
Customer: VirtuSwap Foundation
Date: 05 Jun, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for VirtuSwap
Foundation

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20; Vesting; Staking;

Platform EVM

Language Solidity

Methodology Link

Website https://virtuswap.io/

Changelog 08.05.2023 – Initial Review
05.06.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://virtuswap.io/


Table of contents
Introduction 5
System Overview 5
Executive Summary 7
Risks 8
Recommendations 8
Checked Items 9
Findings 12

Critical 12
C01. Invalid Calculations 12

High 12
H01. Invalid Calculations 12
H02. Token Supply Manipulation 13
H03. Denial of Service; Fund Lock 13

Medium 14
M01. Invalid Calculations 14
M02. Missing Validation 14
M03. Non-Finalized Code 15
M04. Requirements Violation; Invalid Hardcoded Value 15

Low 16
L01. Floating Pragma 16
L02. Unscalable Functionality - Same Checks In Functions 16
L03. Missing Zero Address Validation 17
L04. Best Practice Violation 17
L05. State Variables Can Be Declared Immutable 18
L06. Missing Validation 18
L07. Unauthorized Access 18
L08. Missing Events 19
L09. NatSpec Comment Contradiction 19

Informational 20
I01. Solidity Style Guide Violation - Single Quotes 20
I02. Solidity Style Guide Violation - Contract Names 20
I03. Indexed Inputs in Events 20
I04. Misleading Function Parameter Name 20
I05. Functions That Can Be Declared External 21
I06. Redundant Events 21
I07. Unused Variable 21
I08. State Variables That Can Be Packed 22
I09. Redundant Import 22
I10. Redundant Payable 23
I11. Style Guide Violation - Order of Functions 23
I12. Missing Getters 23

Disclaimers 25
Appendix 1. Severity Definitions 26

Risk Levels 26

www.hacken.io
3



Impact Levels 27
Likelihood Levels 27
Informational 27

Appendix 2. Scope 28

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by VirtuSwap Foundation (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

VirtuSwap is a protocol with the following contracts:
● The VGlobalMinter contract is responsible for minting and

distributing VRSW and gVRSW tokens. It inherits from the Ownable
contract and implements the IvGlobalMinter interface. The contract
uses OpenZeppelin's SafeERC20 library for safe token transfers. This
contract is deployed only once per whole system.

● The VChainMinter smart contract is responsible for distributing VRSW
and gVRSW tokens to stakers. It implements the IvChainMinter
interface and inherits from the Ownable contract. The contract uses
OpenZeppelin's SafeERC20 library for safe token transfers. This
contract can be deployed one per chain, and the whole system can have
several instances of this contract (limited to one per chain).

● The VVestingWallet contract is a vesting wallet for ERC20 tokens. It
allows the release of tokens to a beneficiary following a
customizable vesting schedule. The contract is based on
OpenZeppelin's VestingWallet contract.

● The GVrsw smart contract is an ERC20 token contract that is built
using the OpenZeppelin library. The contract introduces a "minter"
role, which is assigned to an address during the contract deployment.
The minter has the ability to mint new tokens and send them to a
specified address.

● The VTokenomicsParams smart contract is a simple contract that
inherits from the IvTokenomicsParams interface and the OpenZeppelin
Ownable contract. It is designed to store and update tokenomics
parameters (r, b, alpha, beta, gamma) used in another contract's
calculations. The contract is initialized with default values for
these parameters, and they can be updated by the contract owner using
the updateParams function.

● The VStakerFactory smart contract creates and manages instances of
another smart contract called vStaker, which is used for staking VRSW
tokens. The vStakerFactory contract is an implementation of the
IvStakerFactory interface, which defines the functions that need to
be implemented by the contract. The contract provides functions for

www.hacken.io
5



getting the staker contract address for the VRSW pool and a specific
LP token pool, creating a new staker contract for a given LP token,
and setting the pending admin address. Only the admin can create new
staker contracts and set the pending admin address. The admin can
also accept the pending admin address to update the admin address.

● The VStaker implements the IvStaker interface. It allows users to
stake VRSW tokens and LP tokens, which are ERC20 tokens that
represent liquidity pool shares. The staking rewards are distributed
in VRSW tokens.

● The Vrsw is a smart contract that creates a new ERC20 token called
"Vrsw" with the symbol "VRSW". It inherits from the OpenZeppelin
ERC20 contract and includes a constructor that mints 1 billion tokens
and assigns them to the address provided as the "_minter" argument.
The decimals of the token are set to the default of 18.

