about IT systems and the
 intellectual property of the Customer, as well as

information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another party.
Any subsequent publication of this report shall be without

mandatory
consent.

Name Renec

Website https://renec.foundation/

Repository https://github.com/renec-chain/renec

Commit 48757023ffc8d5e5534695831c5c2b3636b9bf19

Platform L1

Network Renec

Languages Rust

Methods Automated Code analysis, Manual review, Issues simulation

Auditor s.akermoun@hacken.io

Auditor n.lipartiia@hacken.io

Approver l.ciattaglia@hacken.io

Timeline 24.02.2023 - 23.03.2023

Changelog 24.03.2023 (Preliminary Report)

Changelog 21.04.2023 (Final Report)

https://renec.foundation/
https://github.com/renec-chain/renec
https://github.com/renec-chain/renec/commit/48757023ffc8d5e5534695831c5c2b3636b9bf19
mailto:s.akermoun@hacken.io
mailto:n.lipartiia@hacken.io
mailto:l.ciattaglia@hacken.io

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 3 of 14

Table of contents

Summary
Documentation quality

Code quality

Architecture quality

Security score

Total score

Findings count and definitions

Scope of the audit
Protocol Audit

Implementation

Protocol Tests

Issues
Vulnerable dependencies in Renec blockchain

Unmaintained and yanked dependencies in Renec blockchain

Cargo.toml manifest files contain wrong metadata

Confusing variable name

Crate stake-monitor is empty and not included in workspace

Inflation unit test failed

Relax linter for undefined behavior

Unmerged pull requests from Upstream to Renec

Disclaimers
Hacken disclaimer

Technical disclaimer

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 4 of 14

Summary

Renec is a fork derived from the latest stable release of Solana, version 1.13.6.

It features a unique inflation model that deviates from its upstream counterpart, implementing a consistent 4.5% inflation rate annually.
This approach aims to provide a stable and predictable inflationary environment for the Renec ecosystem, fostering sustainable growth

and development over time.

As a Solana fork, Renec benefits from its parent project's robust and scalable architecture while introducing its distinct monetary policy.

The Renec project also incorporates a custom genesis configuration that outlines the distribution of tokens among various stakeholders,
including miners, Remitano, liquidity providers, marketing, and the treasury. This configuration employs different unlock schedules to

ensure a balanced release of tokens over time, ranging from immediate unlock to a gradual release over several years. These measures
contribute to a well-structured token distribution system, further supporting the long-term growth and stability of the Renec ecosystem.

Documentation quality

The source code for the project is thoroughly documented, with well-structured comments and explanations that elucidate the functions,

classes, and variables used throughout the codebase.

This level of detail ensures that developers and reviewers can quickly comprehend the logic and intent of the code, facilitating efficient

maintenance and updates.

As such, there are no noteworthy concerns or suggestions regarding the quality of the source code documentation.

The total Documentation Quality score is 10 out of 10.

Code quality

The Rust code implemented in the project demonstrates a high level of quality, adhering to best practices and industry standards.

However, there are two minor areas of concern.

Firstly, the current fork introduces a break in one of the unit tests inherited from the upstream repository, which should be addressed to
ensure complete test coverage.

Secondly, Cargo.toml metadata files contain inaccurate or incomplete values, necessitating review and correction to guarantee proper
configuration and package management.

Aside from these two issues, the overall code quality is commendable and does not warrant any additional concerns or recommendations.

The total Code Quality score is 9 out of 10.

Architecture quality

Renec maintains the same high level of architectural quality as the upstream repository, ensuring consistency and adherence to

established design patterns and blockchain principles.

The fork introduces a few modifications, including a new genesis configuration and an updated inflation system, both of which have been

implemented effectively and demonstrate solid design quality. This alignment with the original architecture allows for seamless integration
and compatibility with the existing Solana ecosystem, while preserving the robustness and scalability of the project.

Consequently, there are no significant concerns or recommendations regarding the architecture quality of this fork.

The architecture quality score is 10 out of 10.

Security score

The fork has maintained the overall security level of the upstream repository, ensuring that the implemented changes do not introduce new

vulnerabilities or weaken the existing security measures.

