
Customer: Metatime
Date: 19 June, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Metatime

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Tags ERC20 token; Vesting; Proxy; Factory

Platform EVM

Language Solidity

Methodology Link

Website https://metatime.com/en

Changelog
25.05.2023 – Initial Review
09.06.2023 - Second Review
19.06.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://metatime.com/en


Table of contents
Introduction 5
System Overview 5
Executive Summary 7
Risks 8
Checked Items 9
Findings 12

Critical 12
High 12

H01. Invalid Calculations; Missing Validation 12
H02. Funds Lock 13
H03. Missing Validation; Data Consistency 13
H04. Undocumented Functionality: Proxy System Architecture 14

Medium 14
M01. Best Practice Violation: Disable Initializers 14
M02. Best Practice Violation: Unchecked Transfer 15
M03. Contradiction: Third Party Integration 15
M04. Best Practice Violation - Checks-Effects-Interactions Pattern 16
M05. Division Before Multiplication 16
M06. Missing Check: Loss of Funds 17
M07. Wrong Event Data 17
M08. Funds Lock 18
M09. Requirements Violation 18

Low 19
L01. Unused Variables 19
L02. Floating Pragma 19
L03. Missing Zero Address Validation 19
L04. Missing Amount Validation 20
L05. Missing NatSpecs: Burning Formula 20
L06. Naming Consistency 21
L07. Redundant Code: Unnecessary Getters 21
L08. Variable That Should Be Constant 21
L09. Functions That Should Be External 22
L10. Redundant SafeMath 22
L11. Non-Explicit Variable Visibilities 23
L12. Wrong Import 23
L13. Missing Check 23
L14. Repetitive Code 24
L15. Redundant Require Statement 24
L16. Redundant Code; Invalid Calculations 25
L17. Variables That Can Be Set Immutable 25

Informational 26
I01. Solidity Style Guide: mixedCase 26
I02. Missing Events for Critical Value Updates 26
I03. Non-Explicit Variable Unit Sizes 26

www.hacken.io
3



I04. Style Guide: Order of Functions 27
I05. Bad Variable Naming 27
I06. Style Guide: Order of Layout 27
I07. Redundant Function Call 28
I08. Unused Code 28

Disclaimers 29
Appendix 1. Severity Definitions 30

Risk Levels 30
Impact Levels 31
Likelihood Levels 31
Informational 31

Appendix 2. Scope 32

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by Metatime (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

MetaTime is a multi purpose protocol with the following contracts:
● MTC — custom ERC-20 token that mints all initial supply to pools

determined by the deployer. Additional minting is not allowed.
It has the following attributes:

○ Name: Metatime
○ Symbol: MTC
○ Decimals: 18
○ Total supply: dynamic (documentation: 10b tokens)

● Distributor — a pool contract that stores and distributes locked
tokens related to the ecosystem tokenomics, such as Marketing Pool,
Team Pool and Charity Pool.

● TokenDistributor — a pool contract that stores and distributes locked
tokens related to mass distribution, such as Seed Sale 1, Seed Sale 2
and Public Sale.

● LiquidityPool — represents the Liquidity Pool in the MTC Tokenomics.
It transfers funds when needed according to the market making
purposes.

● StrategicPool — used for burning purposes. It has a manual burning
function and burning function that calculates the burn amount by
using formula.

● TokenDistributorWithNoVesting — custom TokenDistributor contract
implementation with some differences, such as absence of periodic
distribution, and it is not a proxy logic contract.

Privileged roles
● The owner of the Distributor contract can claim claimable tokens from

the pool.
● The owner of the LiquidityPool contract can transfer tokens from the

pool.
● The owner of the TokenDistributorWithNoVesting contract can

arbitrarily set claimable token amounts for users and sweep tokens
balance after end time.

● The owner of the StrategicPool contract can withdraw and burn tokens
from the contract's balance.

www.hacken.io
5



● The owner of the TokenDistributor contract can arbitrarily set
claimable token amounts for users and sweep tokens balance after end
time.

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical and environment descriptions are provided.

Code quality
The total Code Quality score is 10 out of 10.

● The code follows best practices.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● All system features are covered with tests.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

The system users should acknowledge all the risks summed up in the risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

25 May 2023 11 9 4 0

09 June 2023 8 3 0 0

19 June 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The owner of the vesting contract can extract all contract tokens
(after the token distribution end time plus 100 days), leaving users
empty-handed if they did not claim their tokens.

www.hacken.io
8



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
9



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
10

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
11



Findings

Critical

No critical severity issues were found.

