
Customer: Nitro Cartel
Date: May 31, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Nitro Cartel

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type Index Protocol

Platform EVM

Language Solidity

Methodology Link

Website https://nitrocartel.finance/

Changelog
04.04.2023 - First Review
03.05.2023 - Second Review
31.05.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://nitrocartel.finance/


Table of contents
Introduction 5
Scope 5
Severity Definitions 7
Executive Summary 8
Risks 9
System Overview 10
Checked Items 11
Findings 14

Critical 14
C01. Data Consistency 14
C02. Access Control Violation 14

High 14
H01. Data Consistency 14
H02. Denial of Service 15
H03. Highly Permissive Role; Data Consistency 15
H04. Highly Permissive Role; Assets Integrity 16
H05. Data Consistency 16
H06. Data Consistency; Race Condition 17
H07. Data Consistency; Highly Permissive Role 17
H08. Highly Permissive Role; Assets Integrity 18
H09. Invalid Calculations; Requirements Violation 18

Medium 18
M01. Missing Event for Critical Value Update 18
M02. Missing Event for Critical Value Update 19
M03. Missing Event for Critical Value Update 19
M04. Missing Event for Critical Value Update 19
M05. Missing Event for Critical Value Update 20
M06. Missing Event for Critical Value Update 20
M07. Inefficient Gas Model: Loop of Storage Interactions 20
M08. Inefficient Gas Model: Storage Abuse 21
M09. Best Practice Violation: Unchecked Transfer 21
M10. Best Practice Violation: Unchecked Transfer 22
M11. State Variables Should Be Declared Constant 22
M12. Requirements Violation 22
M13. Missing Event for Critical Value Update 23
M14. Missing Event for Critical Value Update 23
M15. Missing Event for Critical Value Update 23
M16. Missing Event for Critical Value Update 24
M17. Missing Event for Critical Value Update 24
M18. Missing Event for Critical Value Update 24
M19. Missing Event for Critical Value Update 25
M20. Division Before Multiplication 25
M21. Unchecked Transfer 25
M22. Inefficient Gas Model: Storage Abuse 26

www.hacken.io
3



M23. Requirements Violation 26
M24. Missing Event for Critical Value Update 27
M25. Fee Is Not Limited 27
M26. Fee Is Not Limited 27
M27. Invalid Validation 27

Low 28
L01. Style Guide: Order of Functions 28
L02. Style Guide: Event Names 28
L03. Style Guide: Missing NatSpec 29
L04. Unindexed Events 29
L05. Missing Zero Address Validation 29
L06. Redundant Operation; Gas Optimization 29
L07. State Variables Can Be Declared Constant 30
L08. Missing Validation 30
L09. Typos 30
L10. Functions That Can Be Declared External 31
L12. Unused Variable 31
L13. Redundant Payable 31
L14. Redundant Iterations 31
L15. Code Duplication 32
L16. Access Control Violation 32
L17. Misleading Function Names 32
L18. Explicit Uint Size 33
L19. Inefficient Gas Model 33
L20. Missing Assert Messages 33
L21. Redundant Code 34
L22. Inefficient Gas Model 34
L23. Redundant Code 34

Disclaimers 35

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by Nitro Cartel (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/nitroarthur/arbitrove-smart-contracts/

Commit 85abc9e

Whitepaper -

Functional
Requirements

Arbitrove Docs

Technical
Requirements

Repository README

Contracts File: ./src/contracts/AddressRegistry.sol
SHA3: 89a6e6fe00355c9489ad8b0c618cc87611fca3386706ae134621662b67bc2fc2

File: ./src/contracts/vault/FeeOracle.sol
SHA3: f85a5de61663489c42b878a7f438d87b17a233dadb32821a6d54d87f24256690

File: ./src/contracts/vault/Vault.sol
SHA3: 785127afe8a99c2e4ab74ee5fac7b0e089d0a5f366822ff231e8c67b601f1f94

File: ./src/contracts/Router.vy
SHA3: 69c40756254abb00de56e0da45a894b3a823fd6ca7793f973f79982fb23473b7

File: ./src/contracts/strategy/IStrategy.sol
SHA3: baa091dceb6552a91d83c927a47dd7adbe0b31c58eb99634b972298c0edbb793

File: ./src/contracts/vault/IVault.sol
SHA3: 594fed31ed78280f7fd188a777f3a3e392d2569f283148f222526e48b0b5c76f

