
Customer: Bit5 SCRA
Date: 11 July, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Bit5 SCRA

Approved By Oleksii Zaiats | Head of SC Audits at Hacken OU

Type Marketplace; Lending Platform

Platform Binance Smart Chain, Ethereum, Avalanche

Language Solidity

Methodology Link

Website https://bit5.com/

Changelog
23.05.2023 – Initial Review
19.06.2023 – Second Review
11.07.2023 – Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://bit5.com/


Table of contents
Introduction 5
System Overview 5
Executive Summary 8
Risks 9
Checked Items 10
Findings 13

Critical 13
C01. Data Consistency 13

High 13
H01. Undocumented Behavior 13
H02. Denial of Service Vulnerability 14
H03. Requirements Violation; Data Consistency 14
H04. Denial of Service Vulnerability 15
H05. Data Consistency 15
H06. Requirements Violation 16
H07. Unlimited Fees; Undocumented Behavior 16
H08. Data Consistency 17
H09. Data Consistency; Assets Integrity 18
H10. Undocumented Behavior 18
H11. Assets Integrity; Highly Permissive Role 19
H12. Data Consistency 19
H13. Denial Of Service Vulnerability 20

Medium 20
M01. Unchecked Transfers 20
M02. CEI Pattern Violation 21
M03. Tests Failing 21

Low 22
L01. Floating Pragma 22
L02. Contradiction; Redundant Code 22
L03. Missing Events Emitting 22
L04. Best Practice Violation 23
L05. Incorrect Verifications 23
L06. Data Consistency 24

Informational 24
I01. Duplicated Code 24
I02. Duplicated Code 25
I03. Not Indexed Parameters In Events 25
I04. Inefficient Gas Model 25
I05. Public Functions That Could Be Declared External 25
I06. Unused Errors 26
I07. Unused Events 26
I08. Style Guide Violations 26
I09. Redundant Operation 27

www.hacken.io
3



I10. Inefficient Gas Model 27
I11. Code Consistency 27
I12. Typos In The Code 28
I13. Commented Code 28
I14. Missing Zero Address Validation 28
I15. Unused Functions 29

Disclaimers 30
Appendix 1. Severity Definitions 31

Risk Levels 31
Impact Levels 32
Likelihood Levels 32
Informational 32

Appendix 2. Scope 33

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by Bit5 SCRA (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Bit5 SCRA is a NFT Marketplace and NFT Lending Platform system with the
following contracts:

● Bit5 — is a contract with the tokens marketplace functionality.
During the contract initialization, the fee is set to 2% and the
maximal royalty is set to 40%. The contract has a pausing
functionality: it is not possible to buy tokens, accept bids or
cancel the order.

Orders used in the contract are created off-chain. The issuer is
required to sign the order information. In the contract, those who
wish to accept the order provide the order information and the
issuer's signature. These data are validated, checking if the signer
matches the issuer specified in the order information. Additionally,
the validation ensures that the order is not expired, using the end
value in the order, and verifies if the payment ERC-20 token is
allowed.

Once validated, the order is processed. The order can be either a
LISTING or a BID, and the contract has separate functions for each
type. In the case of a BID, msg.sender sells the NFT to the order
issuer, while in a LISTING, it is the opposite.

The service fee is collected in ERC-20 payment tokens. From the
service fee, the treasury fee is deducted and sent to the
Bit5Treasury contract. If the NFT supports royalties, the royalty for
the token is sent. Otherwise, custom royalties can be sent. The
collection owner can set collection royalties with a percentage
share, with the total percentage not exceeding 40%.

Additionally, the issuer can be the owner of a privileged collection.
The contract owner can establish privileged collections along with
their respective percentages. In such cases, the service fee is
reduced by the privilege percentage, and the treasury fee is adjusted
accordingly. After this, the payment tokens are sent to the seller,
and the NFT is transferred to the buyer.

Furthermore, the contract allows processing global BIDs. In the order
information, the issuer specifies the quantity of tokens they wish to
purchase from the collection, and users can sell them the
corresponding quantity of any tokens from the collection.

www.hacken.io
5



● Bit5Lending — is a contract with the tokens borrowing and lending
functionality.

Orders are created and processed in the same manner as in the
previous contract. The order owner has the ability to cancel their
own order. Similar to the previous contract, an order can have either
an OFFER (where the issuer wants to provide a loan) or a LIST (where
the issuer wants to lend) type. The order object specifies an array
of NFT addresses, their IDs, quantities, and types (ERC721 or
ERC1155). It also includes the signingTime and expiration (the order
becomes invalid after signingTime + expiration), as well as the
duration (the timeframe within which the borrower must repay the
debt) which is indicated in the order information.

