
Customer: Diverse Solutions
Date: 15 Jun, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Diverse
Solutions

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20; Staking;

Platform EVM

Language Solidity

Methodology Link

Website https://www.dsolutions.mn/

Changelog
24.04.2023 – Initial Review
09.05.2023 – Second Review
07.06.2023 – Third Review
15.06.2023 – Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.dsolutions.mn/


Table of contents
Introduction 4
Scope 4
Severity Definitions 6
Executive Summary 7
Risks 8
System Overview 9
Checked Items 10
Findings 13

Critical 13
C01. Highly Permissive Role Access 13
C02. Highly Permissive Role Access 13
C03. Front-Running Attack; Inflation Attack 14

High 15
H01. Undocumented Behavior 15
H02. Highly Permissive Role Access 15
H03. Undocumented Behavior 16
H04. Requirements Violation; Race Condition 16

Medium 17
M01. Unchecked Transfer 17
M02. Highly Permissive Role Access 17

Low 18
L01. Gas Optimization: Redundant Use of SafeMath 18
L02. Switcher Functionality 18
L03. Gas Optimization: Unused Variable 18
L04. Missing Zero Address Validation 18
L05. Gas Optimization: Variables That Can Be Set as Immutable 19
L06. Recommendation: Indexed Inputs in Events 19
L07. Gas Optimization: Unnecessary State Variable Update 19
L08. Recommendation: Boolean Equality 20
L09. Recommendation: Use of Hard-Coded Values 20
L10. CEI Pattern Violation 20

Disclaimers 21

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Diverse Solutions (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project includes review and security analysis of the
following smart contracts from the provided repository:

Initial review scope

Repository https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts

Commit f9d3dc20fb0b5b5cdf0f46803c9d0a622b260d17

Whitepaper Not provided.

Functional
Requirements Not provided.

Technical
Requirements Not provided.

Contracts File: ./contracts/XARDM.sol
SHA3: 0a269e50ff58851c631a8f936a1c3726f680fba2c51816f95c26b1d417679168

File: ./contracts/XARDMStaking.sol
SHA3: 3bb73e3519382e31c28631a428898764276dafc64e401741fbbc38a5fc4d9a6a

Second review scope

Repository https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts

Commit 9a1c12880986471875097f9b10835d5aed509bed

Whitepaper Not provided.

Functional
Requirements Not provided.

Technical
Requirements Not provided.

Contracts File: ./contracts/XARDM.sol
SHA3: 9b275ced01c54674b0d22211fda43d0ebf8aa0cef65f3b733d28f3de4e4596a2

File: ./contracts/XARDMStaking.sol
SHA3: 257256b7766bbf73a227b9371c9d20e31c058364f16c2190432a76eaf86a2454

www.hacken.io
4



Third review scope

Repository https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts

Commit 71b0b2e7d5aaa4db31652574cdb48f2081e045a2

Whitepaper Not provided.

Functional
Requirements

https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts/b
lob/main/README.md

Technical
Requirements

https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts/b
lob/main/README.md

Contracts File: ./contracts/XARDM.sol
SHA3: 8307eb4645e6d56f72160f44ab6ce808e2ccb554feab11e1bfaeebdf85cef247

File: ./contracts/XARDMStaking.sol
SHA3: aa8c2b125c2d18f79398c16f4f1c85dd07571683e9157826e8ee1553bb438c1f

Fourth review scope

Repository https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts

Commit d9f8a152ad1df35422e273d3337262669b62fc06

Whitepaper Not provided.