Second review scope

Repository https://github.com/nitroarthur/arbitrove-smart-contracts/

Commit 7927f31

Whitepaper -

Functional
Requirements

Arbitrove Docs

www.hacken.io
5

https://docs.arbitrove.finance/
https://docs.arbitrove.finance/


Technical
Requirements

Repository README.md

Contracts File: ./src/contracts/AddressRegistry.sol
SHA3: 09239082710aed534e7ddf02c308f59fcfd9474d512c50321846c4ad9260e761

File: ./src/contracts/strategy/IStrategy.sol
SHA3: 25d631964ee1931d248f796153cf0bdcefaad0085e2fa5e9059bf0d42b3964aa

File: ./src/contracts/vault/FeeOracle.sol
SHA3: fdee75cee758a2a419bc8fbb7571cbbce08b6e863ef74b85adf163c059715df6

File: ./src/contracts/vault/IVault.sol
SHA3: 06a37a5d2038301fbebf18c39a20d4a6008b40619278e1fe82b8a7c8a8481bff

File: ./src/contracts/vault/Vault.sol
SHA3: 0199b55258b225abb6344492c9a300e400236db6456503d37eee6a26ac6f8cb0

File: ./src/contracts/Router.vy
SHA3: c1a943247e4d9aeb1fa837235a8c3e7a6b53bf8c776372b9d5184db7fbac8373

Third review scope

Repository https://github.com/nitroarthur/arbitrove-smart-contracts/

Commit 3bb9ee7

Whitepaper -

Functional
Requirements

Arbitrove Docs

Technical
Requirements

Repository README.md

Contracts File: ./src/contracts/AddressRegistry.sol
SHA3: 2b5382325521bfe9d5f1f799bc668b921df8c39e3a3cee42c8c4e2cc37ebcc6a

File: ./src/contracts/strategy/IStrategy.sol
SHA3: 25d631964ee1931d248f796153cf0bdcefaad0085e2fa5e9059bf0d42b3964aa

File: ./src/contracts/vault/FeeOracle.sol
SHA3: 1b0bbc4d73756b82094e23114bc1253c1e9aa50f6da1cb506a2371c311423f2b

File: ./src/contracts/vault/IVault.sol
SHA3: 97d08f44188b4a757ac104511a076ce3438d88499d0d83e75e73d19394d6ee22

File: ./src/contracts/vault/Vault.sol
SHA3: 8a6a2adf2c2e7689dd1df54ba9ff2ddb3c8476fb0cc17a3aa19e70c7753246af

File: ./src/contracts/IRouter.sol
SHA3: 2cadcac27fb5d4266f2de6d4893a66a9f97f012919b82a0fee2dbe03d5a56f34

File: ./src/contracts/Router.vy
SHA3: dd83c905358eeacb52c04c4066b0d26b3e6698225355de2f056fdee741208b8c

www.hacken.io
6

https://docs.arbitrove.finance/


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements provided.
● Technical documentation is provided but limited.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Small style guide violations.

Test coverage
Code coverage of the project is 100% (branch coverage).

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

04 April 2023 22 22 8 2

03 May 2023 2 5 4 0

31 May 2023 0 0 0 0

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The system is highly centralized; each privilege role, if
compromised, can lead to a loss of user funds.

● The Dark Oracle role used to provide token prices in the Router.vy is
highly privileged; all systems behind this role are not part of this
audit. There are no guarantees that said oracle behaves as expected
and provided tokens prices in the processMintRequest() and
processBurnRequest() functions will be correct.

● Many of the key elements of the system (vault, oracles, strategies)
can be changed by the owner at any time.

● Strategies and tokens used by the protocol cannot be validated, as
they are outside the scope of the audit.

● In the case of a Dark Oracle account compromise, an attacker could
interact with the router and provide incorrect token prices.

● The function getAmountAcrossStrategies() in Vault.sol calls the
method getComponentAmount(), which is outside the audit scope. The
method may change in the future, as every new implemented strategy
can have a different getComponentAmount() function. It is not
possible to verify the logic of that call and its potential
vulnerabilities.

● There is no valid on-chain mechanism for rebalancing the funds. There
is only an rebalance() owner function to retrieve funds from the
contract.

● The system integrates a Rebalancer contract, which is out of the
audit scope.

● There is no withdrawal mechanism from the strategies, and the flow of
funds is unknown after the approval of funds passed to the strategy.
It may be the case that there are no funds in the Vault to perform
the withdraw() function.

● The fee in the Router and FeeOracle contracts is limited not to be
bigger than the 50%, which is still big enough value.

www.hacken.io
9



System Overview

Arbitrove Protocol is a yield-bearing index protocol that allows people to
one-click mint an index that gives exposure to a batch of strategies
consisting of yield-bearing assets. Unlike traditional index protocols that
only hold tokens, Arbitrove Protocol dynamically deploys capital to
strategies.

