
Customer: Optimus Ventures
Date: May 17, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Optimus
Ventures

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; Staking; ERC721 token

Platform EVM

Language Solidity

Methodology Link

Website -

Changelog
24.03.2023 – Initial Review
19.04.2023 - Second Review
03.05.2023 - Third Review
17.05.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0

Table of contents
Introduction 4
Scope 4
Severity Definitions 6
Executive Summary 7
Risks 8
System Overview 9
Checked Items 10
Findings 13

Critical 13
High 13

H01. Unverifiable Logic 13
H02. Highly Permissive Role Access 13
H03. Highly Permissive Role Access 13

Medium 14
M01. Inconsistent data - Variable is not limited 14
M02. Denial of Service 14
M03. Contradiction - Missing validation 14
M04. Tautology 15
M05. Contradiction - Function Name - Functionality Mismacth 15
M06. Requirements Violations 15

Low 16
L01. Redundant Variable 16
L02. Missing Zero Address Validation 16
L03. Missing Zero Check Before Transfer 17

Disclaimers 17

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Optimus Ventures (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project includes review and security analysis of the
following smart contracts from the provided repository:

Initial review scope
Repository https://github.com/OptimusVentures/HODLAudit

Commit 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Whitepaper -

Functional
Requirements

-

Technical
Requirements

-

Contracts File: ./contracts/HODLStaking.sol
SHA3: 369f3cd7224804e810fae54e7b3a416a0bbcd91bce4e8e4bd3b79c26e10b2478

File: ./contracts/HODLStakingFactory.sol
SHA3: 9489dc53113ec8a2a7b103276e583c44472321ff665f2e522f78c71bfdcaf7fc

File: ./contracts/HODLBase.sol
SHA3: 9eebc1232a52df4ea503be9f200576145cd9bdcdfad447f1556104761428d2e2

File: ./contracts/Libraries/TransferHelper.sol
SHA3: 8d3d077f06013d67e26f9c598fc2928dd78efad79e9a6ecddb313e868fd07057

File: ./contracts/Interfaces/IHODLNFTCore.sol
SHA3: 3cb617ee65d586224b35e9490bbf8130f5031cea53895afc7ee6b40859bb610f

File: ./contracts/Interfaces/IPair.sol
SHA3: b2b7be717c8a9945fc656f6e8a41462e4b85cf2f0d6c39f7c59d173efa0881b3

Second review scope
Repository https://github.com/OptimusVentures/HODLAudit

Commit dfd62180e5c384192fa90423c98028528629942d

Contracts File: contracts/HODLBase.sol
SHA3: ebae5e7b72374f4bf9c1c19cb7b4e2472b16c6953d89b92179fe3c310b22a298

File: contracts/HODLStaking.sol

www.hacken.io
4

https://github.com/OptimusVentures/HODLAudit
https://github.com/OptimusVentures/HODLAudit

SHA3: 22d8985020a40492216077b264e6c740d935c3c27a1f82984fbf209a8a95c4ba

File: contracts/HODLStakingFactory.sol
SHA3: 525c8094e8cbb1c8a82ebc588a442f64450817d126627eb94b8a752137bc82fa

File: contracts/Interfaces/IHODLNFTCore.sol
SHA3: 03fba7656b6afc18ed153d2442c90d907fe0a374ee7be01c7245d4414723b364

File: contracts/Interfaces/IHODLStaking.sol
SHA3: 0847a1dbe3f4aeb00c129ce50fc66450b0a95f5668df4ddb9cfd36aabb264936

File: contracts/Interfaces/IPair.sol
SHA3: 6c326a087e726ed39c19f90aba1ebaa18b6f329608b80d04ffaf62e7c92b1de5

File: contracts/Libraries/TransferHelper.sol
SHA3: 8d3d077f06013d67e26f9c598fc2928dd78efad79e9a6ecddb313e868fd07057

