
Customer: Brokkr
Date: 11 July, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Brokkr

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; Staking

Platform EVM; Avalanche

Language Solidity

Methodology Link

Website https://brokkr.finance

Changelog 15.05.2023 – Initial Review
15.06.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://brokkr.finance

Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10

H01. Front Running Attack 10
Medium 10

M01. Contradiction - Unfinalized Code 10
Low 11

L01. Missing Zero Address Validation 11
Informational 11

I01. Floating Pragma 11
I02. Function That Can Be Declared External 11

Disclaimers 13
Appendix 1. Severity Definitions 14

Risk Levels 14
Impact Levels 15
Likelihood Levels 15
Informational 15

Appendix 2. Scope 16

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Brokkr (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Brokkr is an investment protocol that provides sustainable and predictable
returns through automated portfolios, and instruments that consist of
several investment strategies that combine the usage of multiple dApps. It
has the following contracts:

● BroToken — simple ERC-20 token that mints all initial supply to a
specific address. Additional minting is not allowed. Owner can change
name and symbol.

● IndexAvalanche — simple contract that extends
IndexStrategyUpgradeable, with 3 ready implementations:
equityValuation() and addSwapRoute() (2 different implementations)
and is extended from other strategy contracts.

● IndexStrategyUpgradeable — base contract of the system. Implements
the core features intended for all other trading strategy contracts
and it is upgradeable.

● IndexAvalancheDeFi — simple contract that extends IndexAvalanche
without any new implementations.

● IndexAvalancheGamingNFT — simple contract that extends IndexAvalanche
without any new implementations.

● OracleAvalanche — an upgradeable contract that communicates with
oracles in order to provide exchange rates for the tokens in the
system.

● IndexToken — simple upgradeable ERC-20 token that mints all initial
supply to a specific address. Additional minting is not allowed.
Owner can change name and symbol.

Privileged roles
● The owner of the IndexAvalanche contract can add swap routes.
● The owner of the IndexStrategyUpgradeable contract can pause,

unpause, rebalance system weights, manage components, manage swap
routes, manage whitelisted tokens, set equity valuation limit and set
oracle contract address.

● The owner of the IndexToken contract can mint, change the name and
symbol of the token.

● Due to UUPS upgradeability, owners can authorize contracts
implementations upgrades.

www.hacken.io
4

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The code follows style guides and best practices.
● The development environment is configured.
● Instructions to set up the development environment are sufficient.

Test coverage
Code coverage of the project is 75.9% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Not all possibilities (conditions, returns) are covered with tests.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.0. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

15 May 2023 1 2 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

15 June 2023 0 0 0 0

Risks

● Iterating over a dynamic array populated with custom tokenId can lead
to Gas limit denial of service if the number of tokenId goes out of
control.

● Front-running attacks can cause users to lose funds due to price
manipulations. Smart contracts rely on data provided by the front-end
in order to not suffer from front-running attacks that could cause
higher slippage.

www.hacken.io
6

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed 1.

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Not

Relevant

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not
Relevant

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Passed

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9

Findings

Critical

No critical severity issues were found.

High

H01. Front Running Attack

Impact High

Likelihood Medium

The functions swap tokens without setting proper slippage. This is
because the function uses a user-supplied slippage value, which
enables users to set amountOutMin as zero. This makes performing
sandwich attacks to get profit on all users of the system possible.

This can lead to a loss of funds.

Paths: index/libraries/UniswapV2Library.sol :
swapTokensForExactTokens(), swapExactTokensForTokens()

index/libraries/SwapAdapter.sol: swapTokensForExactTokens(),
swapExactTokensForTokens()

Recommendation: Make sure that the amountOutMin parameter is greater
than zero.

Found in: 66d0b81cb379bcf44874cf4b86622a7bab9d80f3t

Status: Mitigated. The related check has been implemented in the
front-end. See the risks section for details.