The contracts in scope are:

● Router.vy - entry point for users to interact with the Vault.
● Vault.sol - facilitates the deposit and withdrawal of funds, and

helps manage assets across different strategies. Interactions with
this contract are sent through the Router.

● AddressRegistry.sol - manages the mapping of strategies to supported
coins.

● FeeOracle.sol - implements a fee oracle that provides deposit and
withdrawal fees to be used by the Vault contract. The fees are based
on the current weight of a coin in the Vault compared to its target
weight.

Privileged roles
● Router: it is the entry point for users to interact with the Vault.
● DarkOracle: oracle used in Router to get price and input parameters,

as well as having access control privileges to some functions.
● Owner: set in the initialization functions of the contracts. Has

admin privileges to update management state variables.
● User: can interact with the system to deposit funds in exchange of an

interest-bearing indexed token, and vice-versa.

Recommendations
● Increase test coverage to 100%.
● Provide documentation (or code) for dark oracle (and strategies, if

possible).
● Use multi-signature ⅗ wallets for all privileged roles in the system.
● Update public documentation about all privileged roles and their

functions, and their impact on the protocol. Describe the rebalancing
mechanism and the approval process for the strategy.

www.hacken.io
10



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Not Relevant

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
12

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
13



Findings

Critical

C01. Data Consistency

The approveStrategy() function contains a check:

require(i==strategies.length)

This check is incorrect since it will cause a revert for all the
cases in which the strategy to approve exists in the strategies
array.

This leads to situations where strategy cannot be added to the Vault.

Path:
./src/contracts/vault/Vault.sol : approveStrategy()

Recommendation: It is recommended to change the operator from == to
!= in order to include all possible positions of the strategy in the
strategies array, while still performing as expected.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

C02. Access Control Violation

The cancelMintRequest() function can be executed by any address in
case the mint request is expired, but it also allows to specify a
refund parameter, meaning that anyone can cancel expired requests
without refund, leading to funds loss.

Path:
./src/contracts/Router.vy : cancelMintRequest()

Recommendation: Do not allow canceling requests without a refund
option for not authorized users (only for oracle). Document this
behavior.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

High

H01. Data Consistency

The function removeStrategy() resets the strategyWhitelist to 0 but
does not remove the strategy from the coins in coinToStrategy[]
array.

Since the array of strategies for each coin is not updated, it can be
the case that:

www.hacken.io
14



1. The variable strategyWhitelist is reset so that no coin can use
it.

2. The function addStrategy() is called later in order to re-add
the same strategy, expecting to add it only for the inputted
coins.

3. Previous coins containing the strategy will still include it,
even if it is not supposed to happen, leading to unexpected
behavior.

Path:
./src/contracts/AddressRegistry.sol : removeStrategy()

Recommendation: Consider removing the strategy from the state
variable coinToStrategy when calling the function removeStrategy().

Found in: 85abc9e

Status: Fixed (Revised commit: 3bb9ee7)

H02. Denial of Service

Denial of service — is a very common type of issue and attack. It can
be executed in multiple ways. The issue mainly leads to a contract
block and prevents further interactions. It does not necessarily
bring an advantage to an attacker. Sometimes happens without an
intended attack from a third party.

The processBurnRequest() function sends native tokens to
br.requester, but the receiver could be a smart contract without
payable receive function, so it would not be possible to send native
tokens back.

This leads to the blocking of burn requests processing while the
latest request would expire and be canceled without a refund option.

Path:
./src/contracts/Router.vy : processBurnRequest()

Recommendation: Add the possibility to process burn requests without
sending native tokens to the requester. Add a separate function, so
the requester is able to request funds back.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

H03. Highly Permissive Role; Data Consistency

Owner of the Router contract is able to reinitialize the contract, by
setting new vault, darkOracle, and addressRegistry addresses.

This could lead to changing of the vault token after contract
deployment, so a user would receive a refund with a not originally
deposited token.

www.hacken.io
15



Path:
./src/contracts/Router.vy : reinitialize()

Recommendation: Document, or disable the possibility of changing
mentioned addresses after the initialization.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

H04. Highly Permissive Role; Assets Integrity

Router contract has rescueStuckTokens() and suicide() functions to
rescue ERC20 and native tokens, but these functions allow an owner to
withdraw user funds as well, without previous notice.

Additionally, the presence of the suicide() function is dangerous and
can lead to funds being locked in the contract.