Third review scope
Repository https://github.com/OptimusVentures/HODLAudit

Commit e1e35bbb162dd4d75d3377b5390b3aa76ce89f5d

Contracts File: contracts/HODLBase.sol
SHA3: ebae5e7b72374f4bf9c1c19cb7b4e2472b16c6953d89b92179fe3c310b22a298

File: contracts/HODLCoreNFT.sol
SHA3: 389121b9505acf5314b461383c9b40d0ec07a1be1c7a49dd6aec39f071e071a5

File: contracts/HODLStaking.sol
SHA3: 22d8985020a40492216077b264e6c740d935c3c27a1f82984fbf209a8a95c4ba

File: contracts/HODLStakingFactory.sol
SHA3: a28342b8309bcd9fdd4498936de28ae498c1c5197f519e217501e9533797eee4

File: contracts/Interfaces/IHODLNFTCore.sol
SHA3: 03fba7656b6afc18ed153d2442c90d907fe0a374ee7be01c7245d4414723b364

File: contracts/Interfaces/IHODLStaking.sol
SHA3: 0847a1dbe3f4aeb00c129ce50fc66450b0a95f5668df4ddb9cfd36aabb264936

File: contracts/Libraries/TransferHelper.sol
SHA3: 8d3d077f06013d67e26f9c598fc2928dd78efad79e9a6ecddb313e868fd07057

www.hacken.io
5

https://github.com/OptimusVentures/HODLAudit

Fourth review scope
Repository https://github.com/OptimusVentures/HODLAudit

Commit c6cd38fbea2aafbe346de04010f6dbc77aa301a0

Contracts File: contracts/HODLBase.sol
SHA3: ebae5e7b72374f4bf9c1c19cb7b4e2472b16c6953d89b92179fe3c310b22a298

File: contracts/HODLCoreNFT.sol
SHA3: 203d76d196470829ab7c02cce29121c470c18c08a124765aa91c47c56ea4082d

File: contracts/HODLStaking.sol
SHA3: 0f5cc81e01c0e9f9c81bfe3ee77dbe4d60857de0e2d6636ca8a7a2bcd4dff26f

File: contracts/HODLStakingFactory.sol
SHA3: a28342b8309bcd9fdd4498936de28ae498c1c5197f519e217501e9533797eee4

File: contracts/Interfaces/IHODLNFTCore.sol
SHA3: 03fba7656b6afc18ed153d2442c90d907fe0a374ee7be01c7245d4414723b364

File: contracts/Interfaces/IHODLStaking.sol
SHA3: 0847a1dbe3f4aeb00c129ce50fc66450b0a95f5668df4ddb9cfd36aabb264936

File: contracts/Interfaces/IPair.sol
SHA3: 6c326a087e726ed39c19f90aba1ebaa18b6f329608b80d04ffaf62e7c92b1de5

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6

https://github.com/OptimusVentures/HODLAudit

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are partially provided.
○ Use cases and business logic are missing.

● Technical description is provided.

Code quality
The total Code Quality score is 8 out of 10.

● Template code patterns were found (TransferHelper).
● The development environment is configured.

Test coverage
Code coverage of the project is 94.80% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Deployment instructions are not provided.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.1.The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

24 March 2023 3 6 2 0

19 April 2023 0 1 1 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

03 May 2023 0 0 1 0

17 May 2023 0 0 0 0

Risks

● There are complex fee and reward formulas used in the project.
However, since no documentation is provided, only the mathematical
correctness of these formulas can be checked. It is not possible to
check if the formulas actually return the intended values.

www.hacken.io
8

System Overview

Optimus Ventures is a staking project that takes and rewards ERC20, which
generates an ERC721 token for its users as a pinkslip. The project contains
the following contracts:

● HODLStakingFactory — HODL ERC20 staking pools, farms and manages
ownership and control over it.

● HODLStaking — HODL staking pool contract, to stake ERC20 tokens with
a dynamic APY.