When the borrower repays the debt, they also pay the interestRate,
which is specified in the order information. If the borrower fails to
repay the debt, the lender who provided the loan can liquidate it
(collateral NFTs are transferred to them), and the collaterals are
sent to the contract at the time of order acceptance. Additionally, a
loan order can be global, meaning the lender can provide a loan
against any NFT from the specified collection.

Upon loan initiation, a service fee is collected from the loan
(initially set at 1% during contract initialization but can be
modified by the owner). The contract also includes pausing
functionality, which allows for the blocking of order cancellations,
acceptance, payment, and liquidation operations.

● Bit5Treasury — is a contract that facilitates the collection of
treasury fees from the contract, stores balances associated with an
NFT collection, and allows for their withdrawal.

● Create3Factory — is a contract that provides the functionality for
the contracts deployment.

● TransparentProxy — is a transparent upgradeable proxy contract.
● LibOrder.sol — provides structs and enums for the Bit5 and the

LibOrder library with the order hashing function.
● LibOrderLending.sol — provides structs and enums for the Bit5 and the

LibOrderLending library with the lending order hashing function.
● OrderValidator — is a contract that provides a function of obtaining

the signer address from the order and signature.
● OrderValidatorLending — is a contract that provides a function of

obtaining the signer address from the lending order and signature.
● Bit5Errors — is an interface that provides errors used in the Bit5

and Bit5Treasury contracts.
● IBit5Treasury — is an interface that defines Bit5Treasury contract

functions.

www.hacken.io
6



● solmate/src/utils/CREATE3 — is a contract that provides the
functionality for the contracts deployment.

● solmate/src/utils/Bytes32AddressLib — is a library for converting
addresses to bytes32 and vice versa.

Privileged roles
● The owner of the Bit5 contract can withdraw native coin and ERC-20

tokens from the contract, allow and disallow payment tokens, pause
and unpause the contract, change service fee, set privileged NFT
collections with percentages, and change treasury fee percentages.

● The owner of the Bit5 contract can acceptGlobalBidAsOwner on behalf
of any user.

● The owner of the Bit5Lending contract can withdraw native coin and
ERC-20 tokens from the contract, allow and disallow payment tokens,
pause and unpause the contract, change the service fee, set payment
tokens statuses.

● The owner of the Bit5Treasury contract can set bit5 address and
withdraw fees from the contract.

● The bit5 address in the Bit5Treasury contract can call a deposit
function (that transfers treasury fee to this contract.)

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements are provided and are sufficient.
● The technical description is limited:

○ The technical specification is not provided.
○ NatSpec is missing.

Code quality
The total Code Quality score is 8 out of 10.

● Insufficient Gas modeling.
● Solidity Style Guide violations (code formatting, naming

conventions).

Test coverage
Code coverage of the project is 94.35% (branch coverage).

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.2. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

23 May 2023 4 2 13 1

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


19 June 2023 6 3 8 0

11 July 2023 1 0 0 0

Risks

● The contracts are upgradeable and may be modified.
● The service fees are not limited and may be changed by the contracts`

owners.
● Highly permissive roles are present

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed L01

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

www.hacken.io
10



DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Not
Relevant

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

www.hacken.io
11

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not
Relevant

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I08

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



Findings

Critical

C01. Data Consistency

Impact High

Likelihood Medium

The offer kind (BID or LIST) is not verified when calling the
functions for the orders processing.

Therefore, the orders may be processed in an incorrect way, which may
lead to incorrect tokens transferals or manipulations.

Path:
./contracts/Bit5.sol : buy(), acceptBid(), acceptGlobalBid(),
acceptGlobalBidAsOwner();

Recommendation: verify if the order kind is appropriate when
processing it.

Found in: 0e43cbc

Status: Fixed (Revised commit: b6f2142)

High

H01. Undocumented Behavior

Impact High

Likelihood Medium

The contracts have a pausing functionality.

Users should be acknowledged about this behavior.

Paths:
./contracts/Bit5.sol : pause(), unpause();
./contracts/Bit5Lending.sol : pause(), unpause();
./contracts/Bit5Treasury.sol : pause(), unpause();

Recommendation: describe the pausing functionality in the
documentation.

Found in: 0e43cbc

Status: Mitigated (Revised commit: 196e206) (The behavior is
documented)

www.hacken.io
13

https://docs.bit5.com/product-guides/marketplace/pausable


H02. Denial of Service Vulnerability

Impact Medium

Likelihood High

When adding new payment tokens, they are not approved to the
Bit5_TREASURY.