During the second review issue is not fixed:

1. It is possible to suicide() contract when min and burn queues
are not empty, which leads to funds loss.

2. It is possible to suicide() contract when some user’s ERC20
tokens are still in the contract.

Path:
./src/contracts/Router.vy : rescueStuckTokens(), suicide()

Recommendation:

● Do not allow suicide() function execution when mintQueue and
burnQueue are not empty and there ERC20 tokens on the contract
balance. Consider removing the suicide() function.

● Track user’s funds in a separate mapping after
submitBurnRequest() and submitMintRequest() executions and
allow rescueStuckTokens() to access only overbalanced funds.

● Implement a function to rescue the ETH from the contract, with
restriction to only withdraw ETH that are not part of the
users’ actions.

Found in: 85abc9e

Status: Fixed (Revised commit: 3bb9ee7)

H05. Data Consistency

The function getDistance() performs a difference between targetWeight
and comparedWeight.

In the case when targetWeight == 0 (when the weight for the specific
coin will be set by the admin to 0, for example Index with: 80% ETH,
20% USDC, 0% ARB) a 0 division will happen, causing a malfunction of
this method and the related ones.

www.hacken.io
16



Path:
./src/contracts/vault/FeeOracle.sol : getDistance()

Recommendation: It is recommended to redesign the getDistance()
function to be able to work with 0 as a targetWeight.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

H06. Data Consistency; Race Condition

The current implementation of the queue in the Router contract
operates on a "First-In, Last-Out" principle, which results in higher
prioritization for the latest incoming requests compared to existing
ones.

Under high load conditions, this approach may cause the initial
requests to expire without being processed.

To ensure equitable and predictable queue processing, it is
recommended to adopt a "First-In, First-Out" principle.

Path:
./src/contracts/Router.vy: processBurnRequest(), processMintRequest()

Recommendation: Process first requests from queue, instead of last
(pop()).

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

H07. Data Consistency; Highly Permissive Role

The owner of the FeeOracle contract can use setTargets() at any time,
changing coin weights. This operation disbalances pools, which gives
an opportunity to arbitrageurs to have extra income on balancing
pools and draining bonuses, which is unfair for existing depositors.

Any bad actor after the admin changes the coin weights will be able
to easily extract part of the TVL from other users by leveraging the
deposit/withdraw "bonus" mechanism if the maxBonus value is greater
than 0.

The fee mechanism has no side effects.

We recommend rebalancing pools as a part of setTargets() execution,
to prevent bonuses manipulations.

Path:
./src/contracts/vault/FeeOracle.sol: setTargets()

Recommendation: Implement rebalancing logic that is triggered with
setTargets call. Removal of the "bonuses" mechanism on deposits or
withdrawals will prevent uncontrolled extraction of the Vault TVL.

www.hacken.io
17



Found in: 85abc9e

Status: Mitigated (Bonus logic was mitigated by setting the maxBonus
constant value to 0; thus, there are no risks for users after
changing targets.)

H08. Highly Permissive Role; Assets Integrity

The rebalance() function of the Vault contract allows the owner to
send user funds to any address. The function name is contradictory,
because it expected to rebalance the vault, not just withdraw funds.

Behavior of rebalancing is not documented.

Path:
./src/contracts/vault/Vault.sol : rebalance()

Recommendation: Provide documentation of rebalancing logic. Consider
implementing rebalancing as on-chain action.

Found in: 85abc9e

Status: Mitigated (Behavior is documented on client’s website)

H09. Invalid Calculations; Requirements Violation

Multiple calculations in the contract are broken and lead to
unexpected results.

FeeOracle contract calculates fee using logic: fee =
int256(deterioration * maxFee) / int256(weightDenominator), where
maxFee is limited to 100, deterioration is a number less than 1e18,
and weightDenominator is a 1e18 constant. Due to the rounding, the
fee could be zero.

Vault contract uses this fee, but violates formulas provided in
comments: instead of (100 - fee) / 100 (fee denominator) as per
comment, it uses 1e18 as fee denominator.

Path:
./src/contracts/vault/FeeOracle.sol : getDepositFee(),
getWithdrawalFee()

Recommendation: Recheck mentioned calculations and implement fixes.
Consider using maxFee with 1e18 limitation.