Medium

M01. Contradiction - Unfinalized Code

Impact Medium

Likelihood Medium

The provided code should be implemented in the full logic of the
project. Since any missing parts, TODOs, or drafts can change in
time, the robustness of the audit cannot be guaranteed.

Path: index/oracles/OracleAvalanche.sol: _getAmmPrice()

Recommendation: Complete the code to meet all the requirements and
delete the TODO comments.

Found in: 66d0b81cb379bcf44874cf4b86622a7bab9d80f3

Status: Fixed

www.hacken.io
10

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Medium

Address parameters are used without checking against the possibility
of 0x0.

This can lead to unwanted external calls to 0x0.

Paths: index/oracles/OracleAvalanche.sol : setPriceFeed()

index/bases/IndexStrategyUpgradeable.sol : _addRouter(), _setDEX()

Recommendation: Implement zero address checks.

Found in: 66d0b81cb379bcf44874cf4b86622a7bab9d80f3

Status: Fixed (Revised Commit:
c0706dbc067b549f06e46fcc7ec91bf0f1c5ff0f)

Informational

I01. Floating Pragma

The project uses floating pragmas 0.8.0

Paths: index/libraries/SwapAdapter.sol

index/token/IndexToken.sol

index/oracles/OracleAvalanche.sol

index/libraries/UniswapV2Library.sol

index/libraries/TraderJoeV2Library.sol

index/bases/IndexAvalanche.sol

index/indices/IndexAvalancheDeFi.sol

index/bases/IndexStrategyUpgradeable.sol

contracts/BroToken.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 66d0b81cb379bcf44874cf4b86622a7bab9d80f3,
75a01b6aeada35a1bf4644637f44f91cc7ce728f

Status: Fixed (Revised Commit:
20c0ae50e9eb9e92c362ed464e5d457bcbcbe882,
7b48e080d7b2fdc9fd92f32e6a5595dbae903411)

www.hacken.io
11

I02. Function That Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Notice: it is also applicable to “initialize” function in upgradable
contracts. There is no magic in declaring them public if the contract
is not inherited.

Path: index/token/IndexToken.sol : initialize()

Recommendation: Change function visibility to external.

Found in: 66d0b81cb379bcf44874cf4b86622a7bab9d80f3

Status: Fixed

www.hacken.io
12

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
13

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
14

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
15

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository
https://github.com/BrokkrFinance/bro-strategies/tree/main/contracts/in
dex
https://github.com/BrokkrFinance/dao-core/blob/main/contracts/BroToken
.sol

Commit 66d0b81cb379bcf44874cf4b86622a7bab9d80f3,
75a01b6aeada35a1bf4644637f44f91cc7ce728f

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: bases/IndexAvalanche.sol
SHA3: cf7dcbcea02ab661f5fe369be864f76a970c7078a2cdff50df2dbbd4540b1903

File: bases/IndexStrategyUpgradeable.sol
SHA3: 08bfd815467e2826852e735502e945669c366e915d502129e6759b339b1a46c8

File: dependencies/IChainlinkAggregatorV3.sol
SHA3: 3b9286c8a7d0dc578b50f0abded6b63c6bb275c7080dc26bf1b037a9397d70ee

File: dependencies/ITraderJoeV2Pair.sol
SHA3: 1928fb17681f6bdbc9f9746b3116ad2ce8ea8d02ab26d303637faa0b7cbdbff1

File: dependencies/ITraderJoeV2Router.sol
SHA3: 945b2109ff8a76c72006b7a696370c81d9a6503befd94ee653fb09e714c25133

File: dependencies/IUniswapV2Pair.sol
SHA3: 105fa3dc465f990d5d31a59559cb237b3c5f8d345c5f590daf55020fcd33f7f8

File: dependencies/IUniswapV2Router.sol
SHA3: e6029529e0d281168375b1cf745460b503b8080917c42911eafdfa1ae8ae97de

