
Customer: Jasan Wellness
Date: Jun 22, 2023

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

This report may contain confidential information about IT systems and
the intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another
Party. Any subsequent publication of this report shall be without
mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for Jasan
Wellness

Methodology Link

Website https://jwtoken.org/

Changelog Initial review scope - 22.06.2023

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0/edit
https://jwtoken.org/

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Table of contents

Introduction

System Overview

Executive Summary

Risks

Checked Items

Findings

Critical

High

Medium

Low

Invalid Hardcoded Value

Informational

Variable Shadowing

Disclaimers

Appendix 1. Severity Definitions

Risk Levels

Impact Levels

Likelihood Levels

Informational

Appendix 2. Scope

www.hacken.io
3

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Jasan Wellness (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

The audit scope consists of an Ownable BEP20 Token Jasan Wellness(JW)
Token, which will be used as the main token of a wellness platform. The
token will be used in a fitness and wellness application that tracks its
users physical activities and rewards JW Tokens according to their general
usage of the application. Holders of JW will be able to gain governance
right to the platform's future direction.
�
The files in the scope:

• Context.sol - Provides information about the current execution context,
including the sender of the transaction and its data.

• Ownable.sol - Access control mechanism of the Token contract, which gives
the owner the ability to mint more Tokens.

• iBEP20.sol - The interface for the Tokens contract.
• SafeMath.sol - Library to handle mathematical operations and prevent

overflows, underflows.
• JasanWellness.sol - The main Token of the platform, which is mintable by

the owner, and burnable by the users. Has decimals of 8.

Privileged roles

• Owner: Can mint tokens. The ownership was transferred to address(1) to
prevent any further minting.

www.hacken.io
4

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Executive Summary

The score measurement details can be found in the corresponding section
of the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

• NatSpec is sufficient.
• Functional requirements are provided.
• Whitepaper is provided.

Code quality

The total Code Quality score is 8 out of 10.

• Solidity Style Guides are not followed to the point.
• There are variable shadowings.
• There is invalid hardcoded value.

Test coverage

Test coverage of the project is 0% (branch coverage).

• Tests are not provided.

Since scope lines of code are less than 250, test coverage does not affect
the score.

Security score

As a result of the audit, the code contains 1 low issue, 0 medium issue,
0 high issue, 0 critical issue. The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the
following score: 9.6.

1 2 3 4 5 6 7 8 9 10

The final score

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Table. The distribution of issues during the audit

Review date Low Medium High Critical

21.06.2023 1 0 0 0

www.hacken.io
6

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Risks

• There are no additional risks.

www.hacken.io
7

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Description Status Related Issues

Integer
Overflow
and
Underflow

If unchecked math is
used, all math opera-
tions should be safe
from overflows and un-
derflows.

Passed

Outdated
Compiler
Version

It is recommended to
use a recent version of
the Solidity compiler.

Passed

Floating
Pragma

Contracts should be
deployed with the same
compiler version and
flags that they have
been tested thorough-
ly.

Passed

Unchecked
Call Return
Value

The return value of a
message call should be
checked.

Passed

SELFDE-
STRUCT
Instruction

The contract should
not be self-destruc-
tible while it has
funds belonging to
users.

Not rele-
vant

Check-Ef-
fect-
Interaction

Check-Effect-Interac-
tion pattern should be
followed if the code
performs ANY external
call.

Passed

Deprecated
Solidity
Functions

Deprecated built-in
functions should never
be used.

Passed

www.hacken.io
8

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Delegate-
call to
Untrusted
Callee

Delegatecalls should
only be allowed to
trusted addresses.

Passed

DoS (Denial
of Service)

Execution of the
code should never be
blocked by a specific
contract state unless
required.

Passed

Race Condi-
tions

Race Conditions and
Transactions Order De-
pendency should not be
possible.

Passed

Authoriza-
tion
through
tx.origin

tx.origin should not
be used for authoriza-
tion.

Passed

Block values
as a proxy
for time

Block numbers should
not be used for time
calculations.

Not rele-
vant

Signature
Unique Id

Signed messages should
always have a unique
id. A transaction hash
should not be used as a
unique id. Chain iden-
tifiers should always
be used. All parame-
ters from the signa-
ture should be used
in signer recovery.
EIP-712 should be fol-
lowed during a signer
verification.

Not rele-
vant

Shadowing
State
Variable

State variables should
not be shadowed. Failed

I01

www.hacken.io
9

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Weak Sources
of Random-
ness

Random values should
never be generated
from Chain Attributes
or be predictable.

Not rele-
vant

Incorrect
Inheritance
Order

When inheriting multi-
ple contracts, espe-
cially if they have
identical functions, a
developer should care-
fully specify inheri-
tance in the correct
order.

Passed

Calls Only
to Trusted
Addresses

All external calls
should be performed
only to trusted ad-
dresses.

Passed

Presence of
Unused Vari-
ables

The code should not
contain unused vari-
ables if this is not
justified by design.

Passed

EIP Stan-
dards Viola-
tion

EIP standards should
not be violated. Passed

Assets In-
tegrity

Funds are protected
and cannot be with-
drawn without prop-
er permissions or be
locked on the con-
tract.