Found in: 7927f31

Status: Fixed (Revised commit: 3bb9ee7)

Medium

M01. Missing Event for Critical Value Update

The function init() does not emit relevant events when setting the
state variables feeOracle and router.

www.hacken.io
18

https://docs.arbitrove.finance/~/changes/QGxq7q7RNKoJ1xIEH7eH/technical-documentation/rebalance


Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/AddressRegistry.sol : init()

Recommendation: Consider emitting an event in the function init().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M02. Missing Event for Critical Value Update

The function init829() does not emit relevant events when setting the
state variable addressRegistry.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/vault/Vault.sol : init829()

Recommendation: Consider emitting an event in the function init829().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M03. Missing Event for Critical Value Update

The function setPoolRatioDenominator() does not emit relevant events
when setting the state variables poolRatioDenominator.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/vault/Vault.sol : setPoolRatioDenominator()

Recommendation: Consider emitting an event in the function
setPoolRatioDenominator().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M04. Missing Event for Critical Value Update

The function setCoinCapUSD() does not emit relevant events when
setting the state variables coinCap[coin].

www.hacken.io
19



Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/vault/Vault.sol : setCoinCapUSD()

Recommendation: Consider emitting an event in the function
setCoinCapUSD().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M05. Missing Event for Critical Value Update

The function setBlockCap() does not emit relevant events when setting
the state variables blockCapUSD.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/vault/Vault.sol : setBlockCap()

Recommendation: Consider emitting an event in the function
setBlockCap().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M06. Missing Event for Critical Value Update

The function depositETHToStrategy() does not emit relevant events
when making a transfer of funds.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/vault/Vault.sol : depositETHToStrategy()

Recommendation: Consider emitting an event in the function
depositETHToStrategy().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M07. Inefficient Gas Model: Loop of Storage Interactions

The function getCoinToStrategy() performs two loops, whose length is
computed as coinToStrategy[coin].length.

www.hacken.io
20



The storage variable is accessed at every iteration, consuming a lot
of Gas.

Instead, a new memory variable can be created to cache the length,
which can then be used to compute the maximum value of i.

Path:
./src/contracts/AddressRegistry.sol : getCoinToStrategy()

Recommendation: Consider caching coinToStrategy[coin].length into a
new memory variable, to be used to calculate the loop length.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M08. Inefficient Gas Model: Storage Abuse

The function getCoinToStrategy() performs two loops that access
storage. The number of iterations of the loop is uncontrolled as it
depends on the length of the state variable coinToStrategy[coin].

Eventually, the state variable can be long enough to reach the block
Gas limit.

The code can be optimized in terms of Gas by creating a new memory
array of strategies from coinToStrategy[coin], and using it for the
checks:

strategyWhitelist[coinToStrategy[coin][i]] < block.timestamp &&
strategyWhitelist[coinToStrategy[coin][i]] != 0

Path:
./src/contracts/AddressRegistry.sol: getCoinToStrategy()

Recommendation: Consider following the proposed optimization.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M09. Best Practice Violation: Unchecked Transfer

The function claimDebt() does not use the SafeERC20 library for
checking the result of ERC20 token transfers.

Tokens may not follow ERC20 standard and return false in case of
transfer failure or not returning any value at all.

This can lead to unexpected behavior.

Path:
./src/contracts/vault/Vault.sol : claimDebt()

Recommendation: It is recommended to use the SafeERC20 library to
interact with coins safely.

www.hacken.io
21



Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M10. Best Practice Violation: Unchecked Transfer

The function rebalance() does not use the SafeERC20 library for
checking the result of ERC20 token transfers.

Tokens may not follow ERC20 standard and return false in case of
transfer failure or not returning any value at all.

This can lead to unexpected behavior.

Path:
./src/contracts/vault/Vault.sol : rebalance()

Recommendation: It is recommended to use the SafeERC20 library to
interact with coins safely.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M11. State Variables Should Be Declared Constant

Changing poolRatioDenominator value can lead to unexpected contract
behavior, so must be moved to constants and not changed after the
contract deployment.

Path:
./src/contracts/vault/Vault.sol : setPoolRatioDenominator()

Recommendation: Make poolRatioDenominator as a constant (the best
value should be 1e18).

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M12. Requirements Violation

In the FeeOracle in the getCoinWeights function, there is a comment
“// verify signature”, but there is no signature validation, which is
treated as a requirements violation or sign of non-finalized code.