This will lead to the inability of new token usage because the
transactions will fail in the _doTransfers function when calling the
Bit5_TREASURY.deposit.

Path:
./contracts/Bit5.sol : setPaymentToken();

Recommendation: approve the newly added tokens to the Bit5_TREASURY
and set the allowance to 0 when removing the token.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

H03. Requirements Violation; Data Consistency

Impact High

Likelihood Medium

The global bid order may have the tokenId value set, though the
global bid should not have it and will skip this value when
processing the order in the acceptGlobalBid and
acceptGlobalBidAsOwner function.

Additionally, the global bid order may be processed using buy and
acceptBid functions intended to process LIST order and not global BID
respectively.

This is a consistency violation and may lead to the incorrect input
data processing, which may result in unexpected ways for the users.

Path:
./contracts/Bit5.sol : buy(), acceptBid(), acceptGlobalBid(),
acceptGlobalBidAsOwner();

Recommendation: split global and usual BIDs functionality.

Found in: 0e43cbc

Status: Fixed (Revised commit: b6f2142)

www.hacken.io
14



H04. Denial of Service Vulnerability

Impact High

Likelihood Medium

It is not allowed to cancel the order if the payment token is not
allowed. (cancelOrder function checks paymentTokens whitelist in
isOrderValid modifier).

Due to this, if the owner disables tokens for listed items, it will
result in the impossibility to cancel the order.

Path:
./contracts/Bit5.sol : cancelOrder();

Recommendation: allow cancel orders when the payment token is no
longer valid.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

H05. Data Consistency

Impact High

Likelihood Medium

Order struct has no unique per listing fields, so signature collision
is possible. This leads to the impossibility of new order creation
because orderStatus is cached per signature.

For example: The user lists their NFT, then cancels the order.
orderStatus is updated to canceled. Then the user lists the same NFT
again (using end variable the same as previous one), so the signature
is the same as in the previous listing. Other users could not buy a
listed item, as orderStatus is CANCELED, so the _checkOrderValidity
function reverts the transaction.

Path:
./contracts/Bit5.sol : cancelOrder();

Recommendation: make the signature for each order unique: add the
unique value to the hash or solve the collision problem in another
way.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

www.hacken.io
15



H06. Requirements Violation

Impact Medium

Likelihood High

According to the documentation, the collateral tokens should be
allowed in terms of security:

● Your NFT must be listed on Bit5.
● Your NFT must not be removed from Bit5 or registered as stolen

in the BNB blockchain.
● If your NFT meets these requirements, you can use it as

collateral to borrow BNB.

However, validations for the collaterals are not implemented.

Path:
./contracts/Bit5Lending.sol;

Recommendation: implement the code according to the requirements.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

H07. Unlimited Fees; Undocumented Behavior

Impact High

Likelihood Medium

The fees are not limited and may exceed 100%.

All the fees and limits should be documented and users should be
acknowledged on the fee amounts and limits.

In case the fees exceed 100%, the calculations will not work
properly: _doTransfers function could be reverted because of
insufficient balance in multiple scenarios.

Scenario 1 (2% standard fee, 5% royalty fee, treasuryPercentages is
0, not a privileged collection): user buys an NFT for 100 tokens,
standardServiceFee is 2, treasuryFeePercentage is 0. After paying the
royalty contract has 95 tokens. order.price (100) -
standardServiceFee (2) - totalRoyaltyAmount (5) +
privilegedServiceFee (0) = 93 tokens sent to seller. Result: contract
has 2 tokens as a leftover of the operation.

Scenario 2 (2% standard fee, 5% royalty fee, treasuryPercentages is
30_000, not a privileged collection): user buys an NFT for 100
tokens, standardServiceFee is 2, toCollectionTreasury is 6. After
paying the royalty contract has 95 tokens. After sending tokens to

www.hacken.io
16



the treasury, the contract has 89 tokens. order.price (100) -
standardServiceFee (2) - totalRoyaltyAmount (5) +
privilegedServiceFee (0) = 93 tokens sent to seller. Result:
transaction is reverted due to low balance.

Scenario 3 (2% standard fee, 5% royalty fee, treasuryPercentages is
30_000, privileged collection with a value of 30_000): user buy an
NFT for 100 tokens, standardServiceFee is 2, toCollectionTreasury is
6. After paying the royalty contract has 95 tokens. After sending
tokens to the treasury, the contract has 89 tokens. new FEE is 200 *
30_000 / 10_000 = 600. privilegedServiceFee is 6 tokens.
treasuryFeePercentage is 30_000 * 600 / 10_000 = 1800. 18 tokens sent
to the treasury, balance is 77. order.price (100) -
standardServiceFee (2) - totalRoyaltyAmount (5) +
privilegedServiceFee (6) = 99 tokens sent to seller. Result:
transaction is reverted due to low balance.

