
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Libertify
Date:     March 22, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Libertify

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC4626

Platform EVM

Language Solidity

Methodology Link

Website https://www.libertify.com/

Changelog
01.03.2023 – Initial Review
09.03.2023 – Second Review
13.03.2023 – Third Review
22.03.2023 – Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.libertify.com/


Table of contents
Introduction 4
Scope 4
Severity Definitions 7
Executive Summary 8
System Overview 9
Checked Items 10
Findings 13

Critical 13
C01. Data Consistency 13

High 13
H01. Funds Lock 13
H02. Non-Finalized Code: FIXME Comments 13
H03. Invalid Calculations 14

Medium 14
M01. Requirements Violation 14
M02. Best Practice Violation: Failing Assert Statement 14
M03. Inefficient Gas Model: Redundant Interactions 15
M04. Missing Event For Critical Value Updation 15
M05. Name Contradiction 15
M06. Missing Validation 16
M07. Missing Validation 16
M08. Documentation Mismatch 16

Low 17
L01. Floating Pragma 17
L02. Missing Zero Address Validation 17
L03. Functions That Can Be Declared External 17
L04. Style Guide Violation 18
L05. Missing/Inconsistent NatSpec 18
L06. Typo in Comments 18
L07. Redundant Virtual Modifier 19

Disclaimers 20

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Libertify (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope

Repository https://github.com/LibertyFi/libertify.protocol

Commit 03740ef3953595e268cb55b34166c58398f14a15

Whitepaper Link

Functional
Requirements

Attached for the audit

Technical
Requirements

Attached for the audit

Contracts File: ./contracts/interfaces/ILibertiPriceFeed.sol
SHA3: d743650563f21375b23fa423aa7df789c5c3495bd89ebec4e4a57cde06b62c1b

File: ./contracts/interfaces/ILibertiVault.sol
SHA3: 1533efa055deef53c0384305213bef63b3a726280767a7e5bfc76014c60b7ca7

File: ./contracts/interfaces/ISanctionsList.sol
SHA3: 8649ff7d3b46dbe55aad77651dbb3f7a0e7dbe9d7724bd1d939a6ee3be8ff1c8

File: ./contracts/LibertiFactory.sol
SHA3: 0526e715d802174b4f8622b0320bf5f0beb432ed38ed2c9a8738adbf8b263e03

File: ./contracts/LibertiPriceFeed.sol
SHA3: 22d88050f1fbd08b93f93ed6fee487dd1e3c411704875ba167c1ac870bd56d9b

File: ./contracts/LibertiSwap.sol
SHA3: effb06f54830d0f98829952c390a9b0c4b7a1cc6cb9145c9bce224ad83a7fe37

File: ./contracts/LibertiVault.sol
SHA3: 8de6fb44771bc1ec54410ea97225c8d4194a7158dcf91ad664abcc679c3ed876

Second review scope

Repository https://github.com/LibertyFi/libertify.protocol

Commit 2ec8b102e4b34e719c21a5c42358bcfcdc24f3b4

Whitepaper Link

www.hacken.io
4

https://github.com/LibertyFi/libertify.protocol
https://www.libertify.com/company/
https://github.com/LibertyFi/libertify.protocol
https://www.libertify.com/company/


Functional
Requirements

Attached for the audit

Technical
Requirements

Attached for the audit

Contracts File: ./contracts/interfaces/ILibertiPriceFeed.sol
SHA3: 3f89c2c1a730197f3eee45702db651e5968f5d55e4c7d44d5ea0411af482e6e9

File: ./contracts/interfaces/ILibertiVault.sol
SHA3: 3597b88e3412c7b6491b25151dc065c30d69216453fa80c3fac714e9d6ad0369

File: ./contracts/interfaces/ISanctionsList.sol
SHA3: c3cf31fd3ac4401bcfa8c99851bc2e843f64ecfc35674cc92846df10da5471d2

File: ./contracts/LibertiAggregationRouterV4.sol
SHA3: 797bb7e91627f175492ae91c10ec24d142de4e92440fb937a310dc403763bc2e

File: ./contracts/LibertiFactory.sol
SHA3: 3f9dc5f3a394d94820505d8b25177ff53e9d000924dd58e6cb05718feb3e4b9a

File: ./contracts/LibertiFactoryBase.sol
SHA3: 1e9e9479ad8782726472063ce444acd13f2d2c3afa4970691d1648d41b3f1974