High

H01. Invalid Calculations; Missing Validation

Impact High

Likelihood Medium

The vesting logic in the Distributor and TokenDistributor contracts
is invalid.

Dependencies between endTime, DISTRIBUTION_RATE, and PERIOD variables
are not validated or checked correctly during initialization.

The DISTRIBUTION_RATE can be incorrect compared to the endTime and
number of periods that will occur based on the PERIOD variable
between startTime and endTime.

This can lead to insufficient release amounts for users or Denial of
Service and Token Supply Manipulation in case the DISTRIBUTION_RATE
is too large.

Inside the internal _calculateClaimableAmount() function, the time
from which the calculations are performed is not limited and the
block.timestamp is used even if it is greater than endTime. It is
mitigated by the require(block.timestamp < endTime, "Distribution has
ended"); check in the calculateClaimableAmount() function, but
fundamentally it is incorrect, and can lead to invalid calculations
when misused.

Paths:
./contracts/core/Distributor.sol
./contracts/core/TokenDistributor.sol

Recommendation: add validation of the initialization parameters.

For example, check if: BASE_DIVIDER / _distributionRate * _period ==
endTime - startTime

Or calculate the distribution rate based on the period length and
vesting duration.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

www.hacken.io
12



H02. Funds Lock

Impact Medium

Likelihood High

Contracts TokenDistributor and PrivateSaleTokenDistributor do not
allow users to claim tokens after the end date, resulting in tokens
that are locked and can only be claimed later by the owner.

Users should be able to claim their pending claimable tokens after
the end date, as it is highly unlikely that they will call the
claim() function at the exact last moment in order to withdraw all
possible tokens.

Paths:
./contracts/core/TokenDistributor.sol : claim();
./contracts/core/PrivateSaleTokenDistributor.sol : claim();

Recommendation: allow participants to claim tokens correctly after
the distribution end date, or add a threshold period after the end
date for users to claim in full.

Found in: 31a4e8c

Status: Fixed (Revised commit: 8b8d8e1)

H03. Missing Validation; Data Consistency

Impact High

Likelihood Medium

Contracts TokenDistributor and PrivateSaleTokenDistributor allow
calling setClaimableAmounts() more than once.

This results in miscalculations, as the actual total claimable amount
will be greater due to past existing participants.

The check:

require(token.balanceOf(address(this)) >= totalClaimableAmount,

will not be valid.

In the worst case, a user vesting that has already been partially
claimed can be updated with a new value, resulting in data
inconsistency.

Paths:
./contracts/core/TokenDistributor.sol : setClaimableAmounts();
./contracts/core/PrivateSaleTokenDistributor.sol :
setClaimableAmounts();

www.hacken.io
13



Recommendation: consider limiting the function call to be callable
only once, or update the function logic to prevent data
inconsistency.

Found in: 31a4e8c

Status: Fixed (Revised commit: 8b8d8e1)

H04. Undocumented Functionality: Proxy System Architecture

Impact Medium

Likelihood High

The proxy systems defined by DistributorProxyManager,
TokenDistributorProxyManager and InitializeProxy are implemented
using an immutable logic address.

Therefore, it is not clear why the project is using custom proxy
contracts and inheriting upgradeable contracts like
Ownable2StepUpgradeable if the contracts are not supposed to be
upgraded.

Paths:
./contracts/core/PrivateSaleTokenDistributor.sol
./contracts/utils/TokenDistributorProxyManager.sol
./contracts/utils/DistributorProxyManager.sol
./contracts/utils/InitializedProxy.sol
./contracts/core/Distributor.sol
./contracts/core/TokenDistributor.sol

Recommendation: it is recommended to use the Minimal Proxy ERC-1167
standard and the Clones library from OpenZeppelin as a way of
implementing the Factory design pattern. Use non-upgradable versions
of the Ownable2Step contract and use the Initializable contract only
where necessary.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

Medium

M01. Best Practice Violation: Disable Initializers

Impact High

Likelihood Low

According to the OpenZeppelin documentation, upgradeable contracts
should invoke the method _disableInitializers() in their
constructor() to prevent them from being used.

www.hacken.io
14

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract


However, said functionality is not implemented in all upgradeable
contracts.