Because fees are not limited - the situation is possible when the
seller would receive nothing.

Paths:
./contracts/Bit5.sol : _doTransfers(), changeTreasuryPercentage(),
changeFee(), initialize(), changePrivilegePercentage();
./contracts/Bit5Lending.sol : changeFee(), initialize();

Recommendation: limit max fees paid during transfers and document
them. Check calculation to prevent transaction revert due to low
balance.

Found in: 0e43cbc

Status: Mitigated (Revised commit: 196e206) (Such behavior is a part
of business logic as per client’s requirements)

H08. Data Consistency

Impact High

Likelihood Medium

The global orders are not properly split with the usual ones and may
be processed vice versa, as well as the orders with OFFER and LIST
types.

The Order with isGlobal true value may have nftAddresses,
colleteralTokenIDs and amounts values, which should not be allowed
for global order.

It is possible to create a global LIST order, as such verification is
missed in the acceptGlobalOffer function. In case the order with LIST
type is processed using the acceptGlobalOffer, it may be impossible
to payback and liquidate it, as the global token ids are set to the

www.hacken.io
17

https://docs.bit5.com/product-guides/marketplace/fee-calculation-and-limits


order in the payback and liquidate functions only in case orderKind
is OFFER. Due to this, the NFTs will be locked in the contract and
the borrower will not get any tokens back.

The amount of ERC-1155 tokens to be transferred can not be set when
accepting the global order. Due to this, the incorrect data may be
processed.

This is a consistency violation and may lead to the incorrect input
data processing, which may result in unexpected ways for the users.

Path:
./contracts/Bit5Lending.sol : processOrder(), acceptGlobalOffer(),
payback(), liquidate();

Recommendation: split the global and usual orders, verify the order
kind.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

H09. Data Consistency; Assets Integrity

Impact High

Likelihood Medium

The order expiration time (order.times.signingTime +
order.times.expiration) is not checked when the global offer is
accepted in the acceptGlobalOffer function.

This may result in an invalid order processing.

Path:
./contracts/Bit5Lending.sol : acceptGlobalOffer();

Recommendation: validate the order deadline in the acceptGlobalOffer
function.

Found in: 0e43cbc

Status: Fixed (Revised commit: b6f2142)

H10. Undocumented Behavior

Impact High

Likelihood Medium

The global BID (Bit5) and offer (Bit5Lending) allow the transfer of
any NFT from the collection to the issuer.

www.hacken.io
18



Such functionality is not described in the documentation, and users
may not be acknowledged for such behavior and get the tokens that
were not expected.

Paths:
./contracts/Bit5Lending.sol : acceptGlobalOffer();
./contracts/Bit5.sol : acceptGlobalBid(), acceptGlobalBidAsOwner();

Recommendation: describe the global orders in the documentation.

Found in: 0e43cbc

Status: Mitigated (Revised commit: 196e206) (Such behavior is a part
of business logic as per client’s requirements)

H11. Assets Integrity; Highly Permissive Role

Impact High

Likelihood Medium

Owner is allowed to pass the NFT owner's address (_nftOwner) in the
acceptGlobalBidAsOwner function. After that, the NFT tokens are sent
from the NFT owner's address to the order.issuer.

In case the owner key leaks, after the NFT owner approves the NFT
contract for accepting BID, an attacker can call
acceptGlobalBidAsOwner with the owner's address, manipulate the
price, and steal the token.

Path:
./contracts/Bit5.sol : acceptGlobalBidAsOwner();

Recommendation: do not allow passing the NFT owner's address.

Found in: 0e43cbc

Status: Mitigated (Revised commit: 196e206) (Such behavior is a part
of business logic as per the client’s requirements and limited to the
owner only. Client will use multisig account to protect keys from the
leak.)

H12. Data Consistency

Impact Medium

Likelihood High

The Bit5Treasury contract allows to deposit any ERC-20 token for a
specific collection address, but collectionBalances are updated
without mapping to the ERC20 token.

www.hacken.io
19

https://docs.bit5.com/product-guides/marketplace/global-transactions
https://docs.bit5.com/product-guides/marketplace/global-transactions


As a result, the incorrect calculation of the balances and incorrect
tokens may be withdrawn through the withdraw function.

Path:
./contracts/Bit5Treasury.sol : deposit(), withdraw();

Recommendation: consider creating collectionAddress -> tokenAddress
-> amount mapping.