Functional
Requirements

https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts/b
lob/main/README.md

Technical
Requirements

https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts/b
lob/main/README.md

Contracts File: ./contracts/XARDM.sol
SHA3: 1f61f611cb69b2db55dbac614ee08e55e9c5c99609b8ade0c2c8d63bc240f610

File: ./contracts/XARDMStaking.sol
SHA3: d9b49a019deecc30801ed956e71788d8f81b7da1245e1b4129be63b625b0fd90

www.hacken.io
5

https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts
https://github.com/hknio/ardmoney-staking-smart-contracts-28fba9/blob/main/README.md
https://github.com/hknio/ardmoney-staking-smart-contracts-28fba9/blob/main/README.md
https://github.com/hknio/ardmoney-staking-smart-contracts-28fba9/blob/main/README.md
https://github.com/hknio/ardmoney-staking-smart-contracts-28fba9/blob/main/README.md
https://github.com/DiverseSolutions/ardmoney-staking-smart-contracts
https://github.com/hknio/ardmoney-staking-smart-contracts-28fba9/blob/main/README.md
https://github.com/hknio/ardmoney-staking-smart-contracts-28fba9/blob/main/README.md
https://github.com/hknio/ardmoney-staking-smart-contracts-28fba9/blob/main/README.md
https://github.com/hknio/ardmoney-staking-smart-contracts-28fba9/blob/main/README.md


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are detailed:
○ Project overview is detailed.
○ All roles in the system are described.
○ NatSpec is present.

● Technical description is inadequate:
○ Technical specification is provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 9 out of 10.

● The development environment is configured.
● CEI pattern violation is found.

Test coverage
Code coverage of the project is 97.29% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is partially missed.

Security score
As a result of the audit, the code contains no issue. The security score is
10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7

The system users should acknowledge all the risks summed up in the risks
section of the report.

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

24 April 2023 9 2 3 3

08 May 2023 3 0 2 2

07 June 2023 1 0 3 0

15 June 2023 0 0 0 0

Risks

● In addition to the XARDMStaking contract, the system owner has the
ability to mint an unlimited number of XARDM tokens. This can lead to
a potential manipulation of the token price by affecting the token
supply.

● The smart contract highly depends on the smart contract owners, they
can significantly affect the work and logic of the execution of the
smart contract.

● There is a risk associated with the deposit system as each new
deposit resets the user's deadline, regardless of any time already
passed from the previous deposit. Therefore, it is important for
users to understand that each additional deposit effectively resets
the lock period, requiring the user to wait anew for the entire
duration until the deadline is reached.

www.hacken.io
8



System Overview

Diverse Solutions is a staking pool that uses a modified AMM mechanism and
the exchange rate between ARDM and XARDM is determined by the ratio of the
total supply of XARDM to the total amount of ARDM held in the exchange
contract. The system is explained via the following contracts:

● XARDM — an ERC-20 token that does not mint any supply during
initialization. Additional minting is allowed and total supply is not
capped.
It has the following attributes:

○ Name: xArdMoney
○ Symbol: XARDM
○ Decimals: 18
○ Total supply: Infinite.

● XARDMStaking — a staking contract that allows users to deposit ARDM
tokens. The staking system runs with the following logic:

○ Staker gets XARDM tokens in exchange for depositing ARDM.
The XARDM amount to get = deposited ARDM amount * (total
supply of xARDM / total ARDM in the contract)

○ Staker withdraws ARDM tokens by paying back the XARDM
tokens.
The ARDM amount to get = given XARDM amount * (total ARDM
in the contract / total supply of xARDM)

Privileged roles
● MINTER_ROLE of the XARDM contract can mint an arbitrary amount of

tokens to any address.
● DEFAULT_ADMIN_ROLE can grant PAUSER_ROLE or MINTER_ROLE to any user.
● The owner of the XARDMStaking contract can:

○ reset the rewards and withdraw deposited ARDM tokens that cross
the ratio 1 of ARDM/XARDM.

○ set a penalty fee and a penalty deadline.
○ set a treasury address.
○ pause/unpause withdrawals or deposits.
○ pause getting a penalty fee.

Recommendations
● Add proper NatSpec documentation for the code.
● Consider merging XARDM and XARDMStaking into one contract, as both

contracts are one system. Consider using the tokenized vault
standard.