_disableInitializers() should be called in the constructor() of the
Distributor and TokenDistributor contracts.

Paths:
./contracts/core/Distributor.sol
./contracts/core/LiquidityPool.sol
./contracts/core/PrivateSaleTokenDistributor.sol
./contracts/core/StrategicPool.sol
./contracts/core/TokenDistributor.sol
./contracts/utils/DistributorProxyManager.sol
./contracts/utils/TokenDistributorProxyManager.sol

Recommendation: follow OpenZeppelin’s documentation regarding
_disableInitializers in upgradeable contracts.

Found in: 31a4e8c

Status: Fixed (Revised commit: 8b8d8e1)

M02. Best Practice Violation: Unchecked Transfer

Impact High

Likelihood Low

The ERC20 function transfer() is used repeatedly without the
SafeERC20 wrapper.

Tokens may not follow the ERC20 standard and return false in case of
transfer failure or not returning any value at all. This can lead to
a Denial of Service or unexpected behavior when dealing with some
tokens. Hence, it is a best practice to use the SafeERC20 wrapper
when transferring tokens.

Paths:
./contracts/core/Distributor.sol: claim(), sweep();
./contracts/core/LiquidityPool.sol: _withdraw();
./contracts/core/PrivateSaleTokenDistributor.sol: claim(), sweep();
./contracts/core/StrategicPool.sol: _transfer();
./contracts/core/TokenDistributor.sol: claim(), sweep();

Recommendation: consider implementing the SafeERC20 library.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

M03. Contradiction: Third Party Integration

Impact Medium

Likelihood Medium

www.hacken.io
15

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20


Although most contracts integrate OpenZeppelin’s proxy features, not
all of them seem to be used as implementations in a proxy
architecture: PrivateSaleTokenDistributor, LiquidityPool and
StrategicPool inherit from Owneable2StepUpgradeable.

The current code leads to confusion and may behave differently than
expected.

Paths:
./contracts/core/PrivateSaleTokenDistributor.sol
./contracts/core/LiquidityPool.sol
./contracts/core/StrategicPool.sol

Recommendation: use Ownable2Step instead of Ownable2StepUpgradeable
as the contracts are not supposed to be upgradeable.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

M04. Best Practice Violation - Checks-Effects-Interactions Pattern

Impact High

Likelihood Low

State variables are updated after the external calls to the token
contract.

As explained in Solidity Security Considerations, it is best practice
to follow the checks-effects-interactions pattern when interacting
with external contracts to avoid reentrancy-related issues.

Paths:
./contracts/core/Distributor.sol: claim();
./contracts/core/PrivateSaleTokenDistributor.sol: claim();
./contracts/core/TokenDistributor.sol: claim();
./contracts/core/StrategicPool.sol: burnWithFormula(), burn();

Recommendation: follow the checks-effects-interactions pattern when
interacting with external contracts.

Found in: 31a4e8c

Status: Fixed (Revised commit: 8b8d8e1) (The mitigation step of
introducing the nonReentrant modifier was performed, but the CEI
violation was not resolved.

When CEI violations are resolved, the use of nonReentrant will be
redundant and it will cost less Gas to call the function without it.)

M05. Division Before Multiplication

Impact Low

www.hacken.io
16

https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern


Likelihood High

The variable periodSinceLastClaim is calculated as a result of a
division. Said variable is immediately multiplied afterward.

Since Solidity language does not have floating point numbers,
performing divisions before multiplications results in a loss of
precision.

Paths:
./contracts/core/Distributor.sol: _calculateClaimableAmount().
./contracts/core/TokenDistributor.sol: _calculateClaimableAmount().

Recommendation: it is recommended to perform divisions after
multiplications to avoid loss of precision.

Found in: 31a4e8c

Status: Fixed (Revised commit: 8b8d8e1)

M06. Missing Check: Loss of Funds

Impact High

Likelihood Low

In _submitPools, tokens are minted directly to the input pool
addresses. However, there is no check that those addresses actually
exist or are not the 0x0 address.

It is possible to lose funds if the 0x0 address or an un-existing
pool address is used.