Found in: 0e43cbc

Status: Fixed (Revised commit: b6f2142)

H13. Denial Of Service Vulnerability

Impact Low

Likelihood Medium

addRoyaltier, deleteRoyaltier and functions iterate over all the
royalties, which are not limited.

It is possible to add 4000 royalties with 1 basis point per user
(maxRoyalty is limited to 4000), which will lead to transaction
revert during looping because of Gas limit.

Path:
./contracts/Bit.sol : addRoyaltier(), deleteRoyaltier(),
_doTransfers();

Recommendation: limit the max amount of royalties.

Found in: 0e43cbc

Status: Fixed (Revised commit: b6f2142)

Medium

M01. Unchecked Transfers

Impact Low

Likelihood Medium

The contracts do not use the SafeERC20 library for checking the
result of the ERC20 token transfer.

Tokens may not follow the ERC20 standard and return false in case of
transfer failure or not returning any value at all. This will lead to
incorrect data processing and processing the orders when the tokens
are not transferred.

Paths:
./contracts/Bit5Lending.sol : _processOrder(), payback();

www.hacken.io
20



./contracts/Bit5Treasury.sol : deposit(), withdraw();

./contracts/Bit5.sol : _doTransfers();

Recommendation: use the SafeERC20 library to conduct transfers.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

M02. CEI Pattern Violation

Impact Low

Likelihood Low

The Checks-Effects-Interactions pattern is violated. During the
deposit function, collectionBalances[collectionAddress] state
variable is updated after the transferFrom external calls.

Path:
./contracts/Bit5Treasury.sol : deposit();

Recommendation: follow the CEI pattern.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

M03. Tests Failing

Impact Medium

Likelihood Medium

The Accept global bid: ERC721: accept global bid as owner and
Treasury : should approve token tests are failing.

This is a consistency violation and may lead to the incorrect input
data processing, which may result in unexpected ways for the users.

Path:
./contracts/Bit5.sol : buy(), acceptBid(), acceptGlobalBid(),
acceptGlobalBidAsOwner();

Recommendation: split global and usual BIDs structs.

Found in: b6f2142

Status: Fixed (Revised commit: 196e206)

www.hacken.io
21



Low

L01. Floating Pragma

Impact Low

Likelihood Low

Locking the pragma helps to ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths:
./contracts/*

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 0e43cbc

Status: Reported

L02. Contradiction; Redundant Code

Impact Low

Likelihood Low

Bit5Treasury implements PausableUpgradeable contract and functions to
pause and unpause functionality.

However, no functions from this contract use pausable modifiers,
which makes this logic redundant or that the pausing requirements are
violated.

Path:
./contracts/Bit5Treasury.sol : pause(), unpause();

Recommendation: implement missing logic, or remove redundant code.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

L03. Missing Events Emitting

Impact Low

Likelihood Low

The event is not emitted when setting the bit5 address.

www.hacken.io
22



The state changes should be conducted together with the corresponding
events emitting to track them off-chain.

Paths:
./contracts/Bit5Treasury.sol : setBit5();
./contracts/Bit5.sol : initialize();
./contracts/Bit5Lending.sol : initialize();

Recommendation: create the corresponding event and emit it.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

L04. Best Practice Violation

Impact Low

Likelihood Low

After the _doTransfers is called in the Bit5._acceptBid and
Bit5._acceptGlobalBidAsOwner functions, the state variables are
updated.

The token transfers are performed before the state variables are
updated in the Bit5Lending._processOrder function.

The state variables are updated after the _transferNFT function is
called in the liquidate and payback functions.

Paths:
./contracts/Bit5.sol : _acceptBid(), _acceptGlobalBidAsOwner(),
_globalAcceptBid();
./contracts/Bit5Lending.sol : _processOrder(), acceptGlobalOffer(),
payback(), liquidate()

Recommendation: follow the CEI pattern.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

L05. Incorrect Verifications

Impact Low

Likelihood Low

The orderKind checks are incorrect: if the order.orderKind is
OrderKind.OFFER, it may not be OrderKind.LIST, therefore, the
order.orderKind == OrderKind.LIST verification is redundant.

www.hacken.io
23



If the order.orderKind is OrderKind.LIST, it may not be
OrderKind.OFFER, therefore, the order.orderKind != OrderKind.LIST
verification is redundant.

Path:
./contracts/Bit5Lending.sol : acceptGlobalOffer()

Recommendation: fix the verifications.

Found in: b6f2142

Status: Fixed (Revised commit: 196e206)

L06. Data Consistency

Impact Low

Likelihood Low

The global bid order may have the tokenId value set, though the
global bid should not have it and will skip this value when
processing the order.

This is a consistency violation.