● Provide documentation for the system.

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



Findings

Critical

C01. Highly Permissive Role Access

The XARDM token contract has a mint() function that can be accessed
by any account with MINTER_ROLE assigned, including the XARDMStaking
contract and _adminAddress.

Any unauthorized minting of XARDM tokens outside of the XARDMStaking
system compromises the integrity of user funds staked in the
contract.

The presence of any minter role that is not a XARDMStaking contract
in the staking system leads to a situation where user funds can be
extracted from the contract directly, by minting any amount of XARDM
tokens and withdrawing ARDM tokens from the XARDMStaking contract.

Path: ./contracts/XARDM.sol : mint()

Recommendation: only the staking contract should have the authority
to mint XARDM tokens, and this should be immutable.

Found in: f9d3dc2

Status: Mitigated (Revised commit: 71b0b2e.

According to documentation provided by the client, the token minting
business logic should be presented in the code:

“xARDM token must have MINTER ROLE and only should point to 1 Staking
Contract. IF in the future staking contract needs to be closed then
minter role of that staking contract needs to be revoked and new
staking contract needs to have minter role. Giving us full
flexibility and migration abilities of xARDM token.”)

C02. Highly Permissive Role Access

The owner of the XARDMStaking contract can withdraw the users'
deposited ARDM tokens by using the resetRewards() function.

When the total balance of ARDM in the XARDMStaking contract is
greater than the total supply of xARDM, the owner can withdraw this
difference as ARDM tokens.

Although this difference occurs due to an external ARDM transfer to
the contract in the form of rewards, shares calculations of deposits
made after the transfer will be calculated according to the new rate.

This leads to a situation in which any user who deposits ARDM tokens
after the transfer of rewards can suffer losses after the owner calls
for a rewards reset.

www.hacken.io
13



The owner should not be able to withdraw other users' deposited
assets and should not be able to manipulate the profit they will
make.

Path: ./contracts/XARDMStaking.sol : resetRewards()

Recommendation: do not reset the ratio and do not allow the owner to
withdraw assets that belong to users.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

C03. Front-Running Attack; Inflation Attack

An inflation attack is an attack that allows malicious actors to
steal the initial deposits into vulnerable pools, potentially
resulting in significant losses for unsuspecting investors.

In the early stages, any contract that utilizes the 'mint shares'
function in exchange for deposited assets is susceptible to an
inflation attack.

The vulnerability is connected to a rounding issue in the deposit()
function, as the following equation illustrates:

uint256 mintAmount = (_amount * totalxARDM) / totalARDM;

An attacker can manipulate the denominator, causing a victim to
receive either zero or one share of the vault (XARDM).

At the beginning, when there are no funds in the pool, it is possible
to use the front-running attack for instant profit.

Attack scenario:

1. An attacker sends the first deposit to the pool and mints one
wei of share (XARDM): deposit(1). As a result, totalAsset() ==
1, totalSupply() == 1.

2. An attacker front-runs the deposit of the victim who wants to
deposit 20,000 ARDM.

3. An attacker inflates the denominator right in front of the
victim: ardm.transfer(20_000e18). Now, totalAsset() ==
20_000e18 + 1 and totalSupply() == 1.

4. The victim's transaction takes place. The victim gets 1 *
20_000e18 / (20_000e18 + 1) == 0 shares (XARDM), so the victim
gets zero shares.

5. An attacker burns his share and gets all the ARDM.

Path: ./contracts/XARDMStaking.sol : deposit()

Recommendation: consider adding mitigation steps to the deposit()
function. The attack vector and recommended mitigation steps are
described under this link:

www.hacken.io
14



https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706#is
suecomment-1297230505

Found in: f9d3dc2

Status: Fixed (Revised commit: 71b0b2e)

High

H01. Undocumented Behavior

The staking system is designed to exclusively allow externally owned
accounts (EOA) to participate in staking.

Preventing contracts from participating in staking is not a desirable
solution as it could limit the functionality and adoption of many
applications, particularly in the DeFi space.