However, it has been observed that some vulnerable dependencies have not been patched, despite updates being available in the

upstream repository. To maintain the highest possible security standards, it is crucial for the project team to continuously monitor the

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 5 of 14

upstream repository and promptly integrate any security upgrades, patches, or improvements.

This proactive approach will help mitigate potential risks and safeguard the project against emerging threats.

The security score is 9 out of 10.

Total score

Considering all metrics, the total score of the report is 9.2 out of 10.

Findings count and definitions

Severity Findings Severity Definition

Critical 0
Critical vulnerabilities are usually straightforward to exploit and can lead to

the loss of user funds or contract state manipulation by external or internal
actors.

High 1
High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of
user funds or contract state manipulation by external or internal actors.

Medium 0
Medium vulnerabilities are usually limited to state manipulations but

cannot lead to asset loss. Major deviations from best practices are also in
this category.

Low 1
Low vulnerabilities are related to outdated and unused code or minor Gas

optimization. These issues won't have a significant impact on code
execution but affect code quality.

Total 2

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 6 of 14

Scope of the audit

Protocol Audit

Changes review

Review of all changes in sources since fork from Solana 1.13.6 (~1k changed lines)

Review of all security, bug and segfault related issues reported in Solana since version 1.13.6 (~50)

Chain

Review of changes in genesis configuration and token supply configuration

Implementation

Code Quality

Static Code Analysis

Tests coverage

Protocol Tests

Node Tests

Environment Setup

Transactions & Consensus tests

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 7 of 14

Issues

Vulnerable dependencies in Renec blockchain

Renec blockchain uses dependencies with publicly known vulnerabilities.

ID REN-005

Scope Code Security

Severity HIGH

Status Fixed

Details

The Renec blockchain node uses the following dependencies with known vulnerabilities.

All the dependencies listed are inherited from Solana node.

Dependency Version Id Description
Recommendation
(potential breaking
changes)

Upstream
patch

bzip2 0.4.3
RUSTSEC-

2023-0004

bzip2 Denial of Service

(DoS)
Upgrade to >=0.4.4 #30180

chrono 0.4.19
RUSTSEC-

2020-0159

Potential segfault in

`localtime_r` invocations
Upgrade to >=0.4.20 No

openssl-src 111.22.0+1.1.1q
RUSTSEC-

2023-0007

Timing Oracle in RSA

Decryption

Upgrade to >=111.25,

<300.0 OR
>=300.0.12

#30180

openssl-src 111.22.0+1.1.1q
RUSTSEC-

2023-0006

X.400 address type

confusion in X.509
`GeneralName`

Upgrade to >=111.25,

<300.0 OR
>=300.0.12

#30180

openssl-src 111.22.0+1.1.1q
RUSTSEC-

2023-0009

Use-after-free following

`BIO_new_NDEF`

Upgrade to >=111.25,

<300.0 OR
>=300.0.12

#30180

openssl-src 111.22.0+1.1.1q
RUSTSEC-

2023-0010

Double free after calling

`PEM_read_bio_ex`

Upgrade to >=111.25,

<300.0 OR
>=300.0.12

#30180

remove_dir_all 0.5.3
RUSTSEC-

2023-0018

Race Condition Enabling

Link Following and Time-of-
check Time-of-use

(TOCTOU)

Upgrade to >=0.8.0 #30633

rocksdb 0.18.0
RUSTSEC-

2022-0046

Out-of-bounds read when

opening multiple column
families with TTL

Upgrade to >=0.19.0
Yes in

v1.14

time 0.1.43 RUSTSEC- Potential segfault in the Upgrade to >=0.2.23 No

https://rustsec.org/advisories/RUSTSEC-2023-0004
https://github.com/solana-labs/solana/pull/30180
https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2023-0007
https://github.com/solana-labs/solana/pull/30180
https://rustsec.org/advisories/RUSTSEC-2023-0006
https://github.com/solana-labs/solana/pull/30180
https://rustsec.org/advisories/RUSTSEC-2023-0009
https://github.com/solana-labs/solana/pull/30180
https://rustsec.org/advisories/RUSTSEC-2023-0010
https://github.com/solana-labs/solana/pull/30180
https://rustsec.org/advisories/RUSTSEC-2023-0018
https://github.com/solana-labs/solana/pull/30633
https://rustsec.org/advisories/RUSTSEC-2022-0046
https://rustsec.org/advisories/RUSTSEC-2020-0071

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 8 of 14

2020-0071 time crate

tokio 1.14.1
RUSTSEC-

2023-0001

reject_remote_clients

Configuration corruption

Upgrade to >=1.18.4,

<1.19.0 OR >=1.20.3,
<1.21.0 OR >=1.23.1

#29587

An attacker can exploit a known vulnerability in the Renec node and performs a denial-of-service attack on the network by taking down all

nodes in the network.