Path:
./contracts/Bit5Lending.sol : acceptGlobalOffer()

Recommendation: fix the verifications.

Found in: b6f2142

Status: Fixed (Revised commit: 196e206)

Informational

I01. Duplicated Code

The acceptGlobalBid and acceptGlobalBidAsOwner functions have a lot
of common code.

Code duplication is a violation of best coding practices, and it
decreases code readability.

Path:
./contracts/Bit5.sol : acceptGlobalBid(), acceptGlobalBidAsOwner();

Recommendation: consider moving the common code into separate
functions and reuse it.

Found in: 0e43cbc

Status: Mitigated (Revised commit: 196e206) (In the latest code,
functions are not the same)

www.hacken.io
24



I02. Duplicated Code

The if (msg.sender == order.issuer) verification is duplicated in the
functions for order processing.

Code duplication is a violation of best coding practices, and it
decreases code readability.

Path:
./contracts/Bit5.sol : acceptGlobalBidAsOwner(), buy(), acceptBid(),
acceptGlobalBid();

Recommendation: consider moving the common code into separate
functions and reuse it.

Found in: 0e43cbc

Status: Reported

I03. Not Indexed Parameters In Events

The contracts contain events with no indexed parameters.

It is recommended to index the parameters for better tracking.

Paths:
./contracts/Bit5.sol;
./contracts/Bit5Lending.sol;

Recommendation: consider adding indexed keyword to the important
parameters in the events.

Found in: 0e43cbc

Status: Reported

I04. Inefficient Gas Model

The address(Bit5_TREASURY) is used, when the treasury can be used.

This will result in less Gas usage.

Path:
./contracts/Bit5.sol : initialize();

Recommendation: use the treasury value instead of the
address(Bit5_TREASURY).

Found in: 0e43cbc

Status: Reported

I05. Public Functions That Could Be Declared External

There are public functions in the contracts that are never called
inside.

www.hacken.io
25



The usage of external visibility requires less Gas.

Paths:
./contracts/Bit5.sol : initialize(), pause(), unpause(),
cancelOrder(), buy(), acceptBid(), acceptGlobalBid(),
acceptGlobalBidAsOwner();
./contracts/Bit5Treasury.sol : initialize(), pause(), unpause();
./contracts/Bit5Lending.sol : initialize(), pause(), unpause(),
cancelOrder();

Recommendation: change the visibility of the functions that are never
called inside the contracts to external.

Found in: 0e43cbc

Status: Reported

I06. Unused Errors

There are errors in the project that are never used.

Redundant code decreases the readability.

Paths:
./contracts/Bit5Lending.sol : AlreadyProcessed(), InvalidOperation();
./Errors.sol : WrongOrderKind(), WrongTokenKind(),
TokenTransferFailed();

Recommendation: remove the unused errors.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

I07. Unused Events

The WithdrawRaw event is never used.

Redundant code decreases the readability.

Path:
./contracts/Bit5Treasury.sol : WithdrawRaw();

Recommendation: remove the unused event.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

I08. Style Guide Violations

The provided projects should follow the official guidelines:

- Only constants should be named with all capital letters with
underscores separating words.

www.hacken.io
26



- Order of layout, order of functions and modifiers should be
followed.

Paths:
./contracts/Bit5Lending.sol : FEE;
./contracts/Bit5.sol : FEE;

Recommendation: fix style guide violations.

Found in: 0e43cbc

Status: Reported

I09. Redundant Operation

Bit5Lending and Bit5 contracts have the option to withdraw native
tokens; however, there is no payable function to send native tokens
to the contract.

Paths:
./contracts/Bit5Lending.sol : withdrawBNB();
./contracts/Bit5.sol : withdrawBNB();

Recommendation: remove the redundant functions.

Found in: 0e43cbc

Status: Reported

I10. Inefficient Gas Model

_doTransfers function in case of privileged collection writes storage
twice (update FEE), but this action is redundant and is not Gas
efficient.

Path:
./contracts/Bit5.sol : _doTransfers();

Recommendation: do not update the storage variable. Use a local
variable instead.

Found in: 0e43cbc

Status: Reported

I11. Code Consistency

The project uses if statements for the verifications, but the require
statements are used in several places.

The code style should be consistent.

Paths:
./contracts/Bit5.sol : cancelOrder(), _acceptGlobalBidAsOwner(),
buy(), acceptBid(), acceptGlobalBid(), acceptGlobalBidAsOwner(),
addRoyaltier(), _doTransfers();

www.hacken.io
27



./contracts/Bit5Lending.sol : cancelOrder()

Recommendation: follow the same code style through the project.

Found in: 0e43cbc

Status: Reported

I12. Typos In The Code

There are typos in the contracts.

