
PARALLELCHAIN
HOTSTUFF CONSENSUS
SECURITY ANALYSIS

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 2 of 38

Intro

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well as

information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another party. Any subsequent publication of this report shall be without

mandatory consent.

Name ParallelChain HotStuff Consensus

Website https://parallelchain.io/

Repository https://github.com/parallelchain-io/hotstuff_rs

Commit 759b6b766876217633f61d6cd38dd57fa9df8b88

Platform L1

Network ParallelChain

Languages Rust

Methodology Blockchain Protocol and Security Analysis Methodology

Lead Auditor s.akermoun@hacken.io

Auditor n.lipartiia@hacken.io

Auditor o.haponiuk@hacken.io

Approver l.ciattaglia@hacken.io

Timeline 15.05.2023 - 15.06.2023

Changelog 29.05.2023 (Draft Report)

Changelog 16.06.2023 (Preliminary Report)

Changelog 27.06.2023 (Final Report)

Changelog 30.06.2023 (Final Report Updated)

https://parallelchain.io/
https://github.com/parallelchain-io/hotstuff_rs
https://github.com/parallelchain-io/hotstuff_rs/tree/759b6b766876217633f61d6cd38dd57fa9df8b88
https://hackenio.cc/blockchain_methodology
mailto:s.akermoun@hacken.io
mailto:n.lipartiia@hacken.io
mailto:o.haponiuk@hacken.io
mailto:l.ciattaglia@hacken.io

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 3 of 38

Table of contents

Summary
Documentation quality

Code quality

Architecture quality

Security Level

Total score

Findings count and definitions

Scope of the audit
Protocol Audit

Implementation

Protocol Tests

Issues
Byzantine Nodes Can Manipulate View Skipping

Malformed Origin of a Vote Request Remotely Crashes Nodes

succinct function is vulnerable to Index Out of Bounds

Byzantine Behavior Due to Unsafe u64 to usize Conversion in Round-Robin Leader Selection on 32-bit Systems

Incorrect Caching of Messages for Future Views

Insufficient Validation of PublicKeyBytes in HotStuff Library

Message Cache Poisoning via Malicious Vote Message Causing a System Panic

Node Crash Potential Due to Unsafe Arithmetic Operations

Unbounded Vector Size in Block structure

Unsafe arithmetics

Unsoundness Issue in Borsh Dependency of HotStuff Library

Genesis Block's Quorum Certificate Has Incorrect chain_id

HotStuff build

Inconsistent Code Formatting in HotStuff Library

Insufficient Details in Functions and Data Structures Documentation

Insufficient Error Handling Mechanism in HotStuff Library

Linter Warnings

Test coverage

Unconventional Pattern Matching

Disclaimers
Hacken disclaimer

Technical disclaimer

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 4 of 38

Summary

ParallelChain Lab is a tech company known for its layer-1 blockchain protocol, ParallelChain. This public and private blockchain

infrastructure supports high-performance, enterprise-grade applications, providing a secure environment for traditional enterprises and the
DeFi community. ParallelChain Mainnet, their latest offering, is a public smart contract platform powered by a proof-of-stake consensus

mechanism, ParallelBFT.

The focus of this report is their implementation of the HotStuff consensus protocol. ParallelChain's version adheres to the original

protocol's design, demonstrating their dedication to delivering robust and efficient blockchain solutions. This analysis assesses the
implementation's documentation quality, code quality, architecture quality, and overall security.

Documentation quality

The project presents comprehensive crate-level documentation, which provides a solid understanding of the library's functionality and its

usage. The documentation extensively covers the API and the different modules, making it a valuable resource for developers looking to
integrate or work with the HotStuff library.

However, there is room for improvement at the function and data structure level. Many functions, structures and enumerations lack
descriptive doc strings, which are necessary for automatically generating detailed API documentation. Enhancing the doc strings would

significantly increase the clarity and completeness of the documentation, contributing to better understanding and usage of the library.

The total Documentation Quality score is 6 out of 10.

Code quality

From a compilation perspective, the HotStuff library demonstrates a strong degree of quality. The project compiles and runs without any

warnings, indicating an absence of immediately apparent syntax issues or deprecated function usage.

The development team has acknowledged the concern with the error handling mechanism, specifically issue PCH-018. They have

outlined a detailed plan to enhance the system's error handling and are committed to addressing this issue, highlighting their proactive
approach to improving the project's stability and security.

The team's error handling plan is well-structured and considers various types of errors that could occur:

For user-causable, synchronous, and recoverable errors, the team plans to return a Result, which will enable the caller to handle the

error.

For user-causable, background, and recoverable errors, the team plans to handle these internally.

For user-causable and irrecoverable errors, the team plans to panic with a user-oriented message. This will allow the user to quickly

identify and understand the error that has occurred.

For violations of library invariants, the team plans to panic with a library developer-oriented message. This will provide invaluable
information for the library developers for debugging and remediation.

In a separate endeavor, the team has also addressed the Rust best practice violations PCH-002 identified in the codebase through a
linting process (cargo clippy). This rectification demonstrates the team's dedication to adhering to best coding practices and their

determination to continually refine the quality of their code.

Moreover, the team has recognized the concern of unsafe arithmetic operations raised in PCH-014. They've taken a thoughtful and

detailed approach to address this issue, acknowledging the potential for arithmetic overflows and underflows.
While the team asserts that many of the highlighted operations won't under/overflow due to established invariants or the large limit of u64,

they also identify lines that warrant special guards to prevent potential overflows. These include potential duration overflows and total
power overflows. To address this, they have added specifications in the documentation and introduced checked_* operations to prevent

violations. These measures highlight the team's understanding and commitment to maintaining a high degree of security in their

codebase, which is especially critical in the blockchain domain where minor oversights can lead to significant vulnerabilities.
However, it's important to note that ensuring safe arithmetic operations is becoming the default standard in the blockchain and smart

http://localhost:36681/issues/%5BPCH-018%5D%5BInformation%5Dabsence_of_error_handling_system.md
http://localhost:36681/issues/%5BPCH-002%5D%5BInformation%5Dlinter_warnings.md
http://localhost:36681/issues/%5BPCH-014%5D%5BHigh%5Dunsafe_arithmetics.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 5 of 38

contract realm due to historical instances of vulnerabilities that can be triggered even indirectly. Therefore, while the measures undertaken

by the team are commendable, continuous efforts toward implementing and maintaining secure code practices are essential.

Regarding the testing strategy, the team acknowledges the present deficiency in unit tests, even though the project initially reported a test

coverage of 71.17%, predominantly from integration tests. During the fix stage, they added more integration tests, effectively raising the
coverage to 77.41%. Nevertheless, they have committed to improving the testing suite, recognizing the necessity for a more

comprehensive set of unit tests to ensure all aspects of the codebase are adequately tested.

However, it's worth mentioning that the current coverage shortfall does not overshadow the overall good quality of the codebase. Instead,

it indicates areas for future improvements and the team's ongoing commitment to refining their project.

The total Code Quality score is 6 out of 10.

Architecture quality

The HotStuff library follows the architectural design outlined in the HotStuff white paper. This design has been widely recognized for its

robustness and efficiency in handling consensus in distributed systems and blockchains. It lends the project strong architectural quality
and makes it suitable for use in various blockchain applications.

The architecture quality score is 8 out of 10.

Security Level

Our analysis of the HotStuff implementation has revealed a multitude of security issues that warrant immediate attention. However, the
development team's response to these concerns has been proactive and effective.

Firstly, critical issues PCH-006 and PCH-007 have been swiftly addressed. These problems pertained to Byzantine behavior in systems
with less than 64-bit architecture during leader selection and potential node crashes due to an unsafe function within the logging system

respectively. Both these issues have been effectively resolved.

The development team has acknowledged PCH-008 and PCH-009, which pointed out the insufficient validation of PublicKeyBytes and the

risk of network-wide compromise due to malicious vote requests. As a countermeasure, the team has declared plans to enhance type
safety in the Network trait. The intention is to require it to return a valid Ed25519 public key, thereby increasing security.

Critical issue PCH-016, due to a malfunction in the caching system incorrectly storing future-view messages under the current view, is an
open door to a wide range of bugs and potential security vulnerabilities. This has been corrected by the team, enhancing the stability and

security of the system.