File: indices/IndexAvalancheDeFi.sol
SHA3: b1d8c15c05839290a38e46aa76694e1bf1fa8aece44f37df1e819d796f94d42a

File: indices/IndexAvalancheGamingNFT.sol
SHA3: 1f063f2cbc3a49a2af1ab1c3bcf0886055c68ea9509828280e9b4be09d013c09

File: interfaces/IIndexInit.sol
SHA3: 3cdd632209b7d9379dcba7f134b24e1ebb1b0b83f496be7590369fa7e192e2fb

File: interfaces/IIndexLimits.sol
SHA3: 7a294eeb92d3ccca4d418dd5f94c8f19e1d677125ed94d479d6ee1c685e02df6

File: interfaces/IIndexOracle.sol
SHA3: 4f0e77d51bd01c12426d023bd63424edaef3be2faa3fcd399685b5e2e7dd4794

File: interfaces/IIndexStrategy.sol
SHA3: 29f57ebfc6b95eadf5e759ca4701de4a9c6018a13a1495a441eca7634fb5891c

www.hacken.io
16

https://github.com/BrokkrFinance/bro-strategies/tree/main/contracts/index
https://github.com/BrokkrFinance/bro-strategies/tree/main/contracts/index
https://github.com/BrokkrFinance/dao-core/blob/main/contracts/BroToken.sol
https://github.com/BrokkrFinance/dao-core/blob/main/contracts/BroToken.sol
https://app.brokkr.finance/portfolio
https://docs.brokkr.finance/brokkr/or-technical-docs/contracts
https://docs.brokkr.finance/brokkr/or-technical-docs/contracts

File: interfaces/IIndexToken.sol
SHA3: cdd4032971ed0b4b46ba1910f41ada2a8822d1394f1b7380b3cc42d5c98b6cd7

File: libraries/Constants.sol
SHA3: fb7f52389c316f488946e55d53ed12a87bf1c417996d0af8ca66e8a740b099fa

File: libraries/Errors.sol
SHA3: e63dcddf398b515f31146095af89797ca6e7aba9a574ba74acb67146678c3175

File: libraries/SwapAdapter.sol
SHA3: e1b31a0dc282475a97065f81e2617eebb6fe9179ea4f1f433c9cbc3f96a95bf2

File: libraries/TraderJoeV2Library.sol
SHA3: 8a5263e75c834530fef5f09dc19c2b30a5e42924116695af3668c03a1ec0b62f

File: libraries/UniswapV2Library.sol
SHA3: ff3ec2c5307c054967340ae451c820d8cbec22167af5a404965421694100d81d

File: oracles/OracleAvalanche.sol
SHA3: e8a3ae5e0a0810c802e3f7b33f05226e03a496fe5fd5b94b52609572c47c176a

File: token/IndexToken.sol
SHA3: 18ab555e789ef86fa774d6728e5b227738b7fc79348fb2ab2593458d8d85fa53

File: contracts/BroToken.sol
SHA3: 5a2e201cad32be91089c6e221b53591b50e8478869a34463cfc29fddfe7f6fb8

Second review scope

Repository
https://github.com/BrokkrFinance/bro-strategies/tree/main/contracts/in
dex
https://github.com/BrokkrFinance/dao-core/blob/main/contracts/BroToken
.sol

Commit 51946b313f91685129677a90d8545d13bdce8568,
75a01b6aeada35a1bf4644637f44f91cc7ce728f

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: bases/IndexAvalanche.sol
SHA3: 1d1eec096057b106a53f8f65a67b6095b444e186b3698ebce99c0ae7e6275355

File: bases/IndexStrategyUpgradeable.sol
SHA3: ea0f344b03528b721bf262010bdf9ed5359993a1acd501da393006754d9dc000

File: dependencies/IChainlinkAggregatorV3.sol
SHA3: 3b9286c8a7d0dc578b50f0abded6b63c6bb275c7080dc26bf1b037a9397d70ee