They decrease the code readability.

Paths:
./contracts/Bit5Lending.sol : event Liquidated - liquidater;
./contracts/libraries/LibOrderLending.sol : struct Order -
colleteralTokenIDs;

Recommendation: fix the typos.

Found in: 0e43cbc

Status: Reported

I13. Commented Code

if (!res) revert TokenTransferFailed(); line is commented.

Commented code decreases the code readability.

Path:
./contracts/Bit5Treasury.sol : deposit()

Recommendation: remove the redundant commented code.

Found in: 0e43cbc

Status: Fixed (Revised commit: b6f2142)

I14. Missing Zero Address Validation

It is not checked if the _bit5 value is not zero address.

This may lead to unexpected zero address interaction.

Path:
./contracts/Bit5Treasury.sol : setBit5()

Recommendation: verify if the _bit5 value is not zero address.

Found in: 0e43cbc

Status: Fixed (Revised commit: 196e206)

www.hacken.io
28



I15. Unused Functions

The bytes32ToBytes function is not used.

The redundant code decreases the code readability.

Path:
./contracts/Bit5.sol : bytes32ToBytes()

Recommendation: remove the redundant code.

Found in: b6f2142

Status: Fixed (Revised commit: 196e206)

www.hacken.io
29



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
30



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
31



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
32



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Bit5Tech/Bit5Contracts/

Commit 0e43cbc82f86acd73e8fe6edecc4268b3c376ce1

Whitepaper Not provided.

Requirements https://docs.bit5.com/

Technical
Requirements https://docs.bit5.com/

Contracts File: ./contracts/Bit5.sol
SHA3: e731db6a4c667a2dced9fe0c7895f568e9d5348106552222b655f02f302ec994

File: ./contracts/Bit5Lending.sol
SHA3: a0d0369d374529db05d0a9b54bbdd878a2d53c8dd4e135c8dcb2f2dcef6dce65

File: ./contracts/Bit5Treasury.sol
SHA3: 09872855cb9693ffdc4609c6e93bec3de7a271b3a23b0c6ae0cbf7f9f48cb4c4

File: ./contracts/Create3Factory.sol
SHA3: 70c7a21d386df6dc8768c94b75b457ced6e711e50a5d6f2bd930350a0860aa0d

File: ./contracts/TransparentProxy.sol
SHA3: dd2c200cfe1626f9ee2d9f5915ae5b82a795e17a9cd7548069b8c84fbbbd7b21

File: ./contracts/interfaces/Errors.sol
SHA3: 6eb084a4699940504a99b17e0e26846e831dda1e1f0f819da2459a423e164efa

File: ./contracts/interfaces/IBit5Treasury.sol
SHA3: df88bcfb62af47464549d6408c8227d71d0e6537d36b3933d974eee50890dfd6

File: ./contracts/libraries/LibOrder.sol
SHA3: 8235015cbfb92dd13199b74a159c89deca144b543b91b59cfefef9d0393e3c74

File: ./contracts/libraries/LibOrderLending.sol
SHA3: cc6d772ffa45b60d54e77a769b98f023069e8415af4c30b9f25820ea4c17f66d

File: ./contracts/libraries/OrderValidator.sol
SHA3: 0f1bd18e1fe5f362970a8e28325cdcbaca68579ddd520ba898c2053a4dcfc89d

File: ./contracts/libraries/OrderValidatorLending.sol
SHA3: f05722459738e2407d2e521a6558a9658bc884429ca61e3d6192fa78e06e2748

File: ./src/utils/Bytes32AddressLib.sol (solmate)
SHA3: 2d5a9345be6b6062af95c1d42295c8001ae2dd0e444e79ca770218a52633b226

File: ./src/utils/CREATE3.sol (solmate)
SHA3: a0bbc3478c96cfbe03496c2dfaffde6165b65a40448165a40bbee07df90eedbe

www.hacken.io
33

https://docs.bit5.com/
https://docs.bit5.com/


Second review scope

Repository https://github.com/Bit5Tech/Bit5Contracts/

Commit b6f214277bfa807ac7fffc8bf825781bcf06e517

Whitepaper Not provided.