File: ./contracts/LibertiPriceFeed.sol
SHA3: 9598adb421e2d6ec07233d1cd6462276f3471be3f6f51050ea49233c4c80bab0

File: ./contracts/LibertiSwap.sol
SHA3: effb06f54830d0f98829952c390a9b0c4b7a1cc6cb9145c9bce224ad83a7fe37

File: ./contracts/LibertiVault.sol
SHA3: 9d07fe78562a7cbc8dc7cdc7922d7ab0045ff27da0388f327683731b32f88ca5

Third review scope

Repository https://github.com/LibertyFi/libertify.protocol

Commit 595bf178d47cd79cbdb146bb08170f88555931f4

Whitepaper Link

Functional
Requirements

Attached for the audit

Technical
Requirements

Attached for the audit

Contracts
Addresses

https://polygonscan.com/address/0x3220de3865b30c641206fc9ff6de3
a49960a92b9#code

Contracts File: ./contracts/interfaces/ILibertiPriceFeed.sol
SHA3: 3f89c2c1a730197f3eee45702db651e5968f5d55e4c7d44d5ea0411af482e6e9

File: ./contracts/interfaces/ILibertiVault.sol
SHA3: 3597b88e3412c7b6491b25151dc065c30d69216453fa80c3fac714e9d6ad0369

www.hacken.io
5

https://github.com/LibertyFi/libertify.protocol
https://www.libertify.com/company/


File: ./contracts/interfaces/ISanctionsList.sol
SHA3: c3cf31fd3ac4401bcfa8c99851bc2e843f64ecfc35674cc92846df10da5471d2

File: ./contracts/LibertiAggregationRouterV4.sol
SHA3: 797bb7e91627f175492ae91c10ec24d142de4e92440fb937a310dc403763bc2e

File: ./contracts/LibertiFactory.sol
SHA3: 3f9dc5f3a394d94820505d8b25177ff53e9d000924dd58e6cb05718feb3e4b9a

File: ./contracts/LibertiFactoryBase.sol
SHA3: 1e9e9479ad8782726472063ce444acd13f2d2c3afa4970691d1648d41b3f1974

File: ./contracts/LibertiPriceFeed.sol
SHA3: 9598adb421e2d6ec07233d1cd6462276f3471be3f6f51050ea49233c4c80bab0

File: ./contracts/LibertiVault.sol
SHA3: 713399186a0284b5f5661cd46378928a511d94b20a82f29797df007716360aae

Fourth review scope

Repository https://github.com/LibertyFi/libertify.protocol

Commit 5ff2415db5b9a7281f1bc57c68b715a2997010b8

Whitepaper Link

Functional
Requirements

Attached for the audit

Technical
Requirements

Attached for the audit

Contracts
Addresses

Not provided.

Contracts File: ./contracts/interfaces/ILibertiPriceFeed.sol
SHA3: 3f89c2c1a730197f3eee45702db651e5968f5d55e4c7d44d5ea0411af482e6e9

File: ./contracts/interfaces/ILibertiVault.sol
SHA3: 3597b88e3412c7b6491b25151dc065c30d69216453fa80c3fac714e9d6ad0369

File: ./contracts/interfaces/ISanctionsList.sol
SHA3: c3cf31fd3ac4401bcfa8c99851bc2e843f64ecfc35674cc92846df10da5471d2

File: ./contracts/LibertiAggregationRouterV4.sol
SHA3: 797bb7e91627f175492ae91c10ec24d142de4e92440fb937a310dc403763bc2e

File: ./contracts/LibertiFactory.sol
SHA3: 3f9dc5f3a394d94820505d8b25177ff53e9d000924dd58e6cb05718feb3e4b9a

File: ./contracts/LibertiFactoryBase.sol
SHA3: 1e9e9479ad8782726472063ce444acd13f2d2c3afa4970691d1648d41b3f1974

File: ./contracts/LibertiPriceFeed.sol
SHA3: 9598adb421e2d6ec07233d1cd6462276f3471be3f6f51050ea49233c4c80bab0

File: ./contracts/LibertiVault.sol
SHA3: a08a8027df4af2fc1d651c67596f993503b67c667dafe47a147e34326fca5967

www.hacken.io
6

https://github.com/LibertyFi/libertify.protocol
https://www.libertify.com/company/


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● Provided documentation well describes both technical and functional
parts of the system.

● Missing NatSpecs for multiple functions.

Code quality
The total Code Quality score is 10 out of 10.

● Code is well-written and designed.