Recommendation

Actually upstream already fixed some issues in v1.13 and is addressing other issues in v1.14 branch, and fix will be provided in the

next stable release.

Short term, update all dependencies to their newest version for v1.13 if a fix is available, and wait for next stable release for applying

patches to the remaining issues.

Long term, run cargo-audit as part of the CI/CD pipeline and ensure that the team is alerted to any vulnerable dependencies that are

detected.

Unmaintained and yanked dependencies in Renec blockchain

Renec blockchain uses dependencies which are unmaintained or yanked.

ID REN-006

Scope Code Security

Severity LOW

Status Acknowledged (Dev team will monitor upstream repo for next stable releases)

Details

The Renec blockchain node uses the following dependencies which are no more maintained or yanked by authors.

All the dependencies listed are inherited from Solana node.

Dependency Version Id Status Remediation
Upstream
testnet
patch

ansi_term 0.11.0
RUSTSEC-

2021-0139
unmaintained

Use alternative crates: anstyle, console,
nu-ansi-term, owo-colors, stylish, yansi

No

net2 0.2.37
RUSTSEC-

2020-0016
unmaintained

`net2` crate has been deprecated; use
`socket2` instead

No

serde_cbor 0.11.2
RUSTSEC-

2021-0127
unmaintained

Use alternative crates: ciborium,
minicbor

Yes

stdweb 0.4.20
RUSTSEC-

2020-0056
unmaintained

Use alternative crates: wasm-bindgen,
js-sys, web-sys

Yes

block-buffer 0.10.0 N/A yanked upgrade Yes

cpufeatures 0.2.1 N/A yanked upgrade No

crossbeam-
channel

0.5.3 N/A yanked upgrade Yes

https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2023-0001
https://github.com/solana-labs/solana/pull/29587
https://rustsec.org/advisories/RUSTSEC-2021-0139
https://rustsec.org/advisories/RUSTSEC-2020-0016
https://rustsec.org/advisories/RUSTSEC-2021-0127
https://rustsec.org/advisories/RUSTSEC-2020-0056

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 9 of 14

crossbeam-
utils

0.8.5 N/A yanked upgrade Yes

quinn-udp 0.1.0 N/A yanked upgrade No

zeroize_derive 1.2.0 N/A yanked upgrade No

Recommendation

Fixing these issues may result in breaking changes, as some dependencies are replaced by alternatives.

As most of these issues are fixed on testnet upstream version v1.14 , we recommend to monitor upstream updates and apply updates

accordingly.

Cargo.toml manifest files contain wrong metadata

Crates within the workspace have a misconfigured manifest file.

ID REN-001

Scope Code Quality, Project Structure

Status Fixed

Details

Cargo.toml manifest files contain wrong metadata for repository field in the [package] section.

When crates are published on crates.io, and so on docs.rs, the repository field will show the source code location of the crate.

All source code location defined in repository field are pointing to old https://github.com/remitano/renec repository or

https://github.com/solana-labs/solana instead of https://github.com/renec-chain/renec which can mislead developers and

contributors.
 Some modified crates from fork, with Renec related code are also still pointing to https://github.com/solana-

labs/solana in their repository field.
 Even without publishing a crate publicly, source code location in repository field should be

consistent with the actual location of the code.

Recommendation

Update authors and repository field of the [package] section in Cargo.toml file for all crates with correct values.