Privileged roles
● The owner of the VTokenomicsParams contract can update parameters of

tokenomics (r, b, alpha, beta, gamma).
● The owner of the vGlobalMinter contract can mint new tokens for newly

added ChainMinter, create new VVestingWallet contract, transfer VRSW
tokens from contract, transfer VRSW tokens for new epoch and set
parameters of epoch.

● The owner of the VChainMinter contract transfers VRSW tokens to
contract for next epoch, updates stakeFactory address, changes
minting epoch duration and preparation time and sets the allocation
points for a list of stakers.

● During construction of GVrsw contract, sender of transaction gets
minter role. Address with this role can mint new Governance Virtuswap
tokens.

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are present in detail.
● Technical description is provided as NatSpec comments.

Code quality
The total Code Quality score is 10 out of 10.

● NatSpec covers the code in detail.

Test coverage
Code coverage of the project is 100.00% (branch coverage).

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

The system users should acknowledge all the risks summed up in the risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

8 May 2023 9 4 3 1

5 June 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The fund flow in the system is centralized, and many functions rely
on the admin/owner role and need to be done manually. The staking
rewards extracted from the vGlobalMinter contract are first deposited
in the admin/owner role address and only then bridged to other chains
to be deposited in each vChainMinter contract. If used incorrectly or
when the admin/owner account is compromised, most of the VRSW token
total supply will be lost.

● Owners can mint an unlimited number of gVRSW tokens using
addChainMinter(). This centralization risk is driven by the fact that
gVRSW tokens need to be deposited to each vChainMinter contract
deployed on different chains. If used incorrectly the value of the
gVRSW will be broken.

● The vTokenomicsParams can be updated by the owner using the
updateParams() function, which may affect the tokenomics of the VRSW
token.

Recommendations

● All admin/owner privilege role accounts should use multi-signature
wallets with ⅗ signatures required to protect against the risks
described in the Risk section.

● The test suite should be updated to cover all branches, include edge
cases, and account for multi-user scenarios.

www.hacken.io
8



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
9



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not
Relevant

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Not
Relevant

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
10

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
11



Findings

Critical

C01. Invalid Calculations

Impact High

Likelihood High

In the _availableTokens() and _availableTokensForNextEpoch()
functions, calculations are done incorrectly.

Both functions are not taking into account that calculations from the
block.timestamp can be greater than the divisor in the function
equations.

This can lead to a situation where the amount of tokens calculated is
greater than the actual amount of rewards provided if the
prepareForNextEpoch() function is not used correctly.

In the _availableTokensForNextEpoch() function, the epochDuration
variable is used incorrectly in the dividend in case when the
nextEpochDuration > 0.

Path: ./contracts/vChainMinter.sol : _availableTokens(),
_availableTokensForNextEpoch()

Recommendation: Use the min() function from OZ Math library to limit
the dividend of the equation to the value of the divisor.

In _availableTokens() function use min((block.timestamp -
startEpochTime), epochDuration).

In _availableTokensForNextEpoch() function use min((block.timestamp -
startEpochTime - _epochDuration), _epochDuration), where
_epochDuration = nextEpochDuration > 0 ? nextEpochDuration :
epochDuration.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

High

H01. Invalid Calculations

Impact High

Likelihood Medium

www.hacken.io
12



Calling the setEpochParams() function with block.timestamp which
makes the check block.timestamp >= startEpochTime + epochDuration
pass will cause a partial lock of the rewards paid when calling
nextEpochTransfer().

This is driven by the fact that _epochTransition() is triggered and
param startEpochTime used for reward calculation is forwarded to a
new timestamp.

Path: ./contracts/vGlobalMinter.sol : setEpochParams(),
nextEpochTransfer()

Recommendation: Consider updating the setEpochParams() by removing
the logic that triggers the _epochTransition(), as this internal
function should only be called from the nextEpochTransfer() function.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

H02. Token Supply Manipulation

Impact High

Likelihood Medium

In the newVesting() and arbitraryTransfer() functions, the
requirement to only release unlocked tokens is being executed
incorrectly.

The require(amount <= unlockedBalance) statement only checks that the
amount is less than the unlockedBalance variable, but both functions
should also reduce the remaining unlocked token balance.

Lack of the unlockedBalance variable reduction can lead to a
situation where more VRSW tokens are released than described in the
tokenomy.