Test coverage
Code coverage of the project is 98% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative case coverage is present.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

01 March 2023 6 8 2 1

09 March 2023 1 2 1 0

13 March 2023 1 0 0 0

22 March 2023 1 0 0 0

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


System Overview

Libertify is a decentralized investment platform that uses a concept of
tokenized vaults with a fixed asset ratio. The main idea is to decrease
risks, related to holding assets, using vault rebalancing.

The files in the scope:
● LibertiAggregationRouterV4.sol - contains a logic to execute a swap

using 1Inch Aggregation Router V4 protocol.
● LibertiFactory.sol - an instance of LibertiVault factory.
● LibertiFactoryBase.sol - a factory that uses a minimal proxy pattern

for deploying new instances of LibertiVault.
● LibertiPriceFeed.sol - interacts with Chainlink Aggregator V3

interface to fetch data about the current token price.
● LibertiVault.sol - a core contract of the system. ERC4626-like vault.

Privileged roles
● Owner:

○ LibertiPriceFeed.sol - can add price feed.
○ LibertiVault.sol - can rebalance the vault, set minimal and

maximal deposit values, entry and exit fee.

Risks
● Off-chain trading logic is not verified in the scope of the audit.

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible.  All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



Findings

Critical

C01. Data Consistency

It is recommended to perform a validity check on the
SwapDescription.srcToken and SwapDescription.dstToken values within
both the _deposit and _redeem functions. This precautionary measure
is necessary because the swap data may be subject to manipulation,
which could result in the depletion of all funds from the contract.

For instance, in the WBTC/USDT vault, an attacker could potentially
exploit the redemption process by reversing the order of the swap for
100 USDT to drain 100 WBTC through the swap operation. Therefore, it
is crucial to ensure that the swap path is properly validated to
prevent any potential security breaches.

Path:
./contracts/LibertiVault.sol : _deposit(), _redeem(), rebalance()

Recommendation: Add validations that srcToken and destToken are
expected tokens in all functions that use the swap() function. For
example, in _redeem() function check if srcToken == other and
destTokne == asset.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

High

H01. Funds Lock

Native coins and tokens should have mechanisms of their withdrawal
from the contract if they are accepted by the contract.

Path:
./contracts/LibertiVault.sol : receive()

Recommendation: Add mechanism of native tokens withdrawal available
for owner.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

H02. Non-Finalized Code: FIXME Comments

The code should not contain FIXME comments. Otherwise, it means that
the code is not finalized and additional changes will be introduced
in the future.

Path:
./contracts/LibertiVault.sol : rebalance(), deposit(), depositETH()

www.hacken.io
13



Recommendation: Finalize the code and remove the comments.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

H03. Invalid Calculations

sharesToToken1 function uses shares = MathUpgradeable.max(shares,
supply); logic to handle cases when shares parameter is bigger than
supply. This logic is incorrect, as it always uses bigger value, so
for any input parameter less than totalSupply result would be the
same.

Path:
./contracts/LibertiVault.sol : sharesToToken1()

Recommendation: Replace MathUpgradeable.max with MathUpgradeable.min.

Found in: 2ec8b102e4b34e719c21a5c42358bcfcdc24f3b4

Status: Fixed (Revised commit: 595bf17)

Medium

M01. Requirements Violation

According to existing comments in the code - it is impossible to send
tokens from sanctioned addresses, but LibertiVault tokens could be
sent from sanctioned addresses to not sanctioned addresses.
The sanctioned address is able to redeem their funds from the vault.

During the second review, the issue is still reproducible in the
scenario: A user deposited his funds into the vault, and after his
address is added to sanctions list, but user can still send LP tokens
to any other address and withdraw them.

Path:
./contracts/LibertiVault.sol : _beforeTokenTransfer()

Recommendation: Add from address sanctions check in
_beforeTokenTransfer() or update the documentation with proper
information.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Mitigated (Documentation is updated: sanctioned address
allowed to redeem LP tokens, but not allowed to deposit.)

M02. Best Practice Violation: Failing Assert Statement

The code uses assert(false) in a case when the chain is different
from ETH, Polygon or BNB. Unlike revert approach, this way of
throwing errors uses more Gas and provides no readable error
description.

www.hacken.io
14



Path:
./contracts/LibertiAggregationRouterV4.sol : swap()

Recommendation: Replace to revert Error().