With a rust toolchain >= 1.64.0 workspace inheritance can be used to avoid duplication of common field values between crates.
 for
example at workspace level you can define in Cargo.toml :

[workspace.package]

authors = ["RENEC Maintainers <dev@remitano.com>"]

edition = "2021"

version = "1.13.6"

repository = "https://github.com/renec-chain/renec"

homepage = "https://remitano.com/"

license = "Apache-2.0"

And in crates you can inherit the package section defined at workspace level.
For example for renec-genesis crate:

[package]

name = "renec-genesis"

description = "Blockchain, Rebuilt for Scale"

documentation = "https://docs.rs/renec-genesis"

version = { workspace = true }

authors = { workspace = true }

repository = { workspace = true }

homepage = { workspace = true }

https://crates.io/
https://docs.rs/

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 10 of 14

license = { workspace = true }

edition = { workspace = true }

Confusing variable name

Confusing type assumption based on variable name.

ID REN-002

Scope Code Quality

Status Fixed

Details

in rbpf-cli/src/main.rs we can find:

 let max_u64 = std::i64::MAX.to_string();

While reading code, a reader could infer that max_u64 is the maximum value of an unsigned 64 bits integer, but it is actually the string

representation of a signed 64 bits integer maximum value.

Recommendation

Don't use this temporarily variable and pass directly the needed value to the list of valid arguments for the SOLANA BPF CLI .

 .arg(

 Arg::new("instruction limit")

 .help("Limit the number of instructions to execute")

 .short('l')

 .long("limit")

 .takes_value(true)

 .value_name("COUNT")

 .default_value(&std::i64::MAX.to_string()),

)

Crate stake-monitor is empty and not included in workspace

ID REN-008

Scope Code Quality

Status Fixed

Details

stake-monitor is an empty crate with just a Cargo.toml file inside.

stake-monitor is not included as a workspace member.

Recommendation

Delete stake-monitor directory. (#18020)

https://github.com/solana-labs/solana/pull/18020

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 11 of 14

Inflation unit test failed

Change in Inflation behavior breaks a unit test.

ID REN-004

Scope Code Quality

Status Fixed

Details

A Change of inflation behavior and rates breaks a unit test in sdk/src/inflation.rs:

$ cargo test -p solana-sdk test_inflation

test inflation::tests::test_inflation_fixed ... ok

test inflation::tests::test_inflation_basic ... FAILED

failures:

---- inflation::tests::test_inflation_basic stdout ----

thread 'inflation::tests::test_inflation_basic' panicked at 'assertion failed: total < last', sdk/src/inflation.rs:127:1

note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:

 inflation::tests::test_inflation_basic

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 198 filtered out; finished in 0.00s

error: test failed, to rerun pass `-p solana-sdk --lib`

Inflation is defined with these constant values:

// Initial inflation percentage, from time=0

const DEFAULT_INITIAL: f64 = 0.045;

// Terminal inflation percentage, to time=INF

const DEFAULT_TERMINAL: f64 = 0.045;

// Rate per year, at which inflation is lowered until reaching terminal

const DEFAULT_TAPER: f64 = 0.0;

// Percentage of total inflation allocated to the foundation

const DEFAULT_FOUNDATION: f64 = 0.05;

// Duration of foundation pool inflation, in years

const DEFAULT_FOUNDATION_TERM: f64 = 7.0;

Since inflation remains consistently high at 4.5% over years, the assertion assert!(total < last) will always fail.

#[test]

#[allow(clippy::float_cmp)]

fn test_inflation_basic() {

 let inflation = Inflation::default();

 let mut last = inflation.total(0.0);

 for year in &[0.1, 0.5, 1.0, DEFAULT_FOUNDATION_TERM, 100.0] {

 let total = inflation.total(*year);

 assert_eq!(

 total,

 inflation.validator(*year) + inflation.foundation(*year)

);

 assert!(total < last); // THIS WILL ALWAYS FAIL

 assert!(total >= inflation.terminal);

 last = total;

 }

 assert_eq!(last, inflation.terminal);

}

Recommendation

Since the inflation rate remains constant over years, assertions should check equality:

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 12 of 14

#[test]

#[allow(clippy::float_cmp)]

fn test_inflation_basic() {

 let inflation = Inflation::default();

 let mut last = inflation.total(0.0);

 for year in &[0.1, 0.5, 1.0, DEFAULT_FOUNDATION_TERM, 100.0] {

 let total = inflation.total(*year);

 assert_eq!(

 total,

 inflation.validator(*year) + inflation.foundation(*year)

);

 assert_eq!(total, last);

 assert_eq!(total, inflation.terminal);

 last = total;

 }

 assert_eq!(last, inflation.terminal);

}

Relax linter for undefined behavior

Warning on usage of uninitialized data.