Critical issue PCH-017, which pointed out system-wide panic due to a malicious vote, has been fixed.

PCH-019, another critical issue, has been acknowledged by the team. It involves the potential for Byzantine nodes to disrupt the
blockchain's functionality. The team has outlined a robust plan to address this, which includes a "sync blacklist"

High severity issue PCH-011 uncovers memory exhaustion and DoS vulnerabilities due to unconstrained vector size in the Block
structure. The team argues that potential memory exhaustion and DoS vulnerabilities due to unconstrained vector size in the Block

structure is an application-level concerns. They posit that Networking and App implementers have the flexibility and responsibility to
handle over-large or invalid blocks.

High severity issue PCH-015, highlighting potential node crashes due to unsafe arithmetic operations in time durations and validator
powers calculations, has been addressed. The issue was tackled through two measures. First, documentation has been updated to

include constraints, offering guidelines for avoiding such errors. Second, checked arithmetic operations have been introduced. These
operations, if detecting a violation, will trigger a system response that provides a descriptive panic message according to error

management policy to answer PCH-018 issue. These changes together are intended to mitigate the risk associated with this issue.

The low-severity issue PCH-003 has been acknowledged by the team. This concern pointed to vulnerable dependencies in a crate that

should be monitored for future patches. The development team has expressed that they will apply a fix once the library is patched.

https://arxiv.org/pdf/1803.05069.pdf
http://localhost:36681/issues/%5BPCH-006%5D%5BCritical%5Dunsafe_conversion_breaks_round_robin.md
http://localhost:36681/issues/%5BPCH-007%5D%5BCritical%5Dindex_of_bounds_succinct_logging.md
http://localhost:36681/issues/%5BPCH-008%5D%5BCritical%5Dimproper_validation_pubkey.md
http://localhost:36681/issues/%5BPCH-009%5D%5BCritical%5Dvote_remotely_crashes_nodes.md
http://localhost:36681/issues/%5BPCH-016%5D%5BCritical%5Dincorrect_caching.md
http://localhost:36681/issues/%5BPCH-017%5D%5BCritical%5Dmessage_cache_poisoning.md
http://localhost:36681/issues/%5BPCH-019%5D%5BCritical%5Dmanipulation_to_skip_view.md
http://localhost:36681/issues/%5BPCH-011%5D%5BHigh%5Dvector_of_unlimited_size.md
http://localhost:36681/issues/%5BPCH-015%5D%5BHigh%5Dcrash_due_to_unsafe_arithmetics.md
http://localhost:36681/issues/%5BPCH-018%5D%5BInformation%5Dabsence_of_error_handling_system.md
http://localhost:36681/issues/%5BPCH-003%5D%5BLow%5Dunsound_borsh_dependency.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 6 of 38

The development team acknowledged the low-severity issue PCH-013, arguing that the use of chain_id as zero in the genesis quorum

certificate is intentional and not a security risk. They elaborate that altering this behavior would demand breaking changes and potentially
disrupt existing deployments.

The security score is 9 out of 10.

Total score

Considering all metrics, the total score of the report is 8.3 out of 10.

Findings count and definitions

Severity Findings Severity Definition

Critical 7
Critical vulnerabilities are usually straightforward to exploit and can lead to
the loss of user funds or contract state manipulation by external or internal

actors.

High 3
High vulnerabilities are usually harder to exploit, requiring specific
conditions, or have a more limited scope, but can still lead to the loss of

user funds or contract state manipulation by external or internal actors.

Medium 0
Medium vulnerabilities are usually limited to state manipulations but
cannot lead to asset loss. Major deviations from best practices are also in

this category.

Low 2
Low vulnerabilities are related to outdated and unused code or minor Gas
optimization. These issues won't have a significant impact on code

execution but affect code quality.

Total 12

http://localhost:36681/issues/%5BPCH-013%5D%5BLow%5Dgenesis_block_chain_id.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 7 of 38

Scope of the audit

Protocol Audit

Cryptography and Keys

Cryptography Libraries

Keys Generation

Asymmetric (Signing and Verification)

Hotstuff Consensus

HotStuff implementation review

Attack scenarios analysis (liveness, finality, eclipse,...)

P2P & Networking

Network implementation review

Attack scenarios analysis (defaults, DoS, MiM, overflows, state machine)

Storage

Storage implementation review

Security aspects analysis (DoS, corruption, state implosion)

Implementation

Code Quality

Static Code Analysis

Tests coverage

Protocol Tests

Node Tests

Environment Setup

E2E sync tests

Consensus tests

Fuzzing

Consensus Fuzzing

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 8 of 38

Issues

Byzantine Nodes Can Manipulate View Skipping

The current implementation of the recv method in the project allows Byzantine nodes to manipulate other nodes and cause them to skip

the current view and disrupt the blockchain's functionality.

ID PCH-019

Scope algorithm

Severity CRITICAL

Vulnerability Type Denial of Service

Status Acknowledged

Description

The code snippet below, extracted from the recv method, raises concerns:

src/networking.rs:129:

if received_qc_from_future {
 return Err(ProgressMessageReceiveError::ReceivedQCFromFuture)

}

This code checks if a received message contains a quorum certificate (QC) for a future block. If it does, it implies that the replica has
missed some blocks and needs to synchronize with other nodes. Consequently, the code triggers an error (Err(ShouldSync)) and exits

the execute_view function. When this error is received in the start_algorithm function, the node initiates synchronization with other

nodes:

src/algorithm.rs:92:

if let Err(ShouldSync) = view_result {

 sync(&mut block_tree, &mut sync_stub, &mut app, &mut pacemaker)
}

As a result, the replica stops processing the current view, attempts to synchronize, and then continues executing the start_algorithm

function. However, it's important to note that when the next cur_view is determined, it is always greater than the previous view:

src/algorithm.rs:88:

cur_view = max(cur_view, max(block_tree.highest_view_entered(), block_tree.highest_qc().view)) + 1;

Therefore, after synchronization, the replica never returns to executing the view it was processing before.

The vulnerability arises from the fact that the recv method lacks checks to verify the correctness of the received quorum certificate. This

means that any Byzantine node can send a message containing an incorrect QC with a higher view, manipulating the replicas to skip the

current view and proceed to the next.

By repeatedly exploiting this flaw, a Byzantine node can prevent other nodes from producing blocks, ultimately rendering the blockchain

non-functional.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 9 of 38

Proof of Concept

Let's consider a scenario in which a Byzantine node attempts to disrupt the blockchain by causing other nodes to skip the execution of the
current view:

1. The Byzantine node constructs a message, such as a Proposal , Nudge , or NewView message, intentionally including an incorrect

quorum certificate. Since the Byzantine node cannot produce a valid QC without the cooperation of other validators, it fabricates a QC
with a higher view than the current view. The Byzantine node then broadcast the malicious message to all others replica in the

network. Here's an example of such a message:

ProgressMessage::NewView {

 chain_id: 0, // Ensure correct chain_id
 view: 12345,

 highest_qc: QuorumCertificate {
 chain_id: 0,

 view: 123456, // Higher than the current view

 ...
 }

}

2. Upon receiving the message, it checks the chain_id and view values in the received QC. However, there are no additional checks

to ensure the correctness of the QC. The code snippet below demonstrates the current implementation in the recv method:

src/networking.rs:122:

// Inform the caller that we've received a QC from the future.
let received_qc_from_future = match &msg {

 ProgressMessage::Proposal(Proposal { block, .. }) => block.justify.view > cur_view,
 ProgressMessage::Nudge(Nudge { justify, .. }) => justify.view > cur_view,

 ProgressMessage::NewView(NewView { highest_qc, .. }) => highest_qc.view > cur_view,
 _ => false,

};

if received_qc_from_future {
 return Err(ProgressMessageReceiveError::ReceivedQCFromFuture)

}

Since the view in the QC is higher than the current view and correctness isn't checked, the recv method returns the error

Err(ProgressMessageReceiveError::ReceivedQCFromFuture) .

3. The resulting error is passed to the execute_view function. Upon receiving this error, the execute_view function halts the

processing of incoming messages and returns Err(ShouldSync) to the higher-level start_algorithm function.