Path:
./contracts/core/MTC.sol: _submitPools();

Recommendation: it is recommended to add a check for each address to
avoid 0x0, and that such pool addresses exist.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

M07. Wrong Event Data

Impact Low

Likelihood High

The function burnWithFormula() emits the event Burned with wrong
parameters. Instead of passing the value of amount, it is using a
hard-coded 1.

www.hacken.io
17

https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply


Path:
./contracts/core/StrategicPool.sol: burnWithFormula()

Recommendation: pass correct values to event arguments.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

M08. Funds Lock

Impact High

Likelihood Low

Some contracts accept Ether deposits but lack a withdrawal mechanism,
which can result in funds being locked in the contract.

Paths:
./contracts/core/Distributor.sol
./contracts/core/TokenDistributor.sol

Recommendation: implement a withdrawal mechanism to allow the owner
to retrieve deposited Ether if it is an expected behavior or remove
ability to receive Ether.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

M09. Requirements Violation

Impact Low

Likelihood High

A contradiction arises between the NatSpec notes and the content of
several functions. The comments state the functions work for “a given
address”, which is not reflected in the code.

The code should match the requirements provided by the customer.

Paths:
./contracts/core/Distributor.sol: getLeftClaimableAmount(), sweep(),
_calculateClaimableAmount().
./contracts/core/PrivateSaleTokenDistributor.sol: sweep().
contracts/core/TokenDistributor.sol: sweep().

Recommendation: update the functions and/or their NatSpec so that
they match.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

www.hacken.io
18



Low

L01. Unused Variables

Impact Low

Likelihood Medium

Unused variables are allowed in Solidity and do not pose a direct
security issue. However, it is best practice to avoid them as they
can cause an increase in computations (and unnecessary Gas
consumption) and decrease readability.

Paths:
./contracts/core/Distributor.sol : poolName, totalAmount;
./contracts/core/TokenDistributor.sol : poolName, totalAmount;

Recommendation: remove unused variables, or describe its usage.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L02. Floating Pragma

Impact Medium

Likelihood Low

As stated in SWC-103, contracts should be deployed with the same
compiler version and flags that they have been tested with
thoroughly. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler
version that might introduce bugs that affect the contract system
negatively.

Some contracts use Solidity 0.8.18 features, such as mapping
key/values names and will not be compatible with previous versions.

Paths:
./contracts/*.sol

Recommendation: consider locking the pragma version in all contracts.

Found in: 31a4e8c

Status: Fixed (Revised commit: 8b8d8e1)

L03. Missing Zero Address Validation

Impact Low

Likelihood Low

www.hacken.io
19

https://swcregistry.io/docs/SWC-103


Additional checks against the 0x0 address should be included in the
reported functions to avoid unexpected results.

Paths:
./contracts/core/PrivateSaleTokenDistributor.sol:
setClaimableAmounts() → users[i];
./contracts/core/TokenDistributor.sol:setClaimableAmounts() →
users[i];
./contracts/core/Distributor.sol: initialize() → token.
./contracts/core/TokenDistributor.sol: initialize() → token.
./contracts/utils/PoolFactory.sol: createTokenDistributor(),
createDistributor() → token.
./contracts/core/LiquidityPool: constructor() → token.
./contracts/core/StrategicPool: constructor() → token.
./contracts/core/PrivateSaleTokenDistributor: constructor() → token.

Recommendation: it is recommended to add zero address checks.

Found in: 31a4e8c

Status: Fixed (Revised commit: 8b8d8e1)

L04. Missing Amount Validation

Impact Low

Likelihood Low

An additional check should be introduced in the function claim() to
make sure that claimableAmount is not zero.

Path:
./contracts/core/PrivateSaleTokenDistributor.sol : claim();

Recommendation: consider adding a check that claimableAmount > 0.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L05. Missing NatSpecs: Burning Formula

Impact Low

Likelihood Low

The contract StrategicPool performs complex math operations to
calculate the amount of tokens that should be burned in the
burnWithFormula() function.

The calculations performed in the function are complex enough to
require proper comments and documentation in code explaining how it
works.

www.hacken.io
20



Path:
./contracts/core/StrategicPool.sol : calculateBurnAmount();

Recommendation: provide proper documentation in code about the
calculations.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L06. Naming Consistency

Impact Medium

Likelihood Low

A variable named usersLength is used to represent _pools.length.

Using names that do not represent the variables can lead to confusion
and decrease code readability.

Path:
./contracts/core/MTC.sol: _submitPools().