Path: ./contracts/vGlobalMinter.sol : newVesting(),
arbitraryTransfer()

Recommendation: After each function call, reduce the unlockedBalance
variable by the amount released.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

H03. Denial of Service; Fund Lock

Impact High

Likelihood Medium

www.hacken.io
13



In the setStakerFactory() function, the stakerFactory variable can be
changed even when the current vStakerFactory has active vStaker
contracts with deposited user funds.

In the event of changing the stakerFactory variable, users of the old
vStaker contracts will not be able to claim their earned rewards. All
calculations done in the vStaker contracts will be incorrect.

Additionally, the setAllocationPoints() function will be affected, as
the totalAllocationPoints variable will contain the old allocation
points from the old vStakerFactory vStaker contracts.

Changing the stakeFactory after it is set and in use will lead to an
unusable staking system.

Path: ./contracts/vChainMinter.sol : setStakerFactory()

Recommendation: Prevent changing of the stakerFactory variable after
it is set up.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

Medium

M01. Invalid Calculations

Impact High

Likelihood Low

In the nextEpochTransfer() function, there is a flaw in the logic of
the epoch transition.

In case of calling the nextEpochTransfer() for the first time after
the emissionStartTs, the rewards for epoch 0 will be locked inside
the contract.

Path: ./contracts/vGlobalMinter.sol : nextEpochTransfer()

Recommendation: Consider updating the logic of the
nextEpochTransfer() to trigger _epochTransition() after the release
of the previous epoch's rewards.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

M02. Missing Validation

Impact Medium

Likelihood Medium

www.hacken.io
14



It is considered that the project should be consistent and contain no
self-contradictions.

According to implementation, the value beneficiary should be
different from the 0x0 address. However, in the functions, the
validation is missed.

According to implementation, the value startTs should be greater than
current time (block.timestamp). However, in the functions, the
validation is missed.

According to implementation, the value duration should be different
from 0. However, in the functions, the validation is missed.

According to implementation, the value amount should be different
from 0. However, in the functions, the validation is missed.

This may lead to unexpected value processed by the contract.

Path: ./contracts/vVestingWallet.sol : newVesting()

Recommendation: Implement validations.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

M03. Non-Finalized Code

Impact Medium

Likelihood Medium

The code should not contain TODO comments. Otherwise, it means that
the code is not finalized and additional changes will be introduced
in the future.

Path: ./contracts/vStakerFactory.sol : createPoolStaker()

Recommendation: Remove TODO comments and resolve unfinalized codes.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

M04. Requirements Violation; Invalid Hardcoded Value

Impact Medium

Likelihood Medium

In the EmissionMath library, the constants V and v are declared.
These variables are used in the calculation of the decreasing release
schedule in the _calculateEmission() function.

www.hacken.io
15



In the requirement from the project whitepaper, it is stated that the
amount released each year should be based on an annual percentage
decrease of 20%.

With the current values, the first year release is around 20% of the
initial amount of rewards, but all the consecutive years are around
16.84% decrements.

This leads to a situation where more tokens are released than
expected.

Path: ./contracts/libraries/EmissionMath.sol : _calculateEmission()

Recommendation: Consider updating the values or documentation.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

Low

L01. Floating Pragma

Impact Low

Likelihood Low

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Path: ./contracts/ : *

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

L02. Unscalable Functionality - Same Checks In Functions

Impact Low

Likelihood Medium

It is considered that smart contract systems should be easily
scalable.

Same checks used in several functions overwhelm code and make further
development difficult. Checks used multiple times:

● require(block.timestamp >= emissionStartTs, 'too early');
● require(lockDuration > 0, 'insufficient lock duration');
● require(amount > 0, 'insufficient amount');

www.hacken.io
16



● require(lpToken != address(0), 'can stake only vrsw');

This may lead to new issues during further development.

Path: ./contracts/vStaker.sol : *

Recommendation: Consider moving the checks to special modifiers.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

L03. Missing Zero Address Validation

Impact Medium

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./contracts/vStakerFactory.sol : constructor()
./contracts/vStaker.sol : unlockVrsw()
./contracts/vChainMinter.sol : constructor(), setStakerFactory(),
transferRewards(), mintGVrsw(), burnGVrsw()
./contracts/GVrsw.sol : mint()

Recommendation: Implement zero address checks.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

L04. Best Practice Violation

Impact Low

Likelihood Medium

The input arrays are not validated for having equal lengths.

This violates the best practices.

Path: ./contracts/vChainMinter.sol : setAllocationPoints()

Recommendation: Validate the input array lengths for the equality.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

www.hacken.io
17



L05. State Variables Can Be Declared Immutable

Impact Low

Likelihood Low

Variable’s gVrsw and vrsw values are only set in the constructor.
Those variables can be declared as immutable.