Passed

User Bal-
ances Manip-
ulation

Contract owners or
any other third party
should not be able to
access funds belonging
to users.

Passed

www.hacken.io
10

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Data Consis-
tency

Smart contract data
should be consistent
all over the data flow.

Passed

Token Supply
Manipulation

Tokens can be mint-
ed only according to
rules specified in a
whitepaper or any oth-
er documentation pro-
vided by the customer.

Passed

Gas Limit
and Loops

Transaction execution
costs should not de-
pend dramatically on
the amount of data
stored on the con-
tract. There should
not be any cases when
execution fails due to
the block Gas limit.

Passed

Require-
ments
Compliance

The code should be com-
pliant with the re-
quirements provided by
the Customer.

Passed

Environment
Consistency

The project should
contain a configured
development environ-
ment with a compre-
hensive description of
how to compile, build
and deploy the code.

Passed

Secure Ora-
cles Usage

The code should have
the ability to pause
specific data feeds
that it relies on. This
should be done to pro-
tect a contract from
compromised oracles.

Passed

www.hacken.io
11

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Tests Cover-
age

The code should be cov-
ered with unit tests.
Test coverage should
be sufficient, with
both negative and pos-
itive cases covered.
Usage of contracts by
multiple users should
be tested.

Passed

Stable Im-
ports

The code should not
reference draft con-
tracts, which may be
changed in the future.

Passed

Assert Vio-
lation

Properly functioning
code should never
reach a failing assert
statement.

Passed

Default Vis-
ibility

Functions and state
variables visibility
should be set explic-
itly. Visibility lev-
els should be speci-
fied consciously.

Passed

Access Con-
trol & Autho-
rization

Ownership takeover
should not be possi-
ble. All crucial func-
tions should be pro-
tected. Users could
not affect data that
belongs to other
users.

Passed

www.hacken.io
12

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Flashloan
Attack

When working with ex-
change rates, they
should be received
from a trusted source
and not be vulner-
able to short-term
rate changes that can
be achieved by using
flash loans. Oracles
should be used. Con-
tracts shouldn’t rely
on values that can be
changed in the same
transaction.

Not rele-
vant

Style Guide
Violation

Style guides and best
practices should be
followed.

Failed
I01

www.hacken.io
13

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

L01 Invalid Hardcoded Value

Impact Low

Likelihood Medium

The hardcoded _totalsupply parameter value 600 million in the Jasan-
Wellness.sol contract contradicts with the documented value 60 million.

Path: ./JasanWellness.sol : constructor

Recommendation: Document the fix made to equal total supply to 60
million tokens after deployment.

Status: New

Informational

I01 Variable Shadowing

JasanWellness.allowance.owner shadows:
- Ownable.owner()
JasanWellness._approve.owner shadows:
- Ownable.owner()

Path: ./JasanWellness.sol : allowance(), _approve()

Recommendation: Rename shadowing variables.

Status: New

www.hacken.io
14

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the
smart contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
15

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood
of them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result
if it were to be exploited. For smart contracts, this could include the
loss of funds or assets, unauthorized access or control, or reputational
damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill
or resources required to exploit the vulnerability, and the presence of
any mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

www.hacken.io
16

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead
to the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and in most cases cannot lead to asset loss. Contradictions and require-
ments violations. Major deviations from best practices are also in this
category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses
or state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

www.hacken.io
17

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks
could be the result of known vulnerabilities or weaknesses in the contract,
or could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that
are possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities
or weaknesses in the contract, or could be the result of less targeted
attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract,
or could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
18

Hacken OÜ
 Parda 4, Kesklinn, Tallinn,
 10151 Harju Maakond, Eesti,

 Kesklinna, Estonia
 support@hacken.io

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Second review scope

Repository https://github.com/jwtoken2022/wellness

Commit 30d49903b6f043547058a9eff78bcc5f650abbef

Whitepaper Whitepaper

Technical Require-
ments

-

Functional Require-
ments

Whitepaper

Deployed Contracts
Addresses:

0xaB785054251DB0fc44538F5DeeBE7507B748b692

Contracts: File: contract.sol
SHA3: 77634af3ad92e48baf45cadee2d560288a459aba-
108035fcd8662ab69702b566

www.hacken.io
19

https://github.com/jwtoken2022/wellness
https://jwtoken.org/upload/image/1646222455.pdf
https://jwtoken.org/upload/image/1646222455.pdf
https://bscscan.com/token/0xaB785054251DB0fc44538F5DeeBE7507B748b692#code

	Document
	Table of contents
	Introduction
	System Overview
	Executive Summary
	Documentation quality
	Code quality
	Test coverage
	Security score
	Summary

	Risks
	Checked Items
	Findings
	finding_Critical
	finding_High
	finding_Medium
	finding_Low
	finding_Informational

	Disclaimers
	Hacken Disclaimer
	Technical Disclaimer

	Appendix 1. Severity Definitions
	Risk Levels
	Impact Levels
	Likelihood Levels
	Informational

	Appendix 2. Scope