4. In the start_algorithm function, upon receiving the ShouldSync error, the replica initiates synchronization with other nodes to

catch up to the latest view.

5. Once the synchronization is complete, a new iteration of the loop in the start_algorithm function begins, calculating a new

cur_view value, which is always higher than the previous view. The execute_view function is called again, but this time with the

new, incremented cur_view .

6. The Byzantine node continues sending incorrect messages, persistently causing steps 1-5 to repeat for subsequent views. Each time,
the replica terminates the processing of the current view, performs synchronization, and proceeds to the next view. This repeated

disruption corrupts the blockchain, preventing the production of new blocks and rendering the system non-functional.

Recommendation

To address this vulnerability, it is crucial to modify the recv method to include checks that validate the correctness of the received

quorum certificate before returning the ShouldSync error. By ensuring the integrity of the received QC, replicas can make informed

decisions about whether to synchronize or continue executing the current view, thereby mitigating the risk of view skipping manipulation by
Byzantine nodes.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 10 of 38

Malformed Origin of a Vote Request Remotely Crashes Nodes

An attacker can remotely crash network nodes by sending a request with a malformed origin. The resulting crash can lead to a complete
stoppage of the network or even a full takeover by the attacker. This could allow a variety of malicious actions, such as majority attacks,

double spending, and more.

ID PCH-009

Scope Consensus / Cryptography

Severity CRITICAL

Vulnerability Type Error handling / Data Validation

Status Acknowledged

Description

HotStuff library handles network requests by processing them as tuples composed of the request's origin and a message. The origin is

defined as a PublicKeyBytes , a byte array, while the message is an enum variant conforming to the HotStuff protocol.

Upon receiving a Vote message, the on_receive_vote function gets called, where Vote 's is_correct method verifies the vote by

trying to convert the PublicKeyBytes into a PublicKey . However, this operation can potentially cause a node to crash if it fails to

convert malformed PublicKeyBytes : src/messages.rs:102

impl Vote {
 /// # Panics

 /// pk must be a valid public key.
 pub fn is_correct(&self, pk: &PublicKeyBytes) -> bool {

 if let Ok(signature) = Signature::from_bytes(&self.signature) {

 PublicKey::from_bytes(pk).unwrap().verify(&(self.chain_id, self.view, self.block, self.phase).try_to_vec().u
 } else {

 false
 }

 }
}

In this situation, the pk parameter is a public key that is received from a remote peer during network communication. The pk is in the

form of a byte array (PublicKeyBytes). The peer, who could be a potential attacker, has control over this parameter.

The is_correct method in the Vote structure uses the PublicKey::from_bytes(pk) function to convert this byte array into a

PublicKey . However, the issue arises when the byte array does not represent a valid public key according to the cryptographic standards

of the library.

For instance, it might not correspond to a valid point on the edwards curve (which is a requirement of the ed25519 public key format), or it

might not adhere to other restrictions that valid public keys must meet. If such a malformed byte array is provided as pk , the

PublicKey::from_bytes(pk) function will fail and return an error.

The problem is that the is_correct method uses unwrap() on the result of PublicKey::from_bytes(pk) . The unwrap() function in

Rust will cause the program to panic and crash if it's called on an error.

So, if an attacker provides a malformed PublicKeyBytes , by exploiting the vulnerability found in PCH-008, that cannot be converted into

a PublicKey , this will cause PublicKey::from_bytes(pk).unwrap() to trigger a crash. This is what allows an attacker to remotely crash

nodes in the network by simply sending them vote requests with malformed public keys.

This flaw poses a severe threat as it allows an attacker to remotely crash all nodes in the network, leading to a halt in the
blockchain. Furthermore, this vulnerability may enable malicious actions such as double-spending or taking control of the
blockchain.

http://localhost:36681/%5BPCH-008%5D%5BCritical%5Dimproper_validation_pubkey.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 11 of 38

Proof of Concept

Below is a simplified version of the is_correct method to demonstrate the crash:

/*
This Proof of Concept (PoC) demonstrates a security vulnerability in the HotStuff blockchain library.

The library has a function, `is_correct`, which attempts to convert a `PublicKeyBytes` into a `PublicKey`.
This process is not safe because it doesn't handle conversion errors correctly.

In this PoC, we're demonstrating how a node can be crashed remotely.

The vulnerability occurs when a malformed `PublicKeyBytes` is used as an input for the `is_correct` function.
If the `PublicKeyBytes` are malformed (invalid), the `PublicKey::from_bytes(pk)` call fails and triggers a crash.

An attacker can exploit this vulnerability to crash any node, disrupt the network, or potentially take full control.
*/

use ed25519_dalek::PublicKey;
// Define the Vote structure

pub struct Vote {
 signature: Vec<u8>,

}
// Alias for a public key byte array

pub type PublicKeyBytes = [u8; 32];

impl Vote {
 // Define the is_correct function which checks if a public key is valid

 fn is_correct(&self, pk: &PublicKeyBytes) -> bool {
 // Attempt to convert the PublicKeyBytes into a PublicKey

 match PublicKey::from_bytes(pk) {
 Ok(public_key) => {

 // If successful, print a message and return true
 println!("Valid public key: {:?}", public_key);

 true
 }

 Err(_) => {

 // If conversion fails, print a message and trigger a crash
 println!("Invalid public key, causing a crash...");

 panic!("Invalid PublicKeyBytes: {:?}", pk);
 }

 }
 }

}
// Main function to run the proof of concept

fn main() {
 // Create a new Vote instance

 let vote = Vote { signature: vec![] };

 // Define an invalid public key as an array of zeros
 let invalid_pk = [7u8; 32];

 // Pass the invalid public key to the is_correct function, causing a crash
 vote.is_correct(&invalid_pk);

}

The output when executing this proof of concept on the command line will be:

% cargo run
 Compiling poc v0.1.0 (/Users/hacken/CodeProjects/poc)

 Finished dev [unoptimized + debuginfo] target(s) in 0.22s
 Running `target/debug/poc`

Invalid public key, causing a crash...

thread 'main' panicked at 'Invalid PublicKeyBytes: [7, 7,
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

Recommendation

To mitigate this vulnerability, nodes should be modified to handle malformed PublicKeyBytes gracefully. This can be achieved by fixing

the issue PCH-008 (preferred approach), or by adjusting the is_correct method in the Vote structure:

pub fn is_correct(&self, pk: &PublicKeyBytes) -> bool {
 if let Ok(signature) = Signature::from_bytes(&self.signature) {

 match PublicKey::from_bytes(pk) {
 Ok(public_key) => public_key

http://localhost:36681/%5BPCH-008%5D%5BCritical%5Dimproper_validation_pubkey.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 12 of 38

 .verify(

 &(self.chain_id, self.view, self.block, self.phase)
 .try_to_vec()

 .unwrap(),
 &signature,

)
 .is_ok(),

 Err(_) => false,
 }

 } else {
 false

 }

}

succinct function is vulnerable to Index Out of Bounds

The succinct function in the logging module lacks size checking for its array parameter, which can lead to index out of bounds errors

and potential crashes.

ID PCH-007

Scope logging

Severity CRITICAL

Vulnerability Type Index Ouf of Bounds

Status Fixed

Description

The succinct function is a crucial part of the logging module in the reviewed software. It is designed to provide a brief, readable

representation of a byte sequence by base64 encoding the input and taking the first 7 characters.

src/logging.rs:114:

// Get a more readable representation of a bytesequence by base64-encoding it and taking the first 7 characters.
pub(crate) fn succinct(bytes: &[u8]) -> String {

 let encoded = STANDARD_NO_PAD.encode(bytes);

 let mut truncated = encoded[0..7].to_string();
 truncated.push_str("..");

 truncated
}

However, the function does not perform a check to ensure the base64 encoded string is long enough before attempting to slice the first 7
characters. This can lead to an index out of bounds exception if the base64-encoded output is shorter than 7 characters, thereby

potentially causing the software to crash.

While this function may appear innocent, its misuse could have critical consequences. Given its extensive use throughout the logging

operations, this issue's exploitation can disrupt the normal operation of the software and possibly even lead to unexpected crashes and
potentially compromising the system's integrity, availability, and consensus mechanism.