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

M03. Inefficient Gas Model: Redundant Interactions

Function swap checks equality of swapAmount and desc.amount. When the
function is called from the rebalance() method, swapAmount value is
decoded from struct and equals the swapAmount itself.

Path:
./contracts/LibertiVault.sol : rebalance()

Recommendation: In rebalance() method, remove the decode of the desc
struct and pass swapAmount as a function argument.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

M04. Missing Event For Critical Value Updation

Critical state changes should emit events for tracking things
off-chain.

Paths:
./contracts/LibertiPriceFeed.sol : addPriceFeed()
./contracts/LibertiVault.sol : setMinDeposit(), setMaxDeposit(),
setEntryFee(), setExitFee()

Recommendation: Emit events on critical state changes.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

M05. Name Contradiction

The state variable invariant contradicts its name.

The logic of contract indicates that invariant should be a constant
for the Basic Point numerator.

There should be a state variable called "proportion/ratio" used as a
way to track the allocation coefficient.

Path:
./contracts/LibertiVault.sol : invariant

Recommendation: There should be no magic number in code 10_000;

www.hacken.io
15



Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

M06. Missing Validation

There is no entryFee and exitFee validation in the initialize
function, so any value could be set during the initialization.

Path:
./contracts/LibertiVault.sol : initialize()

Recommendation: Validate fees during contract initialization.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

M07. Missing Validation

sharesToToken1 function should validate if value from the input
parameter shares is not bigger than totalSupply().

During the second review, H04 issue was added related to this
problem.

Path:
./contracts/LibertiVault.sol : sharesToToken1()

Recommendation: Add proper validation.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 595bf17)

M08. Documentation Mismatch

Contract contains functions that are not covered by the
documentation: depositEth() and redeemEth() are only valid and
designed for native token vaults. Moreover, it will always revert in
vaults like WBTC/USDT.

Path:
./contracts/LibertiVault.sol : depositEth(), redeemEth()

Recommendation: Describe this functionality in documentation or
remove it from the contract.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

www.hacken.io
16



Low

L01. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths:
./contracts/interfaces/ILibertiPriceFeed.sol
./contracts/interfaces/ILibertiVault.sol
./contracts/interfaces/ISanctionsList.sol
./contracts/interfaces/IWeth9.sol
./contracts/LibertiAggregationRouterV4.sol
./contracts/LibertiFactory.sol
./contracts/LibertiFactoryBase.sol
./contracts/LibertiPriceFeed.sol
./contracts/LibertiVault.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

L02. Missing Zero Address Validation

_asset and _other addresses should be checked if they are not zero to
prevent contract initialization with zero addresses.

Path: ./contracts/LibertiVault.sol : initialize();

Recommendation: Check if token addresses are not zero.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

L03. Functions That Can Be Declared External

The “public” functions that are never called by the contract should
be declared “external” to save Gas.

Path:
./contracts/LibertiVault.sol: convertToAssets(), convertToShares(),
initialize()

Recommendation: Use the external attribute for functions never called
from the contract.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

www.hacken.io
17



L04. Style Guide Violation

The project should follow the official code style guidelines.
Inside each contract, library, or interface, use the following order:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be grouped according to their visibility and
ordered:

● constructor
● receive function (if exists)
● fallback function (if exists)
● external
● public
● internal
● private

Within a grouping, place the view and pure functions at the end.

Path:
./contracts/LibertiVault.sol

Recommendation: The official Solidity style guidelines should be
followed.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

L05. Missing/Inconsistent NatSpec

NatSpec are inconsistent in LibertiVault.sol and missing in the other
contracts.

Paths:
./contracts/LibertiAggregationRouterV4.sol
./contracts/LibertiFactory.sol
./contracts/LibertiFactoryBase.sol
./contracts/LibertiPriceFeed.sol
./contracts/LibertiVault.sol

Recommendation: Correct NatSpecs.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Reported

L06. Typo in Comments

Some comments have typos that should be corrected.

www.hacken.io
18



“inclusing” -> including
“thei” -> their
“transfering” -> transferring

Path:
./contracts/LibertiVault.sol

Recommendation: Correct typos in comments.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

L07. Redundant Virtual Modifier

The virtual keyword in top-level functions is redundant and can be
removed.

Path:
./contracts/LibertiVault.sol : _beforeTokenTransfer()

Recommendation: Remove virtual from function.

Found in: 03740ef3953595e268cb55b34166c58398f14a15

Status: Fixed (Revised commit: 2ec8b10)

www.hacken.io
19



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
20