This will lower Gas usage.

Path: ./contracts/vGlobalMinter.sol : gVrsw, vrsw

Recommendation: State variables can be declared immutable.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

L06. Missing Validation

Impact Low

Likelihood Medium

It is considered that the project should be consistent and contain no
self-contradictions.

Lack of validation of the _emissionStartTs argument in
vGlobalMinter.sol constructor(). Emission should not start in the
past. _emissionStartTs should be in the future.

This may lead to unexpected value processed by the contract.

Path: ./contracts/vGlobalMinter.sol : constructor()

Recommendation: Implement the validation.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

L07. Unauthorized Access

Impact Low

Likelihood Low

The release() function can be called by anyone, allowing external
users to release tokens on behalf of the beneficiary.

Path: ./contracts/vVestingWallet.sol : release(),

Recommendation: Consider restricting access to the release() function
only to the beneficiary.

www.hacken.io
18



Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

L08. Missing Events

Impact Low

Likelihood Low

Events for critical state changes should be emitted for tracking
things off-chain.

Missing event inside constructor() of vTokenomicsParams, tokenomics
parameters are updated and UpdateTokenomicsParams should be emitted
like in updateParams().

Path: ./contracts/vTokenomicsParams.sol : constructor(),

Recommendation: Add UpdateTokenomicsParams event inside constructor()
of vTokenomicsParams.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

L09. NatSpec Comment Contradiction

Impact Low

Likelihood Low

It is considered that the project should be consistent and contain no
self-contradictions.

The NatSpec comments of the transferRewards() imply that the caller
must be a registered staker with a non-zero allocation point.

Actually, staker can have a non-zero allocation point, in case he had
rewards before.

This may lead to wrong assumptions about the code's purpose.

Path: ./contracts/IvChainMinter.sol : transferRewards()

Recommendation: Fix the mismatch.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

www.hacken.io
19



Informational

I01. Solidity Style Guide Violation - Single Quotes

The provided projects should follow the official guidelines. The
project violates the following style guidelines: use double quotes
for strings.

Path: ./*

Recommendation: Replace single quotes with double quotes.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I02. Solidity Style Guide Violation - Contract Names

The name of the contracts and types should begin with uppercase
letters. Using lowercase letters for types may confuse developers and
lead to unintentional errors during further development.

Path: ./*

Recommendation: Consider using CapWords style for contract names.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I03. Indexed Inputs in Events

Events have the possibility to track their inputs as indexed. It is
recommended to use the indexed keyword for better tracking of
sensitive data.

Paths:
./contracts/interfaces/IvChainMinter.sol : TransferRewards
./contracts/interfaces/IvStaker.sol : StakeVrsw, StakeLp,
RewardsClaimed, UnstakeLp, UnstakeVrsw, LockVrsw, LockStakedVrsw,
UnlockVrsw

Recommendation: Consider adding the indexed keyword to track token
addresses in events.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I04. Misleading Function Parameter Name

Function parameters should represent the function logic and should
not mislead it.

Parameter to from burnGVrsw() is misleading. Function is burning
gVrsw tokens from the provided address. It would be more suitable if
this parameter were from instead of to.

www.hacken.io
20



This makes code harder to read.

Path: ./contracts/interfaces/IvChainMinter.sol : burnGVrsw()

Recommendation: Change function parameter name to fit the logic.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I05. Functions That Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./contracts/GVrsw.sol : mint()
./contracts/vVestingWallet.sol : release()

Recommendation: Use the external attribute for functions never called
from the contract.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I06. Redundant Events

In order to save Gas, code should not have unused events. Events are
declared in IvGlobalMinter and never used inside vGlobalMinter.

Path: ./contracts/interfaces/IvChainMinter.sol : NewStakerFactory,
TransferRewards

Recommendation: Remove unused events.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I07. Unused Variable

Unused variables should be removed from the contracts.

Unused variables are allowed in Solidity and do not pose a direct
security issue. It is best practice to avoid them as they can cause
an increase in computations (and unnecessary Gas consumption) and
decrease readability.

The variable TOTAL_PROJECT_EMISSION is never used.