For example, Gnosis Safe addresses are created as contracts but can
be used by multiple users as a shared wallet. In addition, it may
block the possible interactions of other DeFi applications.

Path: ./contracts/XARDMStaking.sol : onlyEOA()

Recommendation: remove the EOA modifier and allow contract addresses
to join the staking, or document this behavior and the reasoning
behind it.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

H02. Highly Permissive Role Access

The owner of the XARDMStaking contract can change the penalty
deadline and penalty fee values after users have deposited ARDM
tokens under the previous penalty values.

Changing the penalty deadline and penalty fee will affect the users
that have stakes in the system and will result in them paying
different penalty fees than promised.

Path: ./contracts/XARDMStaking.sol : deposit()

Recommendation: consider applying a penalty deadline to user deposits

directly inside the deposit() function, as shown below:

_userDeadline[msg.sender] = block.timestamp + penaltyDeadline;

Check the deadline in the withdraw() and hasUserDeadlinePassed()
functions, simply by comparing:

_userDeadline[msg.sender] > block.timestamp

www.hacken.io
15



The penalty fee variable should be limited to reasonable amounts, for
example 10%, when it is assigned in the constructor() or in the
setPenaltyFee() function.

Found in: 128u923

Status: Fixed (Revised commit: d9f8a15)

H03. Undocumented Behavior

The deposit() function always updates the _userDeadline variable to
the current block.timestamp to track how much time has passed since
the last deposit, and if the user needs to pay a penalty fee when
withdrawing ARDM tokens.

However, the scenario of making multi-deposits is not considered as
individual deposits and their timestamps are not tracked in the
system.

Penalty fees are always calculated from the timestamp of the last
deposit.

This creates inconsistency and causes users to pay unfair amounts of
fees.

Path: ./contracts/XARDMStaking.sol : deposit(), withdraw()

Recommendation: explain the logic of this implementation in the
documentation. If it is not the intended behavior of the system, fix
the issue.

Found in: f9d3dc2

Status: Mitigated (with Customer notice:

“User deadline gets updated everytime user deposits token. It is an
intended behavior of the system”.)

H04. Requirements Violation; Race Condition

Users' deadlines are not changed when they make a deposit, as long as
the deadline for paying the penalty has not yet arrived, and the
newly made deposits are recorded to be processed with the same
deadline.

Users can wait until the last stage of the deadline by depositing a
very small amount of tokens and then deposit the desired amount at
the last minute to collect their rewards a few minutes later.

This race condition allows users to pay unfair penalty fees to the
system and wait for less than the required period of time by
manipulating the system.

Path: ./contracts/XARDMStaking.sol : deposit(), withdraw()

www.hacken.io
16



Recommendation: implement logic of multi-deposits, for taking fees
from every deposit separately, instead of storing one deadline
timestamp for all users’ investment.

Found in: 71b0b2e

Status: Fixed (Revised commit: d9f8a15)

Medium

M01. Unchecked Transfer

The deposit(), withdraw() and resetRewards() functions do not use the
SafeERC20 library for checking the result of ERC20 token transfers.

Tokens may not follow the ERC20 standard and return a false in case
of transfer failure or not return any value at all.

Path: ./contracts/XARDMStaking.sol : deposit(), withdraw(),
resetRewards()

Recommendation: use the SafeERC20 library to interact with tokens
safely.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

M02. Highly Permissive Role Access

The account with PAUSER_ROLE can pause the transferability of the
XARDM token.

This leads to a situation in which the deposit() and withdraw()
functions of the XARDMStaking contract are affected by a Denial of
Service vulnerability.

As both systems are tightly connected and there is functionality for
pausing deposits and withdrawals directly in the XARDMStaking, the
Pausable nature of the XARDM token appears redundant.