● HODLBase — contains structs and global variables.
● HODLCoreNFT - The HODLCoreNFT contract is a ERC721 token (NFT)

collection representing HODL staking positions. It also provides
royalty payments to a specified address.

Privileged roles
● The owner of the HODLStakingFactory contract has the authority to

pause/unpause the contract. They may also set the coreNFT, pool
master contract, pool creation payment token address, project fee,
minimum staking period, pool creation price, and pool fee ranges.

● The onlyProjectWallet role of the HODLStaking contract is responsible
for pausing/unpausing the contract, initiating the staking period
after the deposit time has elapsed, and in the event of an emergency,
terminating the contract and withdrawing any unearned rewards.

● The onlyOwner role of the HODLStaking contract is tasked with halting
user fund deposits via the setDepositable function.

● The owner role of the HODLCoreNFT contract has the authority to set
URI to any token ID.

● The minter role within the HODLCoreNFT contract is capable of minting
new tokens and adding new minter addresses to the system.

www.hacken.io
9

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility levels
should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows and
underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent version of
the Solidity compiler. Passed

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have
been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call should be

checked. Passed

Access Control
& Authorization CWE-284

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be self-destructible

while it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Passed

Assert
Violation SWC-110 Properly functioning code should never reach

a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should never
be used. Passed

Delegatecall to
Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state unless
required.

Passed

Race Conditions SWC-114 Race Conditions and Transactions Order
Dependency should not be possible. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values as
a proxy for
time

SWC-116
Block numbers should not be used for time
calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a unique
id. A transaction hash should not be used as
a unique id. Chain identifiers should always
be used. All parameters from the signature
should be used in signer recovery. EIP-712
should be followed during a signer
verification.

Not Relevant

Shadowing State
Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources of
Randomness SWC-120 Random values should never be generated from

Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical functions,
a developer should carefully specify
inheritance in the correct order.

Passed

Calls Only to
Trusted
Addresses

EEA-Leve
l-2

SWC-126

All external calls should be performed only
to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused variables
if this is not justified by design. Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be withdrawn
without proper permissions or be locked on
the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data
Consistency Custom Smart contract data should be consistent all

over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source and
not be vulnerable to short-term rate changes
that can be achieved by using flash loans.
Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the customer.

Not Relevant

www.hacken.io
11

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract. There should not be
any cases when execution fails due to the
block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should be

followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit tests.
Test coverage should be sufficient, with
both negative and positive cases covered.
Usage of contracts by multiple users should
be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Not Relevant

www.hacken.io
12

Findings

Critical

No critical issues were found.

High

H01. Unverifiable Logic

The HODLStaking.sol and HODLStakingFactory.sol contracts highly
depend on the HODLCoreNFT.sol contract, which is out of the audit
scope and has some highly permissive owner privileges.

Path: ./contracts/HODLCoreNFT.sol

Recommendation: Audit the entire system and ensure that no EOA can be
added to allowedMinters during system deployment.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
e1e35bbb162dd4d75d3377b5390b3aa76ce89f5d)

H02. Highly Permissive Role Access

The sweep function aims to drain the funds stuck in the contract
without touching the staking tokens or rewards. In order to ensure
that it contains the following require check; “require(
token != address(_stakingDetails.stakingToken) ||
token != address(_stakingDetails.rewardToken), 'Error:
you can sweep the staking token');”. This check allows the owner to
access the staking tokens and related rewards.

This can lead an owner to wipe out the staking rewards or staking
funds.

Path: ./contracts/HODLStaking.sol: sweep()

Recommendation: Replace the || (or condition) with an && (and
condition).

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

H03. Highly Permissive Role Access

The _isApprovedOrOwner() function has been overridden. This
alteration permits any address with the minter role to transfer
tokens from any other address. As a result, those with the minter
role will be able to transfer tokens from user wallets.

www.hacken.io
13

Path: ./contracts/HODLCoreNFT.sol : _isApprovedOrOwner()

Recommendation: Minters should not have access to funds that belong
to users. Implement limitations on the privileges associated with the
minter role.