Requirements https://docs.bit5.com/

Technical
Requirements https://docs.bit5.com/

Contracts File: ./contracts/Bit5.sol
SHA3: 1d3d57ef8ad22d76dd44a5f9b9da5aaa649dd6e10abf00dbba467475ff980671

File: ./contracts/Bit5Lending.sol
SHA3: 0f7257f587e1c375cf258fb143ef9958304aa7beb4bf92b6a8b566853085f8c9

File: ./contracts/Bit5Treasury.sol
SHA3: 5e4f76a393974a376ecfdb5d665b7fed21ac0f8699a222972ab52f3cc13ff696

File: ./contracts/Create3Factory.sol
SHA3: 70c7a21d386df6dc8768c94b75b457ced6e711e50a5d6f2bd930350a0860aa0d

File: ./contracts/TransparentProxy.sol
SHA3: dd2c200cfe1626f9ee2d9f5915ae5b82a795e17a9cd7548069b8c84fbbbd7b21

File: ./contracts/interfaces/Errors.sol
SHA3: 6eb084a4699940504a99b17e0e26846e831dda1e1f0f819da2459a423e164efa

File: ./contracts/interfaces/IBit5Treasury.sol
SHA3: cb061945decc3893db83f8cd870d743fd669c9460768a745343439cd8765c029

File: ./contracts/libraries/LibOrder.sol
SHA3: 8235015cbfb92dd13199b74a159c89deca144b543b91b59cfefef9d0393e3c74

File: ./contracts/libraries/LibOrderLending.sol
SHA3: cc6d772ffa45b60d54e77a769b98f023069e8415af4c30b9f25820ea4c17f66d

File: ./contracts/libraries/OrderValidator.sol
SHA3: 0f1bd18e1fe5f362970a8e28325cdcbaca68579ddd520ba898c2053a4dcfc89d

File: ./contracts/libraries/OrderValidatorLending.sol
SHA3: f05722459738e2407d2e521a6558a9658bc884429ca61e3d6192fa78e06e2748

File: ./src/utils/Bytes32AddressLib.sol (solmate)
SHA3: 2d5a9345be6b6062af95c1d42295c8001ae2dd0e444e79ca770218a52633b226

File: ./src/utils/CREATE3.sol (solmate)
SHA3: a0bbc3478c96cfbe03496c2dfaffde6165b65a40448165a40bbee07df90eedbe

Third review scope

Repository https://github.com/Bit5Tech/Bit5Contracts/

Commit 196e2061ad8cc3d77fc546a3dd5491032c7aaeb3

www.hacken.io
34

https://docs.bit5.com/
https://docs.bit5.com/


Whitepaper Not provided.

Requirements https://docs.bit5.com/

Technical
Requirements https://docs.bit5.com/

Contracts File: ./contracts/Bit5.sol
SHA3: b87a61b3aa6fde92c4f9ab680162babee00b2e8a084ec916132a4be21439818a

File: ./contracts/Bit5Lending.sol
SHA3: c564a774f7b0b616a1707b44046e95b47c4bbe9c5e9cfc12d5cba4730a568b6f

File: ./contracts/Bit5Treasury.sol
SHA3: 3b8c985a099c2f4bb2860d4318388cf2a4ecbbab241268fb544a1f62793b1dd1

File: ./contracts/Create3Factory.sol
SHA3: 70c7a21d386df6dc8768c94b75b457ced6e711e50a5d6f2bd930350a0860aa0d

File: ./contracts/TransparentProxy.sol
SHA3: 965a99132798b3a5e3da10c357093cfd53c6dfedd4780ea329052a61a3d89f41

File: ./contracts/interfaces/Errors.sol
SHA3: f2daa802e0698246ec4006c4359fbe1128c8187a5d0f04309d6fa64ed31bb57c

File: ./contracts/interfaces/IBit5Treasury.sol
SHA3: df88bcfb62af47464549d6408c8227d71d0e6537d36b3933d974eee50890dfd6

File: ./contracts/libraries/LibOrder.sol
SHA3: 8235015cbfb92dd13199b74a159c89deca144b543b91b59cfefef9d0393e3c74

File: ./contracts/libraries/LibOrderLending.sol
SHA3: cc6d772ffa45b60d54e77a769b98f023069e8415af4c30b9f25820ea4c17f66d

File: ./contracts/libraries/OrderValidator.sol
SHA3: 0f1bd18e1fe5f362970a8e28325cdcbaca68579ddd520ba898c2053a4dcfc89d

File: ./contracts/libraries/OrderValidatorLending.sol
SHA3: f05722459738e2407d2e521a6558a9658bc884429ca61e3d6192fa78e06e2748

File: ./src/utils/Bytes32AddressLib.sol (solmate)
SHA3: 2d5a9345be6b6062af95c1d42295c8001ae2dd0e444e79ca770218a52633b226

File: ./src/utils/CREATE3.sol (solmate)
SHA3: a0bbc3478c96cfbe03496c2dfaffde6165b65a40448165a40bbee07df90eedbe

www.hacken.io
35

https://docs.bit5.com/
https://docs.bit5.com/