Path:
./src/contracts/vault/FeeOracle.sol : getCoinWeights()

Recommendation: Verify that the code is complete, implement signature
verification, or remove the comment.

www.hacken.io
22



Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M13. Missing Event for Critical Value Update

The function cancelMintRequest() does not emit relevant events when
making a transfer of funds and updating mintQueue.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/Router.vy: cancelMintRequest()

Recommendation: Consider emitting an event in the function
cancelMintRequest().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M14. Missing Event for Critical Value Update

The function initialize() does not emit relevant events when updating
critical variables.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/Router.vy: initialize()

Recommendation: Consider emitting an event in the function
initialize().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M15. Missing Event for Critical Value Update

The function reinitialize() does not emit relevant events when
updating critical variables.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/Router.vy: reinitialize()

Recommendation: Consider emitting an event in the function
reinitialize().

www.hacken.io
23



Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M16. Missing Event for Critical Value Update

The function refundBurnRequest() does not emit relevant events when
updating burnQueue and performing a transfer.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/Router.vy: refundBurnRequest()

Recommendation: Consider emitting an event in the function
refundBurnRequest().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M17. Missing Event for Critical Value Update

The function suicide() does not emit relevant events when using
selfdestruct.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/Router.vy: suicide()

Recommendation: Consider emitting an event in the function suicide().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M18. Missing Event for Critical Value Update

The function init() does not emit relevant events when setting
critical state variables.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/vault/FeeOracle.sol: init()

Recommendation: Consider emitting an event in the function init().

Found in: 85abc9e

www.hacken.io
24



Status: Fixed (Revised commit: 7927f31)

M19. Missing Event for Critical Value Update

The function rebalance() does not emit relevant events when sending
native chain coins.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/vault/Vault.sol: rebalance()

Recommendation: Consider emitting an event in the function
rebalance().

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M20. Division Before Multiplication

The functions deposit() and withdraw() perform a division before
multiplication since first calculate poolRatio from a division with
tvlUSD1e18X, and later calculate the amount to burn or mint with
another division.

This will result in imprecision in calculations.

Path:
./src/contracts/vault/Vault.sol: deposit(), withdraw()

Recommendation: It is recommended to perform divisions after
multiplications.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M21. Unchecked Transfer

The default_return_value parameter can be used to handle ERC20 tokens
affected by the missing return value bug in a way similar to
OpenZeppelin’s safeTransfer for Solidity.

Path:
./src/contracts/Router.vy: rescueStuckTokens(), processMintRequest(),
cancelMintRequest(), processBurnRequest(), refundBurnRequest()

Recommendation: Use default_return_value=True for ERC20 token
transfers.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

www.hacken.io
25



M22. Inefficient Gas Model: Storage Abuse

In the getCoinWeights() function, a local memory variable
_targetsLength is defined from the storage variable targetsLength.

However, targetsLength is already used before this declaration, not
benefiting from the Gas saving.

Path:
./src/contracts/vault/FeeOracle.sol: getCoinWeights()

Recommendation: Consider defining _targetsLength before, so that it
can be used in the following cases:

weights = new CoinWeight[](_targetsLength);

require(params.cpu.length == _targetsLength, "Oracle length error");

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

M23. Requirements Violation

According to the requirements - supportedCoinAddresses should contain
addresses of coins that are linked to strategies, but this
requirement is not met because of unreachable code.

During addStrategy() function execution the uint256
supportedCoinLength = supportedCoinAddresses.length; will be zero the
first time the function is called, so loop for (j = 0; j <
supportedCoinLength; j++) will be unreachable and no coins would be
added to the supportedCoinAddresses.

As an additional consequence, clean-up of supportedCoinAddresses in
removeStrategy is not possible.

The for loop body is also invalid, inside the loop, all
supportedCoinAddresses should be checked and only when all of them
are != coins[i] the new coin should be added.

Path:
./src/contracts/AddressRegistry.sol: addStrategy(), removeStrategy()

Recommendation: Redesign the addStrategy() logic to allow the proper
addition of strategies when supportedCoinAddress.length is 0. Fix the
invalid logic of the for loop body.

Found in: 7927f31

Status: Fixed (Revised commit: 3bb9ee7)

www.hacken.io
26



M24. Missing Event for Critical Value Update

The function setFee() does not emit relevant events when updating
fee.

The function setFeeDenominator() does not emit relevant events when
updating feeDenominator.

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./src/contracts/Router.vy: setFee(), setFeeDenominator()

Recommendation: Consider emitting an event in the setFeeDenominator()
and setFee() functions.

Found in: 7927f31

Status: Fixed (Revised commit: 3bb9ee7)

M25. Fee Is Not Limited

Consider limiting the fee and feeDenominator values in order to
prevent unexpectedly high fees. In the current implementation, fee
can be up to 100%.

Path:
./src/contracts/Router.vy: setFee(), setFeeDenominator()

Recommendation: Provide conscious limits for stored configuration
values. Consider making feeDenominator as a constant.

Found in: 7927f31

Status: Fixed (Revised commit: 3bb9ee7)

M26. Fee Is Not Limited

Consider limiting the maxFee value in order to prevent unexpectedly
high fees. In the current implementation, fee can be up to 100%.