Found in: e1e35bbb162dd4d75d3377b5390b3aa76ce89f5d

Status: Fixed (Revised commit:
c6cd38fbea2aafbe346de04010f6dbc77aa301a0)

Medium

M01. Inconsistent data - Variable is not limited

The owner of the contract can set any value for the _feeRanges
variable as there is no lower or upper limit for it.

This may result in the unexpected deduction of high fees from users.

Path: ./contracts/HODLStakingFactory.sol : setFeeRanges()

Recommendation: Provide limitations for stored configuration values.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

M02. Denial of Service

The getUserTokens function iterates through all the tokens that
belong to a user even if those tokens are related to other stakings
deployed by HODLStakingFactory.

If the number of tokens is big enough, the user won’t be able to
deposit.

Path: ./contracts/HODLStaking.sol : deposit(), getUserDetails(),
getUserTokens()

Recommendation: Implement a for loop limitation.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

M03. Contradiction - Missing validation

The checkParams modifier contains an if control statement that
depends on the user-supplied parameters. As the isFarming variable is
not utilized within any portion of the contracts, passing a value of

www.hacken.io
14

false for this variable would not have any consequences. As a
result, a user could potentially bypass the require checks of the
checkParams modifier by passing a value of false for params.isFarming

Path: ./contracts/HODLStakingFactory.sol : setFeeRanges()

Recommendation: If the require statement is dependent on
user-supplied parameters, then there should be consequences for
passing different parameters. Re-implement the logic of the modifier.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

M04. Tautology

The modifier includes a totalSupply() >= 0 require statement. As
totalSupply returns a uint variable, it is equal to or greater than
zero in Solidity. Therefore, the use of the statement is redundant in
this case.

Path: ./contracts/HODLStakingFactory.sol : checkParams()

Recommendation: Remove the redundant “=” operator.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
e1e35bbb162dd4d75d3377b5390b3aa76ce89f5d)

M05. Contradiction - Function Name - Functionality Mismacth

The projectSend function starts a new staking period after the
deposit time ends. However the function’s name does not reflect this
functionality.

Path: ./contracts/HODLStaking.sol : projectSend()

Recommendation: Update function name.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

M06. Requirements Violations

The project takes the admin fee from the staking creator but this is
not mentioned in the documentation.

The project takes the staking pool creation fee as _optcmPrice from
the staking creator but this is not mentioned in the documentation.

www.hacken.io
15

The Project applies a rewards fee for the admin, but it is not
mentioned in the documentation.

The Project takes a withdrawal fee from the user for the admin but is
not mentioned in the documentation.

The code should not contain undocumented functionality.

Path: ./contracts/HODLStakingFactory.sol : createStaking()

Recommendation: Provide a detailed explanation of the functionality
for users in the public documentation.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

Low

L01. Redundant Variable

The StakingUser structure utilizes the StakingNFT structure, which
includes an isOwner variable. While stakers also possess the isOwner
variable, it remains consistently false for them. The inclusion of
the isOwner variable within the StakingUser structure is redundant,
and its redundant storage could result in unnecessary gas
consumption.

Path: ./contracts/HODLBase.sol

Recommendation: Remove the redundant variable from the StakingUser
structure.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

L02. Missing Zero Address Validation

Address parameters are used without checking against the possibility
of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/HODLStakingFactory.sol: setMasterHodl()

Recommendation: Implement zero address checks.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

www.hacken.io
16

L03. Missing Zero Check Before Transfer

The refundAmount variable can be equal to zero in which case the
function will perform zero token transfers.

This can lead to unnecessary gas consumption

Path: ./contracts/HODLStaking.sol: _endContractAfter()

Recommendation: Implement a check to prevent zero token transfers.

Found in: 4b0ebda94a37dd43530d9b76b90ae4639b1d8d19

Status: Fixed (Revised commit:
dfd62180e5c384192fa90423c98028528629942d)

www.hacken.io
17

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
18