Proof of Concept

The problem arises when the byte array passed to the succinct function results in a Base64 string of less than 7 characters. For example:

use base64::{engine::general_purpose::STANDARD_NO_PAD, Engine as _};

fn main() {
 succinct("fail".as_bytes());

}

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 13 of 38

fn succinct(bytes: &[u8]) -> String {

 let encoded = STANDARD_NO_PAD.encode(bytes);
 let mut truncated = encoded[0..7].to_string();

 truncated.push_str("..");
 truncated

}

The output when executing this proof of concept on the command line will be:

% cargo run
 Compiling poc v0.1.0 (/Users/hacken/CodeProjects/poc)

 Finished dev [unoptimized + debuginfo] target(s) in 0.24s
 Running `target/debug/poc`

thread 'main' panicked at 'byte index 7 is out of bounds of `ZmFpbA`', src/main.rs:9:25

Recommendation

A potential solution is to add a length check on the Base64-encoded string before attempting to slice it. If the string is shorter than 7
characters, the function could return the entire string or it could be padded with appropriate characters to reach a length of 7. This would

prevent the index out of bounds exception and handle all byte arrays without causing a system crash.

Here is a suggested fix:

pub(crate) fn succinct(bytes: &[u8]) -> String {
 let encoded = STANDARD_NO_PAD.encode(bytes);

 let truncated = if encoded.len() > 7 {
 let mut truncated_string = encoded[0..7].to_string();

 truncated_string.push_str("..");
 truncated_string

 } else {

 encoded.to_string()
 };

 truncated
}

Byzantine Behavior Due to Unsafe u64 to usize Conversion in Round-Robin Leader
Selection on 32-bit Systems

In the pacemaker module, the DefaultPacemaker implementation's view_leader method performs an unsafe conversion from u64 to

usize , resulting in different outcomes for leader selection on 32-bit and 64-bit systems.

ID PCH-006

Scope pacemaker

Severity CRITICAL

Vulnerability Type Incorrect Type Conversion or Cast

Status Fixed

Description

The DefaultPacemaker 's view_leader method contains an unsafe conversion from ViewNumber , which is an alias for u64 , to usize .

The usize data type's size is architecture-dependent, potentially leading to divergent behaviors for leader selection on 32-bit and 64-bit

systems.

The problematic code snippet is as follows:

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 14 of 38

src/pacemaker.rs:51:

fn view_leader(&mut self, cur_view: ViewNumber, validator_set: &ValidatorSet) -> PublicKeyBytes {
 let num_validators = validator_set.len();

 *validator_set.validators().skip(cur_view as usize % num_validators).next().unwrap()
}

The issue arises from the conversion cur_view as usize , where cur_view is of type ViewNumber (an alias for u64).

The size of the usize type varies depending on the architecture, behaving as u32 or u64 . Thus, cur_view 's value when cast to

usize can differ based on the architecture.

Below is an example of a potentially unsafe conversion from u64 to u32 , when the value exceeds the maximum limit of u32 :

// Define ViewNumber as an alias for u64
pub type ViewNumber = u64;

fn main() {
 // Assign the value of MAX u32 + 1 to a variable of type ViewNumber (alias of u64)

 let n: ViewNumber = 4294967296; // MAX of u32 + 1
 // Here, we perform a potentially unsafe conversion from u64 to u32

 // Note that a u32 variable has the same maximum size as usize on a 32-bit system

 let converted = n as u32;
 // We then use an assertion to verify the result of the conversion

 // As 4294967296 exceeds the maximum value of u32 (4294967295), the converted value
 // wraps around to 0

 // Thus, the assertion passes, indicating that the conversion resulted in a
 // value different from the original

 assert_eq!(converted, 0);
}

The view_leader function plays a critical role in choosing the leader, substantially impacting the execution of a view. This discrepancy

could cause ambiguity about a node's status: whether it's a leader meant to broadcast a proposal or a nudge, or a voter designated to
receive and process messages.

Specifically, issues arise when the number of views surpasses u32::MAX (4294967295). Beyond this point, nodes on 32-bit architectures

can't correctly determine leaders in a round-robin manner and start to show Byzantine behavior.

This vulnerability affects nodes running on 32-bit architecture machines using the DefaultPacemaker implementation of Pacemaker .

Such nodes could behave erratically when the view number exceeds u32::MAX (4294967295). As the network likely contains a mix of 32-

bit and 64-bit architecture nodes, severe single-stage desynchronization can occur, resulting in two groups with differing behaviors. This
can become particularly dangerous if the "32-bit group" reaches the security threshold of one third of the network, potentially corrupting

the entire network.

Proof of Concept

The following simplified version of the view_leader function demonstrates this issue:

// This example simulates running on a 32-bit architecture,
// where usize maximum value is u32::MAX.

// We use `Usize` as a type alias to mimic a 32-bit usize
// on a 64-bit system for this demonstration.

type Usize = u32;

// `view_leader` method determines the leader in a round-robin fashion
fn view_leader(cur_view: u64, validator_set: &[u8]) -> u8 {

 let num_validators = validator_set.len();
 // The current view number is converted to `Usize` (simulating a 32-bit system)

 // and used to select the leader.
 *validator_set

 .iter()
 .skip((cur_view as Usize) as usize % num_validators)

 .next()
 .unwrap()

}

fn main() {

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 15 of 38

 // This validator set is a list of mock validators for demonstration.

 let validator_set = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
 // When `cur_view` is less or equal to `u32::MAX` (4294967295), `view_leader` acts as expected.

 // Here, we start the cycle with `cur_view` being 4294967292 and iterate until `u32::MAX`.
 for cur_view in (u32::MAX as u64 - 3)..=u32::MAX as u64 {

 assert_eq!(view_leader(cur_view, &validator_set), (cur_view % 10) as u8);
 }

 // When `cur_view` is bigger than `u32::MAX` (4294967295), `view_leader` behaves differently due to
 // truncation in the type conversion.

 // We start the cycle with `cur_view` being 4294967292 and iterate until `u32::MAX + 10`.
 // Here, the assertion will fail, demonstrating the potential issues that can arise from this type

 // conversion on a 32-bit system.

 for cur_view in (u32::MAX as u64 - 3)..=(u32::MAX as u64 + 10) {
 assert_eq!(view_leader(cur_view, &validator_set), (cur_view % 10) as u8);

 }
}

The output when executing this proof of concept on the command line will be:

% cargo run

 Compiling poc v0.1.0 (/Users/hacken/CodeProjects/poc)
 Finished dev [unoptimized + debuginfo] target(s) in 0.77s

 Running `target/debug/poc`
thread 'main' panicked at 'assertion failed: `(left == right)`

 left: `0`,

 right: `6`',

The leader selection starts to shift once the number of views exceeds u32::MAX and restarts with the first validator as a leader.

On a 64-bit architecture, the view_leader function operates in the expected round-robin manner when the maximum value of usize is

u64::MAX :

type Usize = u64;

fn view_leader(cur_view: u64, validator_set: &[u8]) -> u8 {
 /* ... */

}
fn main() {

 // Validator set
 let validator_set = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];

 // The corresponding results of view_leader are 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5

 for cur_view in u32::MAX as u64 - 3..u32::MAX as u64 + 10 {
 assert_eq!(view_leader(cur_view, &validator_set), (cur_view % 10) as u8);

 }
}

Recommendation

This issue can be approached with three different remediation plans:

Downsizing cur_view to u32

One of the most straightforward fixes is to consider whether cur_view can be represented as a u32 instead of a u64 . This will

effectively eliminate the unsafe conversion from u64 to usize on 32-bit systems. However, this approach may limit the maximum view

number to u32::MAX (4294967295) which could be a limitation based on the design and use case of your system.