File: dependencies/ITraderJoeV2Pair.sol
SHA3: 1928fb17681f6bdbc9f9746b3116ad2ce8ea8d02ab26d303637faa0b7cbdbff1

File: dependencies/ITraderJoeV2Router.sol
SHA3: 945b2109ff8a76c72006b7a696370c81d9a6503befd94ee653fb09e714c25133

File: dependencies/IUniswapV2Pair.sol

www.hacken.io
17

https://github.com/BrokkrFinance/bro-strategies/tree/main/contracts/index
https://github.com/BrokkrFinance/bro-strategies/tree/main/contracts/index
https://github.com/BrokkrFinance/dao-core/blob/main/contracts/BroToken.sol
https://github.com/BrokkrFinance/dao-core/blob/main/contracts/BroToken.sol
https://app.brokkr.finance/portfolio
https://docs.brokkr.finance/brokkr/or-technical-docs/contracts
https://docs.brokkr.finance/brokkr/or-technical-docs/contracts

SHA3: 105fa3dc465f990d5d31a59559cb237b3c5f8d345c5f590daf55020fcd33f7f8

File: dependencies/IUniswapV2Router.sol
SHA3: e6029529e0d281168375b1cf745460b503b8080917c42911eafdfa1ae8ae97de

File: indices/IndexAvalancheDeFi.sol
SHA3: b1d8c15c05839290a38e46aa76694e1bf1fa8aece44f37df1e819d796f94d42a

File: indices/IndexAvalancheGamingNFT.sol
SHA3: 1f063f2cbc3a49a2af1ab1c3bcf0886055c68ea9509828280e9b4be09d013c09

File: interfaces/IIndexInit.sol
SHA3: 3cdd632209b7d9379dcba7f134b24e1ebb1b0b83f496be7590369fa7e192e2fb

File: interfaces/IIndexLimits.sol
SHA3: 7a294eeb92d3ccca4d418dd5f94c8f19e1d677125ed94d479d6ee1c685e02df6

File: interfaces/IIndexOracle.sol
SHA3: 4f0e77d51bd01c12426d023bd63424edaef3be2faa3fcd399685b5e2e7dd4794

File: interfaces/IIndexStrategy.sol
SHA3: 29f57ebfc6b95eadf5e759ca4701de4a9c6018a13a1495a441eca7634fb5891c

File: interfaces/IIndexToken.sol
SHA3: cdd4032971ed0b4b46ba1910f41ada2a8822d1394f1b7380b3cc42d5c98b6cd7

File: libraries/Constants.sol
SHA3: fb7f52389c316f488946e55d53ed12a87bf1c417996d0af8ca66e8a740b099fa

File: libraries/Errors.sol
SHA3: c76f1e067470a3d2084fa0578ce3526a3938bee6c1a83c99e62bb5e4d6120bcf

File: libraries/SwapAdapter.sol
SHA3: aafc1b6fc3dbfad1c6e9a8dcb9b28e1c75bf38242abf18833cf248c40bbe902c

File: libraries/TraderJoeV2Library.sol
SHA3: 8a5263e75c834530fef5f09dc19c2b30a5e42924116695af3668c03a1ec0b62f

File: libraries/UniswapV2Library.sol
SHA3: ff3ec2c5307c054967340ae451c820d8cbec22167af5a404965421694100d81d

File: oracles/OracleAvalanche.sol
SHA3: a16b00bae4644b1b517ad74d8330ed94fc9eea8ac23fd0b12b15eb02263b9879

File: token/IndexToken.sol
SHA3: cadb04554cd69f2c436ad277150f378c680d853591eb182ff46514d760a2a2de

File: contracts/BroToken.sol
SHA3: 5a2e201cad32be91089c6e221b53591b50e8478869a34463cfc29fddfe7f6fb8

www.hacken.io
18