Path: ./contracts/liblaries/EmissionMath.sol : TOTAL_PROJECT_EMISSION

Recommendation: Remove unused variable.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)
www.hacken.io

21



I08. State Variables That Can Be Packed

Since the state variables in the vChainMinter contract
currentEpochBalance, nextEpochBalance, epochDuration,
epochPreparationTime, nextEpochDuration, nextEpochPreparationTime,
startEpochTime, startEpochSupply, totalAllocationPoints represent
mostly timestamps, they can be downcast and packed together in order
to save Gas.

The state variables in the vGlobalMinter contract startEpochTime,
epochDuration, epochPreparationTime, nextEpochDuration,
nextEpochPreparationTime and emissionStartTs represent mostly
timestamps, they can be downcast and packed together in order to save
Gas.

The state variables in the Stake struct startTs and lockDuration
represent timestamps, they can be downcast and packed together in
order to save Gas.

Paths:
./contracts/vChainMinter.sol : *
./contracts/vGlobalMinter.sol : *
./contracts/types.sol : Stake

Recommendation: Consider downcasting the mentioned variables to
smaller uint sizes and place them next to each other in order to pack
storage.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I09. Redundant Import

Unused imports should be removed from the contracts.

Unused imports are allowed in Solidity and do not pose a direct
security issue. It is best practice to avoid them as they can
decrease readability.

The usage of Math is unnecessary for the vStaker and vGlobalMinter
contracts.

The usage of types and IvStaker is unnecessary for the vStakerFactory
contract.

Paths:
./contracts/vStaker.sol : Math.sol
./contracts/vGlobalMinter.sol : Math.sol
./contracts/vStakerFactory.sol : types.sol, IvStaker.sol

Recommendation: Remove the redundant import.

www.hacken.io
22



Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I10. Redundant Payable

Unused function’s modifiers should be removed from the contracts. It
is best practice to avoid them as they can decrease readability.

Constructor of vVestingWallet has a payable modifier, but this
contract is not designed to receive native coins.

Path: ./contracts/vVestingWallet.sol : constructor()

Recommendation: Remove the redundant payable modifier.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I11. Style Guide Violation - Order of Functions

The project should follow the official code style guidelines.

Functions should be grouped according to their visibility and
ordered:

● constructor
● receive function (if exists)
● fallback function (if exists)
● external
● public
● internal
● private

Within a grouping, place the view and pure functions at the end.

Paths:
./contracts/vVestingWallet.sol
./contracts/vStakerFactory.sol
./contracts/stakeVrsw.sol
./contracts/vChainMinter.sol

Recommendation: The official Solidity style guidelines should be
followed.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

I12. Missing Getters

Data from allStakers and vestingWallets can be accessed only by
index.

www.hacken.io
23



It will be much easier to extract all data from an array using a
single function call.

Paths:
./contracts/vStakerFactory.sol : allStakers
./contracts/vGlobalMinter.sol : vestingWallets

Recommendation: Create a getter function to extract whole arrays.

Found in: c23049f1

Status: Fixed (Revised commit: dfb861a)

www.hacken.io
24



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
25



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
26



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
27



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Virtuswap/tokenomics

Commit c23049f19e3faced5b39a3483e092712f05e1e53

Whitepaper Not provided

Requirements https://www.dropbox.com/s/psory6x4ymnuaom/Tokenomics-VirtuSwap-Apr-4-2
023.pdf?dl=0

Technical
Requirements The documentation is present in form of NatSpec comments

Contracts File: GVrsw.sol
SHA3: 8862f6969293a2530440151fce2a74ef2a0f64b771630ea5ee809ac2da45ef75

File: types.sol
SHA3: 5bd26fedf079f6809a1a7a85262b759737acfca6ec31ffea4672b608f0549196

File: vChainMinter.sol
SHA3: b16aa46272c3f82e1151b601124bb8c245e15730403d9a8dda54f81f68004d32

File: vGlobalMinter.sol
SHA3: a7a79d1d2e46b90636c7b4e6b5fc86af3666b56dad6cf1095effdcafb3e621af

File: Vrsw.sol
SHA3: 19cec13f28fb245faed3bcc6c54e9cdbe96c3f572385380c64ada46bf10b3e07

File: vStaker.sol
SHA3: 87b543e37cf26353de37038e807ee850688e5c6386e34459153f81560481df8a

File: vStakerFactory.sol
SHA3: 54f747e6e1fd8f0fc06acb9816d1550b144e0746dcc943b21b70437f0867436a

File: vTokenomicsParams.sol
SHA3: f1539488d68b6a6b350971c5e148c239357c48cf49ffb2bb2ce8f600c4bfe5bd