The adjustment would look like this: src/types.rs:33:

// Change the type alias for ViewNumber to u32
pub type ViewNumber = u32;

Handling conversion errors

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 16 of 38

Instead of forcing a direct conversion from u64 to usize , we could attempt to convert cur_view to usize and gracefully handle any

potential conversion errors. This approach would provide more robust cross-platform compatibility, at the expense of increased code

complexity.
The implementation would look like this:

fn view_leader(&mut self, cur_view: ViewNumber, validator_set: &ValidatorSet) -> Result<PublicKeyBytes, ConversionError>
 let num_validators = validator_set.len();

 let cur_view_usize = match usize::try_from(cur_view) {
 Ok(value) => value,

 Err(_) => return Err(ConversionError),
 };

 Ok(*validator_set.validators().skip(cur_view_usize % num_validators).next().unwrap())
}

This code returns a Result object. If the conversion is successful, it proceeds as usual, otherwise it returns a ConversionError . You'll

need to handle this Result wherever view_leader is called.

Compiling only to 64-bit systems

This approach ensures that the project compiles and runs exclusively on 64-bit systems. This can be achieved by taking two steps:

1. Update the Cargo.toml file: This step involves adding metadata to the Cargo.toml file, stating explicitly that your package is intended

for 64-bit architectures. This can be done by adding the target-arch field to the package.metadata section:

[package]
name = "hotstuff_rs"

version = "0.2.0"
description = "An implementation of the HotStuff consensus algorithm intended for production systems."

homepage = "https://parallelchain.io"
repository = "https://github.com/parallelchain-io/hotstuff_rs"

readme = "README.md"

edition = "2021"
license = "Apache-2.0"

keywords = ["consensus", "hotstuff", "blockchain"]
categories = ["cryptography::cryptocurrencies", "concurrency"]

[package.metadata]
target-arch = ["x86_64"]

[dependencies]
base64 = "0.21"

borsh = "0.10"
ed25519-dalek = "1"

fern = "0.6"

log = "0.4"
rand = "0.7"

sha2 = "0.10"

The target-arch metadata field informs users that your project is specifically intended for 64-bit architectures.

2. Add a compiler directive in your Rust source file src/lib.rs: This step actively prevents the project from being compiled on non-64-

bit architectures. It can be achieved by adding the compile_error! directive to the root of your library crate src/lib.rs:

#[cfg(not(target_pointer_width = "64"))]
compile_error!("Compilation is only allowed for 64-bit targets");

By taking these measures, you can ensure that your package metadata clearly states its target architecture, and the Rust compiler
actively prevents compilation on non-64-bit systems. Thus, it enforces consistent behavior across different platforms and circumvents the

potential issues associated with unsafe conversions between u64 and usize .

In addition to the remediation strategies detailed above, it's recommended to proactively monitor for potential truncation issues by
leveraging the Rust Clippy linter. Specifically, enabling the cast_possible_truncation lint will help identify such issues early in the

development cycle. This can be achieved by executing the following command:

https://rust-lang.github.io/rust-clippy/master/index.html#cast_possible_truncation

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 17 of 38

cargo clippy -- -W clippy::cast_possible_truncation

Incorporating this lint into your regular development, code review practices, and integrating it into your CI/CD pipeline will provide early
detection and mitigation of unsafe truncation situations. This strategic approach can enhance the reliability and robustness of your code,

and maintain a high standard of quality in your development process.

Incorrect Caching of Messages for Future Views

An identified issue in the message handling system involves the recv method of the ProgressMessageStub struct within the

networking module, incorrectly caching messages intended for future views under the current view. This misplacement can cause

severe disruptions in the overall system behavior.

ID PCH-016

Scope Cache system / Networking module

Severity CRITICAL

Vulnerability Type Logical Flaw

Status Fixed

Description

In the context of HotStuff's blockchain protocol, the recv function is responsible for correctly handling and storing messages received

from the network. However, the current implementation incorrectly caches messages intended for future views under the current view,

causing message displacement and potential loss.

The following code excerpt is where the issue occurs:

src/networking.rs:133:

// Cache the message if its for a future view.

else if msg.view() > cur_view {
 let msg_queue = if let Some(msg_queue) = self.msg_buffer.get_mut(&cur_view) {

 msg_queue

 } else {
 self.msg_buffer.insert(cur_view, VecDeque::new());

 self.msg_buffer.get_mut(&cur_view).unwrap()
 };

 msg_queue.push_back((sender, msg));
}

The above snippet should cache messages intended for future views (where msg.view() > cur_view). However, instead of storing these

messages with the key corresponding to their future view (msg.view()), they are mistakenly cached under the key corresponding to the

current view (cur_view). This error disrupts the intended operation of the caching system, potentially leading to message loss and other

unexpected behavior. This flaw disrupts the caching mechanism, resulting in lost messages that fail to reach their intended future views for
processing.

This issue becomes even more critical as the recv function is invoked repeatedly within the execute_view loop, which can lead to a

situation where an incorrectly cached message is retrieved and processed as if it belonged to the current view.

Proof of Concept

/*

This Proof of Concept (PoC) demonstrates a logic flaw in the ProgressMessageStub
struct's recv method of HotStuff's implementation, which results in incorrect

caching of messages intended for future views under the current view.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 18 of 38

We simulate this behavior by generating a network message for a future view and

then processing this message via the recv method.
Assertions are used to verify the incorrect behavior of the caching system and

comments are included for clear understanding.
*/

use std::collections::{BTreeMap, VecDeque};
// Definition of types used in the structs and enums

pub type PublicKeyBytes = [u8; 32];
pub type ViewNumber = u64;

// ProgressMessage enum that holds different types of messages.
// Here, we only define one for simplicity.

#[derive(Debug)]

pub enum ProgressMessage {
 Message(Message),

}
// Implementation of ProgressMessage to retrieve the view of the message

impl ProgressMessage {
 pub fn view(&self) -> ViewNumber {

 match self {
 ProgressMessage::Message(msg) => msg.view,

 }
 }

}

// Message struct that represents a single message with a view number
#[derive(Debug)]

pub struct Message {
 pub view: ViewNumber,

}
// ProgressMessageStub struct that contains the message buffer used

// for caching messages
pub struct ProgressMessageStub {

 msg_buffer: BTreeMap<ViewNumber, VecDeque<(PublicKeyBytes, ProgressMessage)>>,

}
impl ProgressMessageStub {

 // Constructor for ProgressMessageStub
 pub(crate) fn new() -> ProgressMessageStub {

 Self {
 msg_buffer: BTreeMap::new(),

 }
 }

 // recv method which simulates receiving a message for a certain view
 pub(crate) fn recv(&mut self, cur_view: ViewNumber) {

 // We simulate the generation of a future view message

 match generate_future_view_message() {
 Ok((sender, msg)) => {

 // If the message is for a future view, it should be stored
 // in the buffer for the future view

 if msg.view() > cur_view {
 // However, due to the bug, it's stored in the current view's buffer

 let msg_queue = if let Some(msg_queue) = self.msg_buffer.get_mut(&cur_view) {
 msg_queue

 } else {
 // If the current view does not have a message queue yet, create a new one

 self.msg_buffer.insert(cur_view, VecDeque::new());

 self.msg_buffer.get_mut(&cur_view).unwrap()
 };

 // The message for the future view is added to the current view's queue
 msg_queue.push_back((sender, msg));

 }
 }

 _ => {}
 }

 }
}

// Simulate the generation of a network message for a future view

fn generate_future_view_message() -> Result<([u8; 32], ProgressMessage), ()> {
 // The generated message has a view number higher than the current view,

 // indicating it's for a future view
 Ok(([0; 32], ProgressMessage::Message(Message { view: 11u64 })))

}
fn main() {

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 19 of 38

 // Create an instance of ProgressMessageStub

 let mut pr_msg = ProgressMessageStub::new();
 // Define the current view

 let cur_view = 10u64;
 // Define the future view

 let future_view = 11u64;
 // Call recv to process a message from a future view

 pr_msg.recv(cur_view);
 // After recv is called, the message for the future view is

 // incorrectly stored under the current view
 // So we assert that the current view has a message

 assert!(

 pr_msg.msg_buffer.get(&cur_view).is_some(),
 "Expected message in current view, found none"

);
 // Fetch the message from the current view's queue and

 // verify it's for the future view
 let msg_in_current_view = pr_msg.msg_buffer.get(&cur_view).unwrap().front().unwrap();

 assert_eq!(
 msg_in_current_view.1.view(),

 future_view,
 "Expected message view {} in current view, found message view {}",

 future_view,

 msg_in_current_view.1.view()
);

 // The message for the future view should not have been stored under
 // the future view due to the bug

 // So we assert that the future view does not have a message
 assert!(

 pr_msg.msg_buffer.get(&future_view).is_none(),
 "Expected no message in future view, but found one"

);

 println!("PoC completed successfully, the bug has been demonstrated.");
}

Recommendation

The caching system's implementation needs to be corrected to ensure that messages intended for future views are cached under the
correct view. Here is a proposed fix:

// Cache the message if its for a future view.
else if msg.view() > cur_view {

 let msg_queue = if let Some(msg_queue) = self.msg_buffer.get_mut(&msg.view()) {
 msg_queue

 } else {

 self.msg_buffer.insert(msg.view(), VecDeque::new());
 self.msg_buffer.get_mut(&msg.view()).unwrap()

 };
 msg_queue.push_back((sender, msg));

}

With this adjustment, messages intended for future views will be correctly cached, ensuring that no messages are lost and the system

behaves as expected.