Recommendation: consider changing the name of usersLength to a new
name that represents better _pools.length.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L07. Redundant Code: Unnecessary Getters

Impact Medium

Likelihood Low

Public variables do not need a getter function in order to be
accessed. Unnecessary functions lead to bigger contract code and
higher deployment costs.

Paths:
./contracts/core/Distributor.sol: getLeftClaimableAmount();
./contracts/core/StrategicPool.sol: getTotalBurnedAmount();
./contracts/core/TokenDistributor.sol: getLeftClaimableAmount();

Recommendation: remove redundant/unnecessary code.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L08. Variable That Should Be Constant

Impact Medium

www.hacken.io
21



Likelihood Low

Hard-coded variables that do not change their values during their
lifecycle should be declared as constants in order to save Gas.

Path:
./contracts/core/StrategicPool.sol: S;

Recommendation: change variable to constant.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L09. Functions That Should Be External

Impact Medium

Likelihood Low

Public functions that are not called from inside the contract should
be declared external to save Gas.

Paths:
./contracts/utils/DistributorProxyManager.sol: getPoolProxy(),
addToWhitelist(), removeFromWhitelist();
./contracts/utils/MultiSigWallet.sol: submitTransaction(),
confirmTransaction(), executeTransaction(), getOwners(),
getTransactionCount(), getTransaction();
./contracts/utils/TokenDistributorProxyManager.sol: getPoolProxy(),
addToWhitelist(), removeFromWhitelist();

Recommendation: change function visibility to external.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L10. Redundant SafeMath

Impact Low

Likelihood Low

The mentioned contract integrates the SafeMath library for uint256
while using the compiler ^0.8.0.

Prior to Solidity version 0.8.0, arithmetic overflows were not
handled natively by the language, and developers were encouraged to
use the SafeMath library as a safeguard against such errors.

However, with the release of Solidity version 0.8.0, the language
introduced new arithmetic overflow and underflow protection features

www.hacken.io
22



that made the SafeMath library redundant if using Solc versions above
0.8.0.

Path:
./contracts/core/StrategicPool.sol

Recommendation: consider removing the SafeMath integration.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L11. Non-Explicit Variable Visibilities

Impact Low

Likelihood Low

Variables without explicit visibility will be public by default.

Lack of variable visibility can lead to readability issues.

Path:
./contracts/core/StrategicPool.sol: n, S.

Recommendation: add explicit variables visibility consciously.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

L12. Wrong Import

Impact Low

Likelihood Medium

The upgradeable version of OpenZeppelin’s Initialiable is imported
instead of the regular one, which is more complex and thus increases
the Gas cost unnecessarily.

Paths:
./contracts/core/Distributor.sol
./contracts/core/TokenDistributor.sol

Recommendation: import the regular Initializable contract instead of
the upgradeable version.

Found in: 16b2fc4

Status: Fixed (Revised commit: 8b8d8e1)

L13. Missing Check

Impact Medium

www.hacken.io
23



Likelihood Low

The function updatePoolParams() does not check that endTime >
starTime.

The constructor() in PrivateSaleTokenDistributor does not check that
endTime > starTime.

Paths:
./contracts/core/Distributor.sol: updatePoolParams().
./contracts/core/TokenDistributor.sol: updatePoolParams().
./contracts/core/PrivateSaleTokenDistributor: constructor().

Recommendation: add the missing check.

Found in: 16b2fc4

Status: Fixed (Revised commit: 8b8d8e1)

L14. Repetitive Code

Impact Low

Likelihood Medium

The function updatePoolParams() introduces the check startTime >
block.timestamp instead of reusing the modifier isSettable().

Paths:
./contracts/core/Distributor.sol: updatePoolParams().
./contracts/core/TokenDistributor.sol: updatePoolParams().

Recommendation: use isSettable() modifier.

Found in: 16b2fc4

Status: Fixed (Revised commit: 8b8d8e1)

L15. Redundant Require Statement

Impact Medium

Likelihood Low

The function calculateClaimableAmount() introduces a redundant check
block.timestamp < endTime in a “else” block scope that will not
happen in block.timestamp > endTime.

As it is very unlikely that the user calls the method at the moment
that block.timestamp == endTime, this check is too strict for time
comparison and redundant due to its unlikelihood.

Redundant require statements lead to unnecessary Gas usage.

Path:
www.hacken.io

24



./contracts/core/TokenDistributor.sol: calculateClaimableAmount().