Path:
./src/contracts/vault/FeeOracle.sol: setMaxFee()

Recommendation: Provide conscious limits for stored configuration
values.

Found in: 7927f31

Status: Fixed (Revised commit: 3bb9ee7)

M27. Invalid Validation

During deposit to the Vault invalid validation:

www.hacken.io
27



getAmountAcrossStrategies(coin) + params._amount < coinCap[coin]

is performed.

According to the provided NatSpec, coinCap[coin] is a USD value of
the cap, where getAmountAcrossStrategies(coin) and params._amount are
the balances.

The two not related values are compared.

Path:
./src/contracts/vault/Vault.sol: deposit()

Recommendation: Multiply balances with coin price and compare it with
coinCap.

Found in: 7927f31

Status: Fixed (Revised commit: 3bb9ee7)

Low

L01. Style Guide: Order of Functions

The provided projects should follow the official guidelines.
Functions should be grouped according to their visibility and
ordered:

1. Constructor
2. Receive function (if exists)
3. Fallback function (if exists)
4. External
5. Public
6. Internal
7. Private

Path:
./src/contracts/Router.vy

Recommendation: Follow the official Solidity guidelines.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L02. Style Guide: Event Names

The Solidity Style Guide recommends the naming of events as CapWords.

Paths:
./src/contracts/vault/FeeOracle.sol : SET_TARGETS
./src/contracts/AddressRegistry.sol : SET_ROUTER, ADD_STRATEGY,
ADD_REBALANCER, REMOVE_STRATEGY, REMOVE_REBALANCER
./src/contracts/vault/Vault.sol : SET_ADDRESS_REGISTRY

Recommendation: Follow the official Solidity guidelines.

www.hacken.io
28

https://docs.soliditylang.org/en/v0.8.17/style-guide.html
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#event-names


Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L03. Style Guide: Missing NatSpec

There is a lack of NatSpec comments across the project’s contracts,
decreasing code interpretation, future upgrades and integrations.

Path:
./src/contracts/AddressRegistry.sol

Recommendation: Follow the official Solidity guidelines.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L04. Unindexed Events

Having indexed parameters in events makes it easier to search for
these events, using indexed parameters as filters.

Paths:
./src/contracts/AddressRegistry.sol
./src/contracts/vault/Vault.sol
./src/contracts/Router.vy
./contracts/vault/FeeOracle.sol

Recommendation: Consider using the “indexed” keyword in events’
parameters.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L05. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0. This can lead to unwanted external calls to 0x0.

Paths:
./src/contracts/vault/Vault.sol: setCoinCapUSD(), approveStrategy(),
rebalance()
./src/contracts/Router.vy : initialize(), reinitialize()

Recommendation: Add zero address checks.

Status: Fixed (Revised commit: 7927f31)

L06. Redundant Operation; Gas Optimization

Existing implementation of isNormalizedWeightArray has a redundant
operation and could be simplified, to improve readability and reduce
Gas usage.

www.hacken.io
29

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#natspec


Path:
./src/contracts/vault/FeeOracle.sol : isNormalizedWeightArray()

Recommendation: Remove j variable. Replace 100 - j with 100 -
weights.length.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L07. State Variables Can Be Declared Constant

Compared to regular state variables, the Gas costs of constant
variables are much lower.

Path:
./src/contracts/vault/FeeOracle.sol : weightDenominator

Recommendation: Make weightDenominator constant.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L08. Missing Validation

Missing require check leads to unclear error messages in case of
providing incorrect data.

Path:
./src/contracts/vault/FeeOracle.sol : setTargets()

Recommendation: Validate that weights.length <= 50.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L09. Typos

Any typos encountered in the provided documentation should be
addressed.

“weightes” -> “​​weights”
“disatnce” -> “distance”
“coinPirceUSD -> coinPriceUSD”

“fomula -> formula”
“denomiator -> denominator”
“decominator -> denominator”

Paths:
./src/contracts/vault/FeeOracle.sol
./src/contracts/vault/Vault.sol

Recommendation: Fix typos.

www.hacken.io
30



Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L10. Functions That Can Be Declared External

Public functions that are never called by the contract should be
declared external to save Gas.

Path:
./src/contracts/vault/FeeOracle.sol : isInTarget()

Recommendation: Use the external attribute for functions never called
from the contract.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L12. Unused Variable

Unused variables should be removed from the contracts. Unused
variables are allowed in Solidity and do not pose a direct security
issue. It is best practice to avoid them as they can cause an
increase in computations (and unnecessary Gas consumption) and
decrease readability.