Insufficient Validation of PublicKeyBytes in HotStuff Library

An issue has been identified in the HotStuff library regarding the lack of validation for incoming PublicKeyBytes in the Network trait.

The responsibility of validation is currently left to the implementor. If the implementor does not correctly validate the incoming
PublicKeyBytes , it can lead to various serious issues, including node crashes, network disruption, and potential blockchain

compromises.

ID PCH-008

Scope Cryptography / Network

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 20 of 38

Severity CRITICAL

Vulnerability Type Error handling / Data Validation

Status Acknowledged

Description

The HotStuff library provides the Network trait for handling incoming network requests. The implementor of the Network trait is

responsible for the recv method, which returns an Option of a tuple composed of the request's origin (PublicKeyBytes) and a

message.

The Network trait is defined as follows: src/networking.rs:21:

pub trait Network: Clone + Send {
 /// Informs the network provider the validator set on wake-up.

 fn init_validator_set(&mut self, validator_set: ValidatorSet);
 /// Informs the networking provider of updates to the validator set.

 fn update_validator_set(&mut self, updates: ValidatorSetUpdates);
 /// Send a message to all peers (including listeners) without blocking.

 fn broadcast(&mut self, message: Message);
 /// Send a message to the specified peer without blocking.

 fn send(&mut self, peer: PublicKeyBytes, message: Message);

 /// Receive a message from any peer. Returns immediately with a None if no message is available now.
 fn recv(&mut self) -> Option<(PublicKeyBytes, Message)>;

}

The key issue arises when the implementor does not correctly validate the incoming PublicKeyBytes . This lack of validation can result in

various severe difficulties and vulnerabilities, including node crashes and network disruption. Furthermore, it can potentially lead to severe

compromises in the blockchain's security.

Currently, the HotStuff library does not enforce the validation of incoming PublicKeyBytes within the Network trait. This leaves the

implementor of the trait with the responsibility of ensuring the incoming PublicKeyBytes are valid. This lack of enforced validation opens

a window for a variety of exploitable issues, with potential consequences ranging from node crashes to full blockchain compromises.

It's essential to note that this general issue can be exploited in various ways across the codebase, not just in a specific function or module.
Importantly, the exploitation of this vulnerability can trigger even more critical issues, such as the one documented in PCH-009, leading to

remote node crashes.

Recommendation

To address this vulnerability, the HotStuff library should incorporate a layer of validation for PublicKeyBytes within the Network trait or in

the networking module.

Alternatively, it could provide explicit documentation instructing implementors on how to properly validate PublicKeyBytes .

Incorporating this validation into the library itself would provide an additional layer of defense, preventing issues stemming from malformed

PublicKeyBytes . This, in turn, would enhance the security and stability of nodes using the library.

A suggested place to perform this validation check would be within the start_polling function in the networking module. Here's a

proposed modification:

pub(crate) fn start_polling<N: Network + 'static>(mut network: N, shutdown_signal: Receiver<()>) -> (

 JoinHandle<()>,

 Receiver<(PublicKeyBytes, ProgressMessage)>,
 Receiver<(PublicKeyBytes, SyncRequest)>,

 Receiver<(PublicKeyBytes, SyncResponse)>,
) {

 let (to_progress_msg_receiver, progress_msg_receiver) = mpsc::channel();
 let (to_sync_request_receiver, sync_request_receiver) = mpsc::channel();

 let (to_sync_response_receiver, sync_response_receiver) = mpsc::channel();
 let poller_thread = thread::spawn(move || {

http://localhost:36681/%5BPCH-009%5D%5BCritical%5Dvote_remotely_crashes_nodes.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 21 of 38

 loop {

 match shutdown_signal.try_recv() {
 Ok(()) => return,

 Err(TryRecvError::Empty) => (),
 Err(TryRecvError::Disconnected) => panic!("Poller thread disconnected from main thread"),

 }
 if let Some((origin, msg)) = network.recv() {

 match PublicKey::from_bytes(origin) {
 Ok(_) => {

 match msg {
 Message::ProgressMessage(p_msg) => { let _ = to_progress_msg_receiver.send((origin, p_msg));

 Message::SyncMessage(s_msg) => match s_msg {

 SyncMessage::SyncRequest(s_req) => { let _ = to_sync_request_receiver.send((origin, s_re
 SyncMessage::SyncResponse(s_res) => { let _ = to_sync_response_receiver.send((origin, s_

 }
 }

 }
 Err(_) => continue,

 }
 } else {

 thread::yield_now()
 }

 }

 });
 (

 poller_thread,
 progress_msg_receiver,

 sync_request_receiver,
 sync_response_receiver,

)
}

In this modification, the loop first fetches the network message with network.recv() . If a message is available (Some((origin, msg))) ,

the function then tries to construct a PublicKey from origin using PublicKey::from_bytes(origin) . If this operation is successful

(Ok(_)) , the function continues to handle the message as before. If the operation fails (Err(_)) , the function continues with the next

loop iteration, effectively skipping the handling of the current message due to invalid PublicKeyBytes .

This ensures only messages with valid PublicKeyBytes are processed, adding a robust layer of defense against any malformed

PublicKeyBytes and thereby enhancing the system's resilience.

Message Cache Poisoning via Malicious Vote Message Causing a System Panic

An identified critical vulnerability lies in the potential for Message Cache Poisoning within the networking module of the system.

Specifically, this issue surfaces when dealing with the on_receive_vote() function in tandem with an incorrectly implemented caching

system in the recv() function. An adversarial node can construct and disseminate a malicious vote, exploiting these vulnerabilities to

incite a panic in other nodes' vote collection process.

ID PCH-017

Scope Voting system / Networking module

Severity CRITICAL

Vulnerability Type Message Cache Poisoning / Denial Of Service

Status Fixed

Description

This vulnerability originates from the way the HotStuff protocol handles errors and manages cache for received votes. Specifically, an

adversarial node can exploit the system by constructing and broadcasting a malicious vote that contains a future view number. This

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 22 of 38

malicious vote can trigger a system panic due to poor error handling within the votes.collect() function (as detailed in PCH-018) and a

flaw in the recv() function's caching system (as noted in PCH-016).

In the votes.collect() function, a check exists to validate if the view number and chain_id of a received vote matches those used to

create the VoteCollector instance. If these details do not match, instead of safely discarding the vote, the function triggers a panic that

disrupts the network operation.

src/types.rs:351:

 pub(crate) fn collect(&mut self, signer: &PublicKeyBytes, vote: Vote) -> Option<QuorumCertificate> {

 if self.chain_id != vote.chain_id || self.view != vote.view {
 panic!()

 }
 /* ... */

}

This panic!() can be triggered by a flaw in recv() function, where messages intended for future views are cached under the current

view as described in PCH-016.

Permitting vote for future view being processed in the current view by on_receive_vote if recv() function is called 2 times within the

current view.

This vulnerability presents an opportunity for an adversarial node to potentially launch a majority attack, effectively paralyzing the

operation of a significant portion of the network.

Proof of Concept

1. The adversarial node broadcasts a malicious vote intended for a view higher than the current one. The only requirement is that this

message is correctly signed using any valid private key that corresponds to a legitimate public key.