Recommendation: use block.timestamp >= endTime in the if case, and
remove redundant require from the else case.

Found in: 16b2fc4

Status: Fixed (Revised commit: 8b8d8e1)

L16. Redundant Code; Invalid Calculations

Impact Low

Likelihood Low

The totalLockedAmount calculations inside the submitPools() function
are redundant as they are never used.

Additionally, there is an invalid calculation case in it; the
function should increase the value of the variable totalLockedAmount
according to the transferred amounts, but that is not always true. In
the case that the pool address is 0x0, the contract skips the
transfer but still increases the value of the variable.

Path:
./contracts/core/MTC.sol: submitPools();

Recommendation: remove redundant code.

Found in: 16b2fc4

Status: Fixed (Revised commit: 8b8d8e1)

L17. Variables That Can Be Set Immutable

Impact Low

Likelihood Low

Use the immutable keyword on the token state variable to limit
changes to its state and save Gas.

Paths:
./contracts/core/LiquidityPool
./contracts/core/StrategicPool
./contracts/core/PrivateSaleTokenDistributor

Recommendation: consider using the keyword immutable for said
variable.

Found in: 16b2fc4

Status: Fixed (Revised commit: 8b8d8e1)

www.hacken.io
25



Informational

I01. Solidity Style Guide: mixedCase

Local and State Variable names should be mixedCase: capitalize all
the letters of the initialisms, except keep the first one lower case
if it is the beginning of the name.

Paths:
./contracts/core/Distributor.sol: PERIOD, DISTRIBUTION_RATE,
BASE_DIVIDER;
./contracts/core/StrategicPool.sol: S.
./contracts/core/TokenDistributor.sol: PERIOD, DISTRIBUTION_RATE,
BASE_DIVIDER;

Recommendation: follow the official Solidity guidelines.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

I02. Missing Events for Critical Value Updates

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Paths:
./contracts/core/PrivateSaleTokenDistributor.sol:
setClaimableAmounts();
./contracts/core/TokenDistributor.sol: setClaimableAmounts();
./contracts/utils/DistributorProxyManager.sol: addToWhitelist(),
removeFromWhitelist();
contracts/utils/TokenDistributorProxyManager.sol: addToWhitelist(),
removeFromWhitelist();
./contracts/core/Distributor: initialize() → PoolParamsUpdated().
./contracts/core/TokenDistributor: initialize() →
PoolParamsUpdated().

Recommendation: consider emitting events in said functions.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

I03. Non-Explicit Variable Unit Sizes

Variable types uint and bytes are used without explicitly setting
their size in the whole contract MultiSigWallet.

Paths:
./contracts/utils/MultiSigWallet.sol
./contracts/utils/TokenDistributorProxyManager.sol:
createPoolProxy();
./contracts/utils/DistributorProxyManager.sol: createPoolProxy();

www.hacken.io
26

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#local-and-state-variable-names


Recommendation: set variable size explicitly for uint.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

I04. Style Guide: Order of Functions

The provided projects should follow the official guidelines.
Functions should be grouped according to their visibility and
ordered:

1. Constructor
2. Receive function (if exists)
3. Fallback function (if exists)
4. External
5. Public
6. Internal
7. Private

Paths:
./contracts/core/Distributor.sol
./contracts/core/StrategicPool.sol.
./contracts/core/TokenDistributor.sol
./contracts/utils/DistributorProxyManager.sol
./contracts/utils/InitializedProxy.sol
./contracts/utils/TokenDistributorProxyManager.sol

Recommendation: follow the official Solidity guidelines.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

I05. Bad Variable Naming

Variables should have descriptive and conscious names. Some variable
names in the project do not describe its function and cause confusion
to readers.

Path:
./contracts/core/StrategicPool.sol : n, S, LP, MB, M;

Recommendation: give variables names consciously according to their
functions, or document such variables in code.

Found in: 31a4e8c

Status: Fixed (Revised commit: 16b2fc4)

I06. Style Guide: Order of Layout

The provided projects should follow the official guidelines. Inside
each contract, library or interface, use the following order:

1. Type declarations
2. State variables

www.hacken.io
27

https://docs.soliditylang.org/en/v0.8.17/style-guide.html


3. Events
4. Modifiers
5. Functions

Paths:
./contracts/core/PrivateSaleTokenDistributor.sol
./contracts/core/TokenDistributor.sol

Recommendation: follow the official Solidity guidelines.