File: vVestingWallet.sol
SHA3: 0f98d1608cc6ee8cde26a36a9814db0fa6b655c62a8b48d6b5bae3ee50828b83

File: interfaces/IvChainMinter.sol
SHA3: d998e7ca31f8ddee05f30ca5aa834dc63f418f81902253f851177b2568556486

File: interfaces/IvGlobalMinter.sol
SHA3: 5db50c76a126f87335c9f9c58f365f404107b4e8a44745def61c3a2badf86f01

File: interfaces/IvStaker.sol
SHA3: d9e3888bc6c2951ecd8c1bd85425fddf666f04fcedd113813600e4ee351cf996

File: interfaces/IvStakerFactory.sol
SHA3: 6307dea01e7fca090fb6b293f966de165cdf1a5ca50b30bce677d570c3adc0c7

File: interfaces/IvTokenomicsParams.sol
SHA3: 1da85f9d457d5ab5f7fc41c4af39fcd6a6724a2272c0c1c7d1a22e0dd7b8061e

www.hacken.io
28

https://github.com/Virtuswap/tokenomics
https://www.dropbox.com/s/psory6x4ymnuaom/Tokenomics-VirtuSwap-Apr-4-2023.pdf?dl=0
https://www.dropbox.com/s/psory6x4ymnuaom/Tokenomics-VirtuSwap-Apr-4-2023.pdf?dl=0


File: libraries/EmissionMath.sol
SHA3: d48707306ee79c7c17deeaa1e25b8d21a0a98c15e76d413a6842588909596649

Second review scope

Repository https://github.com/Virtuswap/tokenomics

Commit dfb861a7381c34d1bd3fd366326ed21201b5e388

Whitepaper Not provided

Requirements Tokenomics-VirtuSwap-May-24-2023.pdf

Technical
Requirements The documentation is present in the form of NatSpec comments.

Contracts File: ./contracts/GVrsw.sol
SHA3: 3e377bfa90805b61f539864b7adda70ac1f30902fc357d6e85df7dd92c2640ca

File: ./contracts/Types.sol
SHA3: 315d056d2f4c0515dee2f95c23825bfa35bca053ded45789d72840a80765e554

File: ./contracts/VChainMinter.sol
SHA3: 2fbeb20b0ebd681ac838975625a0e1dee998672675427ffa082d9eb9e348e730

File: ./contracts/VGlobalMinter.sol
SHA3: 62573f798ff76c1a51f74ff029288dda693005f2c1def2ceb2208bae6a4fb09c

File: ./contracts/Vrsw.sol
SHA3: 12890edd8edb2accc35bf50430f825353fd1036741c67feb06eba91e97194ef8

File: ./contracts/VStaker.sol
SHA3: 17af05b13ffbd73c0212ef79dc3549dd26305d48652463abd108b68abcba7524

File: ./contracts/VStakerFactory.sol
SHA3: 647591ca9d9cce73bb910401f1200df84aa99caeeb07e8b04965e4a3ab75bb9c

File: ./contracts/VTokenomicsParams.sol
SHA3: 8dbb591d0c0c47b88444fcb3eb0ac5c90f4fc47759800470ec6fe4181cb2c909

File: ./contracts/VVestingWallet.sol
SHA3: e9644bf5036fe90625ea9f2e7cc1dbcce324533642583352dafaf536fa53d78d

File: ./contracts/interfaces/IVChainMinter.sol
SHA3: f2d23c4e7b3a8e527c41d78868d9d958d03fc92bef1af119cded089a9ba3b5a4

File: ./contracts/interfaces/IVGlobalMinter.sol
SHA3: d08d95c0734f86365d603f406dfaa948180eeede4ab674f408a26344c839abf8

File: ./contracts/interfaces/IVStaker.sol
SHA3: 91bf8cec3e5bec91ef47c8a99fadf0a68b796e0dccfdd90a7581bc31f7544ed6

File: ./contracts/interfaces/IVStakerFactory.sol
SHA3: 4e4910b547c2fdd73961c345f419c77da055bfed1a5796afed94bd03898317fe

File: ./contracts/interfaces/IVTokenomicsParams.sol
SHA3: 43aa67c40062770d7f52e7ebfd59d42ecbadc0bc33024f1fb000949b54b8eb0a

File: ./contracts/libraries/EmissionMath.sol

www.hacken.io
29

https://github.com/Virtuswap/tokenomics


SHA3: d125de1370ae0fecd9b84d53c5d8c0a2a107a52d67153bba901a46f96e655fc8

www.hacken.io
30