2. Upon receipt, the recv() function stores the malicious vote in the cache as a message for the current view, due to the identified

caching flaw.

3. A trigger message, which would incite a second call to recv , is received by the node. Various scenarios can instigate this event:

A valid nudge is received but does not necessarily lead to a transition to the next view. If the replica is not the leader for the next

view, it remains in the current view and could invoke recv again.

A valid vote is received and added to the collected votes. If the collected votes do not yet form a quorum certificate (QC), the

replica remains in the current view and could call recv again.

New view messages from other validators are received and processed. If a quorum of validators has not sent a new view
message yet, the replica stays in the current view and could call recv again.

A proposal that fails checks and can't be inserted into the block tree is received. The replica would stay in the same view and
could call recv again.

A nudge that fails checks and can't be inserted into the block tree is received. The replica would stay in the same view and could

call recv again.

4. After the processing of the previous message, recv is invoked again within execute_view , causing the malicious vote in the cache

to be processed and subsequently triggering a crash.

Recommendation

It's crucial to address the vulnerabilities identified in PCH-016 and PCH-018.

Resolving these issues will significantly contribute to the robustness of the system and reduce the potential of similar exploits in the future.

The votes.collect() function currently contains a check to ensure the view and chain_id of an incoming vote match the view and

chain_id of the VoteCollector . However, instead of handling the mismatch gracefully, the function triggers a panic!() .

This can be adjusted so that instead of inducing a panic, the function discards the non-matching vote and returns immediately. This

approach will ensure that the system remains stable and is not thrown into a panic state by a malicious vote.

Here's how the revised function could look:

pub(crate) fn collect(
 &mut self,

http://localhost:36681/%5BPCH-018%5D%5BInformation%5Dabsence_of_error_handling_system.md
http://localhost:36681/%5BPCH-016%5D%5BCritical%5Dincorrect_caching.md
http://localhost:36681/%5BPCH-016%5D%5BCritical%5Dincorrect_caching.md
http://localhost:36681/%5BPCH-016%5D%5BCritical%5Dincorrect_caching.md
http://localhost:36681/%5BPCH-018%5D%5BInformation%5Dabsence_of_error_handling_system.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 23 of 38

 signer: &PublicKeyBytes,

 vote: Vote,
) -> Option<QuorumCertificate> {

 // Existing check for matching chain_id and view
 if self.chain_id != vote.chain_id || self.view != vote.view {

 // Instead of inducing a panic, now discards the vote and returns immediately
 return None;

 }
 // Rest of the function...

}

Node Crash Potential Due to Unsafe Arithmetic Operations

The use of unsafe arithmetic operations in certain parts of your codebase can introduce substantial security vulnerabilities. These risks

can lead to significant failures, including the possibility of node crashes, adversely affecting the system's robustness and dependability.

ID PCH-015

Scope Arithmetic calculations

Severity HIGH

Vulnerability Type Integer Overflow / Crashes

Status Fixed

Description

Our audit highlighted some arithmetic operations in your code, as described in PCH-014, that could potentially lead to crashes, despite

their probability being relatively low due to the requirement of a large number of blocks. However, certain other operations pose a more
significant risk. This issue aims to underline those operations that present the most immediate threats.

Handling time durations

Specific pieces of code in the algorithm.rs and pacemaker.rs modules involve addition operations with time durations. These

operations are a potential vector for overflows that can lead to node crashes.

In the algorithm.rs module, the following code is of particular concern:

_src/algorithm.rs:110:

let view_deadline = Instant::now() + pacemaker.view_timeout(view, block_tree.highest_qc().view);

src/algorithm.rs:481:

if let Some(response) = sync_stub.recv_response(*peer, Instant::now() + pacemaker.sync_response_timeout())

These operations rely on the implementation of view_timeout and sync_response_timeout , which are parts of the Pacemaker trait and

require user implementation. If these methods return large values, overflows may occur, leading to node crashes.

Additionally, in pacemaker.rs , the implementation of Pacemaker for DefaultPacemaker introduces security risks:

src/pacemaker.rs:56:

self.minimum_view_timeout + Duration::new(u64::checked_pow(2, exp).map_or(u64::MAX, identity), 0)

Handling validator powers

http://localhost:36681/%5BPCH-014%5D%5BHigh%5Dunsafe_arithmetics.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 24 of 38

In the types.rs module, specific calculations involving validator powers are performed without proper validations or range checks. This

lack of validation can result in arithmetic operations that overflow and compromise the correctness of the system.

The following code snippets illustrate this issue:

src/types.rs:99:

signature_set_power += power;

src/types.rs:369:

*power += self.validator_set.power(signer).unwrap();

src/types.rs:421:

self.accumulated_power += self.validator_set.power(sender).unwrap()

Recommendation

To address the identified risks associated with unsafe arithmetic operations, we recommend the following measures:

Utilize the methods provided by the Rust Standard Library. These methods include checked_add/sub/mul/div ,

saturating_add/sub/mul/div , overflowing_add/sub/mul/div , and others, to perform arithmetic operations with built-in safety

checks;

Implement proper input validation and bounds checking to prevent potential overflows, ensuring that input values are within

acceptable ranges;

Apply appropriate data type conversions or scaling factors to ensure calculations are performed within safe ranges, considering the
expected magnitude of the values involved;

Implement comprehensive unit tests to identify and rectify any potential vulnerabilities related to arithmetic operations, covering a
wide range of input scenarios and edge cases.

By implementing these recommendations, you can significantly reduce the risks of node crashes and associated security vulnerabilities
stemming from unsafe arithmetic operations. This would bolster both the robustness and the security of your system.

Unbounded Vector Size in Block structure

The Block structure in the codebase contains a field named data which is defined as Vec<Vec<u8>> . However, there are no

constraints or limits imposed on the size of vectors. This design choice allows the vector to potentially grow without bounds, leading to

memory exhaustion and potential denial-of-service (DoS) vulnerabilities.

ID PCH-011

Scope state

Severity HIGH

Vulnerability Type Memory exhaustion / DoS

Status Acknowledged

Description

The Block structure is currently defined as following:

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 25 of 38

pub type Data = Vec<Datum>;

pub type Datum = Vec<u8>;
#[derive(Clone, BorshSerialize, BorshDeserialize)]

pub struct Block {
 /* ... */

 pub data: Data,
}

The issue arises from the lack of constraints on the size of the inner vectors within data field. This means that the vector can grow

indefinitely, potentially consuming an excessive amount of memory and leading to resource exhaustion.

This vulnerability can be exploited when a Byzantine replica implements the produce_block function from the App trait in a way that

generates a Block with a significantly large data vector. Since there are no checks on the length of the vector in the algorithms, other

replicas that do not perform their own checks in the implementation of validate_block may experience slowdowns and memory

exhaustion.

The on_view_timeout function could mitigate such an attack by limiting the amount of time spent processing a block. However, it doesn't

eliminate the risk, as significant processing slowdowns or repeated timeouts could still disrupt the system's operation.

Besides the aforementioned issue, blocks of an unbounded size could result in the following:

1. Network Congestion: Large blocks can lead to network congestion, making it difficult for the nodes to propagate these blocks across
the network.

2. Disk Space Exhaustion: Persisting these large blocks on disk might fill up the available disk space rapidly, leading to potential system
crashes.

3. Long Validation Time: The validation of these large blocks could be time-consuming and delay the processing of subsequent blocks.

4. Increased Sync Time: Large blocks can significantly increase the time required for a new node to sync with the existing network state.

5. Blockchain Bloat: Over time, the storage of these large blocks could cause the blockchain to grow excessively, making it difficult to
manage.