Path: ./contracts/XARDMStaking.sol : pause(), unpause()

Recommendation: consider removing the Pausable extension from the
XARDM token contract, reduce the impact of privilege roles to a
minimum.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

www.hacken.io
17



Low

L01. Gas Optimization: Redundant Use of SafeMath

Since Solidity v0.8.0, the overflow/underflow check is implemented
via ABIEncoderV2 on the language level - it adds the validation to
the bytecode during compilation.

There is no need to use the SafeMath library.

Path: ./contracts/XARDMStaking.sol

Recommendation: remove the SafeMath library.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

L02. Switcher Functionality

Functions-switchers which reverse a value are not safe as they may be
invoked by several users and the wanted result may not be obtained.

Race conditions and unexpected value can be assigned during the call.

Path: ./contracts/XARDMStaking.sol : toggleWithdrawPause(),
toggleDepositPause(), togglePenaltyPause()

Recommendation: remove the switch functionality providing wanted
status as a parameter.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

L03. Gas Optimization: Unused Variable

The penaltyToAddress variable is declared but never used in the
project.

Redundant declarations cause unnecessary Gas consumptions and reduce
the code readability.

Path: ./contracts/XARDMStaking.sol

Recommendation: either implement the logic for the penaltyToAddress
variable or remove it.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

L04. Missing Zero Address Validation

Address parameters(treasuryAddress and ARDM) are used without
checking against the possibility of 0x0.

This can lead to unwanted external calls to 0x0.
www.hacken.io

18



Path: ./contracts/XARDMStaking.sol : constructor(),
setTreasuryAddress()

Recommendation: implement zero address checks in the mentioned
functions.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

L05. Gas Optimization: Variables That Can Be Set as Immutable

The variables ARDM and xARDM are only set in the constructor and can
thus be set as immutable.

Path: ./contracts/XARDMStaking.sol

Recommendation: it is recommended to set said variables as immutable
in order to save Gas.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

L06. Recommendation: Indexed Inputs in Events

Events have the possibility to track their inputs as indexed. It is
recommended to use the indexed keyword for better tracking of
sensitive data.

Path: ./contracts/XARDMStaking.sol

Recommendation: consider adding the indexed keyword to track user
addresses in events.

Found in: f9d3dc2

Status: Mitigated (The most important events have indexed
parameters.)

L07. Gas Optimization: Unnecessary State Variable Update

The variables withdrawPaused and depositPaused are set to a false
value in the smart contract constructor(), which is unnecessary since
that is their default value.

This leads to unnecessary Gas consumption.

Path: ./contracts/XARDMStaking.sol : constructor()

Recommendation: remove redundant state variables update.

Found in: f9d3dc2

Status: Fixed (Revised commit: 9a1c128)

www.hacken.io
19



L08. Recommendation: Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Path: ./contracts/XARDMStaking.sol : deposit(), withdraw()

Recommendation: remove boolean equality.

Found in: f9d3dc2

Status: Fixed (Revised commit: 71b0b2e)

L09. Recommendation: Use of Hard-Coded Values

Hard-coded values are used in computations. The 1e20 and 1e18 values
can be converted to constants to increase contract readability and
reduce misuse.

Path: ./contracts/XARDMStaking.sol : withdraw(), getXARDMRate()

Recommendation: convert these variables into constants.

Found in: f9d3dc2

Status: Fixed (Revised commit: 71b0b2e)

L10. CEI Pattern Violation

The Checks-Effects-Interactions pattern is violated in several
functions.

When performing withdraw() and reward() functions, totalARDM is
updated after the external calls.

When performing the deposit() function, first XARDM is sent to the
user and then ARDM is taken by the user.

Path: ./contracts/XARDMStaking.sol : withdraw(), reward(), deposit()

Recommendation: update the state variable before transferring the
tokens and always first receive the required tokens to be burned from
the users and then transfer the rewards.

Found in: 71b0b2e

Status: Mitigated (In deposit() function the CEI violation is
mitigated with nonReentrant modifier.)

www.hacken.io
20



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
21