Found in: 16b2fc4

Status: Mitigated

I07. Redundant Function Call

The calls to _transferOwnership() in contracts that inherit
Ownable2Step are redundant since ownership is already set to the
deployer during that contract constructor.

Paths:
./contracts/core/LiquidityPool.sol: constructor().
./contracts/core/MTC.sol: constructor().
./contracts/core/StrategicPool: constructor().
./contracts/core/PrivateSaleTokenDistributor.sol: constructor().
./contracts/utils/PoolFactory.sol: constructor().

Recommendation: it is recommended to remove the redundant call to
_transferOwnership().

Found in: 16b2fc4

Status: Fixed (Revised commit: 8b8d8e1)

I08. Unused Code

The event CanClaim() is unused and thus should be removed from the
code.

Path:
./contracts/core/Distributor.sol: CanClaim().

Recommendation: it is recommended to remove unused code.

Found in: 16b2fc4

Status: Fixed (Revised commit: 8b8d8e1)

www.hacken.io
28

https://docs.soliditylang.org/en/v0.8.17/style-guide.html


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
29



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
30



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
31



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Metatime-Technology-Inc/pool-contracts

Commit 31a4e8c

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/core/Distributor.sol
SHA3: 6d4f231cab4ad5b13d78f2f96454593d88b0f157db2d14a7353629a9fc26371f

File: contracts/core/LiquidityPool.sol
SHA3: d9ee7308dee55c8552ae0ffa5b28c905ac98ce31fa18a03e5e93875c5a8cf8e6

File: contracts/core/MetatimeToken.sol
SHA3: 9fae5927cd569e69eaf54d7e78b12ad30f8319ed6db267487fbd9531892b52d0

File: contracts/core/MTC.sol
SHA3: 34555276e470ff9fbd7d533f56ba1d74273ffc322b0fc5be5e7b056c05f1b5cb

File: contracts/core/PrivateSaleTokenDistributor.sol
SHA3: d5f317ae5001fa1d98e7ae440a60ffcaa6b21fcfc60fb4ed707ab67dd3c2b281

File: contracts/core/StrategicPool.sol
SHA3: 4a25c61aeb987a9719b052dc3d26dc63300650b8c44079b814f5c9179913f90a

File: contracts/core/TokenDistributor.sol
SHA3: fdf8399853595350738b0c6ece187b47d0c568e5c6c45d00a528658b5b3701fc

File: contracts/interfaces/IMetatimeToken.sol
SHA3: 7da6c4e7bf7ef1406b7c5d27096dbca3ce0a9c164cb7c95d6416135a2345dfb9

File: contracts/libs/Trigonometry.sol
SHA3: 161073a88c43a3e6698e696df15b8cc6c4a9c9e1c3a3ef63ce068aaf5920c05c

File: contracts/utils/DistributorProxyManager.sol
SHA3: ba2a7e8f71e3353518c37f7c9a2bac729e00bb1df40a4b678eac878e4317503a

File: contracts/utils/InitializedProxy.sol
SHA3: abc17b68cf590f1e259a6c7e5f74cff96eb4ed0b48978d303d34ccb300ffdc80

File: contracts/utils/MultiSigWallet.sol
SHA3: 319d1422b2039a249d01cbf117e07187d0cc78c95920e2e2d2acde604095a0ea

File: contracts/utils/TokenDistributorProxyManager.sol
SHA3: 28deeac92c6db8b940245c27a3d54e34833fa9bf8415233a792c786216654d09

www.hacken.io
32

https://github.com/Metatime-Technology-Inc/pool-contracts
https://metatime.com/assets/en/whitepaper.pdf
https://metatime.com/assets/en/whitepaper.pdf
https://docs.google.com/document/d/1Ktkpt93Q-HBqxwTl7xOdukDIyUegoyLvHfgwVrxr690/edit?usp=sharing


Second review scope

Repository https://github.com/Metatime-Technology-Inc/pool-contracts

Commit 16b2fc4

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/core/Distributor.sol
SHA3: 734f96a52557c9f525f20ab4fbff48f290333b3908439466d2768c8eddc8dd72

File: contracts/core/LiquidityPool.sol
SHA3: 6c1b4bbf7b3eadcc0a46942abc1b95e5ecd7c1830049cb24856a4b567c7b5ebf