ID REN-003

Scope Code Quality

Status Fixed

Details

A warning is trigger by the compiler for Default implementation of Packet struct in sdk/src/packet.rs:

warning: the type `[u8; 1232]` does not permit being left uninitialized

 --> sdk/src/packet.rs:122:30

 |

122 | buffer: unsafe { std::mem::MaybeUninit::uninit().assume_init() },

 | ^^^

 | |

 | this code causes undefined behavior when executed
 | help: use `MaybeUninit<T>` instead, and only call `assume_init` after initialization

 |

 = note: integers must be initialized

 = note: `#[warn(invalid_value)]` on by default

Recommendation

To avoid this warning, the buffer initialization should be done in 2 steps:

impl Default for Packet {

 fn default() -> Self {

 let buffer = std::mem::MaybeUninit::<[u8; PACKET_DATA_SIZE]>::uninit();

 Self {

 buffer: unsafe { buffer.assume_init() },

 meta: Meta::default(),

 }

 }

}

It is good practice to eliminate all compiler warnings for release builds.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 13 of 14

Unmerged pull requests from Upstream to Renec

There are fixes released on upstream v1.13 & v1.14 that could be applied to Renec v1.13.6 and future versions.

ID REN-007

Scope Informational

details

Description Version Scope status
Pull
Request

Recommendation

ci: resolve outstanding v1.13 cargo-audit

errors
v1.13 Security Merged #30180 Apply

stops nodes from broadcasting slots twice v1.13 Performance Merged #30684
Apply (if applied, also

merge 30717)

revert unintentional debug change

introduced by d373e87
v1.13 Bug Merged #30717

Apply if 30684 is

merged. As it solved a
bug introduced by this

pull request.

Improves RPC path sanitation (backport

#29931)
v1.14 Security/Bug Merged #29946

Wait for next stable

release and merge

Panic when shred index exceeds the max

per slot (backport of #30555)
v1.14 Bug Merged #30605

Wait for next stable

release and merge

Exit when stuck in an unrecoverable

repair/purge loop (backport of #28596)
v1.14 Bug Merged #30562

Wait for next stable

release and merge

validators always skip clean/shrink on

startup (backport of #30710)
v1.14 Performance Open #30714

Wait for next stable

release and merge

Recommendation

Non breaking v1.13 pull requests should be merged.

Upstream updates should be monitored for future releases and merged pull requests.

https://github.com/solana-labs/solana/pull/30180
https://github.com/solana-labs/solana/pull/30684
https://github.com/solana-labs/solana/pull/30684
https://github.com/solana-labs/solana/pull/29946
https://github.com/solana-labs/solana/pull/30605
https://github.com/solana-labs/solana/pull/30562
https://github.com/solana-labs/solana/pull/30714

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 14 of 14

Disclaimers

Hacken disclaimer

The code base provided for audit has been analyzed according to the latest industry code quality, software processes and cybersecurity
practices at the date of this report, with discovered security vulnerabilities and issues the details of which are disclosed in this report

(Source Code); the Source Code compilation, deployment, and functionality (performing the intended functional specifications).
The report
contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code

(branch/tag/commit hash) submitted to and reviewed, so it may not be relevant to any other branch. Do not consider this report as a final
and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements. While we have

done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we
recommend proceeding with several independent audits, public bug bounty program and CI/CD process to ensure security and code

quality. English is the original language of the report. The Сonsultant is not responsible for the correctness of the translated versions.

Technical disclaimer

Protocol Level Systems are deployed and executed on hardware and software underlying platforms and platform dependencies
(Operating System, System Libraries, Runtime Virtual Machines, linked libraries, etc.). The platform, programming languages, and other

software related to the Protocol Level System may have vulnerabilities that can lead to security issues and exploits. Thus, Consultant
cannot guarantee the explicit security of the Protocol system in full execution environment stack (hardware, OS, libraries, etc.)