Path:
./src/contracts/AddressRegistry.sol : supportedCoinAddresses

Recommendation: Remove unused variables.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L13. Redundant Payable

payable modifier is redundant for deposit and withdraw functions, as
Vault contract implements them as not payable.

Path:
./src/contracts/Router.vy : IVault.deposit, IVault.withdraw

Recommendation: Remove redundant payable.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L14. Redundant Iterations

getCoinPositionInCPU function will iterate 50 times, in case len(cpu)
is less than 50 and coin position in CPU does not exist. Such
iteration could be optimized by limiting the range to len(cpu).

www.hacken.io
31



Path:
./src/contracts/Router.vy : getCoinPositionInCPU()

Recommendation: Replace range(50) with range(len(cpu)).

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L15. Code Duplication

DepositParams and WithdrawalParams structs are identical, so could be
merged into a single, reusable struct.
The same is applicable for DepositFeeParams and WithdrawalFeeParams.

During the second review, DepositParams and WithdrawalParams structs
are duplicated.

Paths:
./src/contracts/vault/Vault.sol : DepositParams, WithdrawalParams
./src/contracts/structs/structs.sol : DepositFeeParams,
WithdrawalFeeParams

Recommendation: Remove code duplication.

Found in: 85abc9e

Status: Fixed (Revised commit: 3bb9ee7)

L16. Access Control Violation

The function initialize() is called when the current contract has no
owner, without additional protection.

As a consequence, this function can be called by any actor, resulting
in a contract takeover.

Path:
./src/contracts/Router.py : initialize()

Recommendation: It is recommended to use a constructor instead.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L17. Misleading Function Names

The code contains the following functions, whose names are not
representative of their behavior: getWhitelistedStrategies() should
be similar to isWhitelistedStrategy(), and getWhitelistedRebalancer()
similar to isWhitelistedRebalancer().

Path:
./src/contracts/AddressRegistry.sol: getWhitelistedStrategies(),
getWhitelistedRebalancer().

www.hacken.io
32



Recommendation: It is recommended to use names that reflect the
function purpose as closely as possible to increase readability.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L18. Explicit Uint Size

The function getComponentAmount() returns a uint of non-explicit
size.

The mapping blockCapCounter uses keys of non-explicit uint size.

Paths:
./src/contracts/vault/Vault.sol : blockCapCounter
./src/contracts/strategy/IStrategy.sol : IStrategy.sol:
getComponentAmount()

Recommendation: It is recommended to explicitly declare the size of
uint variables.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L19. Inefficient Gas Model

The function isInTarget() iterates over the storage variable
targetsLength.

This approach uses a lot of Gas. Instead, a new memory variable
should be declared and used into the loop.

Path:
./src/contracts/vault/FeeOracle.sol: isInTarget().

Recommendation: Load the value of targetLengths into a new memory
variable and use it in the loop.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L20. Missing Assert Messages

In Router.vy, assert is used to enforce certain conditions. However,
no error message is provided.

Path:
./src/contracts/Router.vy

Recommendation: Consider adding error messages in the assert checks
of the contract.

Found in: 85abc9e

www.hacken.io
33



Status: Fixed (Revised commit: 7927f31)

L21. Redundant Code

The function reinitialize re-sets the variable self.owner as
msg.sender, resulting in no change and thus spending Gas
unnecessarily.

Path:
./src/contracts/Router.vy: reinitialize().

Recommendation: It is recommended to delete the statement self.owner
= msg.sender.

Found in: 85abc9e

Status: Fixed (Revised commit: 7927f31)

L22. Inefficient Gas Model

The function processMintRequest() checks validity of fee and
feeDenominator during it’s execution, which increases Gas spendings.
This logic could be moved to setFee / setFeeDenominator functions and
validated once during initialization.

Path:
./src/contracts/Router.vy: processMintRequest(), processBurnRequest()

Recommendation: Move check to the setter functions.

Found in: 7927f31

Status: Fixed (Revised commit: 3bb9ee7)

L23. Redundant Code

Router contract does not support native tokens (address(0)); however,
Vault contract still processes address(0) as native tokens. claimDebt
function is called only by router, so zero address for coin is not
possible. This code is unreachable and could be removed.

Consider checking all payable functions in Vault contract if they are
required.

Path:
./src/contracts/vault/Vault.sol : claimDebt();

Recommendation: Remove unused code. Check other payable functions in
the Vault contract.

Found in: 7927f31

Status: Fixed (Revised commit: 3bb9ee7)

www.hacken.io
34



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
35