File: contracts/core/MTC.sol
SHA3: df2567b143bf3963c13bea985025f9f0ca4e001559ffb627ec9fc9ecce2361d6

File: contracts/core/PrivateSaleTokenDistributor.sol
SHA3: 8f9a4747cf3d254c83ce6d5d4b61917f3479f080c16ef5ac5c00f4d67dd7b35f

File: contracts/core/StrategicPool.sol
SHA3: fbf50528b22099a671910be8f90e73bc74800521fe71d82088e8da43355aac0d

File: contracts/core/TokenDistributor.sol
SHA3: e30856c4f4a42035d41861882036b41a83a85dd0b0d9c4a91df81e649ea32dec

File: contracts/interfaces/IDistributor.sol
SHA3: fc2baa2c2e25b363dece2e94ee300ac0bf0d8c3714c14447f400900047bfeb4d

File: contracts/interfaces/IMTC.sol
SHA3: b96e803785d4b5b98d68cd7fbc07237989091694d10a15e8c3a8430bc5712de0

File: contracts/interfaces/ITokenDistributor.sol
SHA3: 37cdd7900f05ae6b94695dc5c19e58525ce8c03d12d0e2ed5099c46e0fdba8c7

File: contracts/libs/Trigonometry.sol
SHA3: 55de5daea153ae0715d2f0edd243065700559650b2b178882838d568d55eecf9

File: contracts/utils/MultiSigWallet.sol
SHA3: 86ee2cc45bdbd85fd3bb81ee06d0b0780ee17ee177919fb372d68126b8baa3eb

File: contracts/utils/PoolFactory.sol
SHA3: a58fce4d056a6dc32dc3d2476b93fc93ee71bd5a1d68f68a68b84865ff208652

Third review scope

Repository https://github.com/Metatime-Technology-Inc/pool-contracts

Commit 8b8d8e1

Whitepaper Link

Requirements Link

www.hacken.io
33

https://github.com/Metatime-Technology-Inc/pool-contracts
https://metatime.com/assets/en/whitepaper.pdf
https://metatime.com/assets/en/whitepaper.pdf
https://github.com/Metatime-Technology-Inc/pool-contracts/blob/main/README.md
https://github.com/Metatime-Technology-Inc/pool-contracts
https://metatime.com/assets/en/whitepaper.pdf
https://metatime.com/assets/en/whitepaper.pdf


Technical
Requirements Link

Contracts File: contracts/core/Distributor.sol
SHA3: ebcc474de0a16c8893fec0fe3a8138f06f2670007f707c3107eb8f9be9cd43e1

File: contracts/core/LiquidityPool.sol
SHA3: 58da818a293e1c2d1b6b3726bd1d7c9db1369289eedb6932794f21ec3fa82822

File: contracts/core/MTC.sol
SHA3: 8513c2b3466a0f5d696ce16421db5b85ba4e48265faaa1ee802132531ec07f47

File: contracts/core/StrategicPool.sol
SHA3: 947ad170d56636506c822e9150aa187861c735a22f0459b53dc0822992ca88c2

File: contracts/core/TokenDistributor.sol
SHA3: 45571bc526916fb19168f1a0ab82521020eec7efd752949327d1bef8aa64f079

File: contracts/core/TokenDistributorWithNoVesting.sol
SHA3: cd8c4681b6ac0644cab3da65a3f32942e4b45e4b6e56e411cb677132322c842d

File: contracts/interfaces/IDistributor.sol
SHA3: 8859352023ac2abb134e2055bcf9219ed0419bfecce42d333d8008da9b9221b5

File: contracts/interfaces/IMTC.sol
SHA3: 25abe8bc06d7904fe412078dda0bf2f433653d9ce32dd45f902caa36380e9dc8

File: contracts/interfaces/ITokenDistributor.sol
SHA3: 71cec0c60c87efeb39d3b8a3720b5a31d1973313446849e0550801449763813f

File: contracts/libs/Trigonometry.sol
SHA3: 260290f6fc7484cbf53b745e7a26b07a32988ef7e5fbd84f7c18ad296cffd3cf

File: contracts/utils/PoolFactory.sol
SHA3: 7da934f46ec62d5d53ec1bf12310c47f333b0994ec7faaf36fd47039de98ca68

www.hacken.io
34

https://github.com/Metatime-Technology-Inc/pool-contracts/blob/main/README.md