Proof of Concept

To demonstrate the impact of this issue, a modified integration test can be executed. By changing the produce_block function to generate
a block with a large data vector, the subsequent views experience timeouts and block creation stops. The modified integration test code

snippet is provided below:

impl App<MemDB> for NumberApp {

 // In produce_block we change the data to make it bigger
 fn produce_block(&mut self, request: ProduceBlockRequest<MemDB>) -> ProduceBlockResponse {

 /* ... */
 let data = vec![tx_queue.try_to_vec().unwrap(); 1_000_000];

 /* ... */
 }

 /* ... */

}
// The test is similar to the beginning part of the existing integration tests

// The node submits a transactions, since we modified produce_block the resulting block
// contains a large vector of data

#[test]
fn test_block_data() {

 // Test setup is exactly the same as in integration_test
 // Network is mocked, nodes are created

 // The first node is a validator
 /* ... */

 // Submit an Increment transaction to the initial validator.

 log::debug!("Integration test: submit an Increment transaction to the initial validator.");
 nodes[0].submit_transaction(NumberAppTransaction::Increment);

 // Wait some time to observe if blocks are inserted
 thread::sleep(Duration::from_millis(10_000));

}

The output when running this test will be:

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 26 of 38

% cargo test test_block_data

 Running tests/test.rs (target/debug/deps/test-f5b9030eb68633ae)
running 1 test

[ThreadId(2)][DEBUG] ReplacingHighestQc, AAAAAAA.., Generic
[ThreadId(5)][DEBUG] EnteredView, 1

[ThreadId(2)][DEBUG] ReplacingHighestQc, AAAAAAA.., Generic
[ThreadId(2)][DEBUG] ReplacingHighestQc, AAAAAAA.., Generic

[ThreadId(8)][DEBUG] EnteredView, 1
[ThreadId(2)][DEBUG] Integration test: submit an Increment transaction to the initial validator.

[ThreadId(11)][DEBUG] EnteredView, 1
[ThreadId(8)][DEBUG] ReceivedProposal, On/KSRM.., Eba/afE.., 0

[ThreadId(11)][DEBUG] ReceivedProposal, On/KSRM.., Eba/afE.., 0

[ThreadId(5)][INFO] Proposed, 1, Eba/afE.., 0
[ThreadId(5)][DEBUG] ReceivedProposal, On/KSRM.., Eba/afE.., 0

[ThreadId(8)][DEBUG] InsertingBlock, Eba/afE.., 0
[ThreadId(11)][DEBUG] InsertingBlock, Eba/afE.., 0

[ThreadId(5)][DEBUG] InsertingBlock, Eba/afE.., 0
[ThreadId(8)][DEBUG] EnteredView, 2

[ThreadId(11)][DEBUG] EnteredView, 2
[ThreadId(5)][INFO] Voted, 1, Eba/afE.., 0, Generic

[ThreadId(5)][INFO] ViewTimedOut, 1, AAAAAAA.., Generic
[ThreadId(5)][DEBUG] EnteredView, 2

...

[ThreadId(8)][DEBUG] EnteredView, 4
[ThreadId(11)][DEBUG] EnteredView, 4

[ThreadId(5)][INFO] Voted, 3, CXSGugz.., 1, Generic
[ThreadId(5)][INFO] ViewTimedOut, 3, fNGCJyk.., Generic

[ThreadId(8)][INFO] ViewTimedOut, 4, fNGCJyk.., Generic
[ThreadId(11)][INFO] ViewTimedOut, 4, fNGCJyk.., Generic

[ThreadId(11)][DEBUG] EnteredView, 5
[ThreadId(11)][INFO] ViewTimedOut, 5, fNGCJyk.., Generic

test test_data ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 3 filtered out; finished in 26.73s

After the second view, subsequent views experience timeouts, resulting in the failure to insert new blocks and impeding the progress of

the system.

Recommendation

To mitigate this issue, introduce a constraint on the size of vectors within the Block structure. Establish a maximum size for the data

field to prevent vectors from growing unbounded and exceeding resource limits. Implement corresponding checks in the validate_block

function to ensure blocks with data exceeding the allowed size are rejected.

Thoroughly test the changes under various scenarios to ensure that the system behaves as expected and the risk of potential memory
exhaustion and DoS attacks is effectively mitigated.

Unsafe arithmetics

During the code audit, several instances of unsafe arithmetic operations were identified. These unattended operations can cause

unpredictable and potentially harmful side effects in your application, such as arithmetic overflows.

ID PCH-014

Scope Arithmetic

Vulnerability Integer overflow

Severity HIGH

Status Acknowledged

Description

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 27 of 38

Arithmetic operations that are not properly safeguarded could lead to critical errors such as overflows, which in some cases may even

result in node crashes. Although certain calculations might be unlikely to trigger an overflow due to their high threshold, others could pose
a more imminent risk. Detailed analyses of these calculations' potential risks are provided in the subsequent section, PCH-015.

To identify all instances of unsafe arithmetic operations within your codebase, execute the following command:

cargo clippy -- -W clippy::arithmetic_side_effects

The instances of unsafe arithmetic operations identified during the audit, broken down by modules, are as follows:

Algorithms

src/algorithm.rs:88:

cur_view = max(cur_view, max(block_tree.highest_view_entered(), block_tree.highest_qc().view)) + 1;

_src/algorithm.rs:110:

let view_deadline = Instant::now() + pacemaker.view_timeout(view, block_tree.highest_qc().view);

src/algorithm.rs:183:

(Some(highest_qc.block), block_tree.block_height(&highest_qc.block).unwrap() + 1)

src/algorithm.rs:239, 267, 280, 304, 333, 391, 427, 448:

let next_leader = pacemaker.view_leader(cur_view + 1, &block_tree.committed_validator_set());

src/algorithm.rs:476:

start_height: if let Some(height) = block_tree.highest_committed_block_height() { height + 1 } else { 0 },

src/algorithm.rs:481:

if let Some(response) = sync_stub.recv_response(*peer, Instant::now() + pacemaker.sync_response_timeout())

Types

src/types.rs:99:

signature_set_power += power;

src/types.rs:136:

((validator_set_power * 2) / 3) + 1

src/types.rs:369:

*power += self.validator_set.power(signer).unwrap();

src/types.rs:421:

self.accumulated_power += self.validator_set.power(sender).unwrap()

Pacemaker

http://localhost:36681/%5BPCH-015%5D%5BHigh%5Dcrash_due_to_unsafe_arithmetics.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 28 of 38

src/pacemaker.rs:51:

*validator_set.validators().skip(cur_view as usize % num_validators).next().unwrap()

src/pacemaker.rs:55:

let exp = min(u32::MAX as u64, cur_view - highest_qc_view_number) as u32;

src/pacemaker.rs:56:

self.minimum_view_timeout + Duration::new(u64::checked_pow(2, exp).map_or(u64::MAX, identity), 0)

State

src/state.rs:647:

cursor += 1;

src/state.rs:898:

let mut res = Vec::with_capacity(a.len() + b.len());

Networking

src/networking.rs:116:

match self.receiver.recv_timeout(deadline - Instant::now())

src/networking.rs:195:

match self.responses.recv_timeout(deadline - Instant::now())

Recommendation

The detection of these unsafe arithmetic operations is a call to action for addressing potential vulnerabilities in your codebase. To mitigate

these risks, consider using the Rust Standard Library's built-in methods for safer arithmetic computations.
These include checked_add/sub/mul/div , saturating_add/sub/mul/div , overflowing_add/sub/mul/div , and others. Implementing

these safe arithmetical methods will help you manage the potential risks associated with arithmetic overflows effectively.

Unsoundness Issue in Borsh Dependency of HotStuff Library

An unsoundness issue has been discovered in the Borsh dependency used by the HotStuff library, as per a security review conducted via

cargo audit.

ID PCH-003

Scope Dependencies

Severity LOW

Status Acknowledged

Description

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 29 of 38

The borsh crate (version 0.10.3) used by the HotStuff library is identified as having an unsoundness issue, as outlined in the RustSec

advisory RUSTSEC-2023-0033. This issue relates to potential unsoundness when parsing borsh messages with Zero-Sized Types (ZSTs)
that do not implement Copy or Clone traits.

Here is the output from the cargo audit for reference:

Crate: borsh
Version: 0.10.3

Warning: unsound
Title: Parsing borsh messages with ZST which are not-copy/clone is unsound

Date: 2023-04-12
ID: RUSTSEC-2023-0033

URL: https://rustsec.org/advisories/RUSTSEC-2023-0033
Dependency tree:

borsh 0.10.3
└── hotstuff_rs 0.2.0

The unsoundness could lead to unexpected program behavior, including memory corruption, and in severe cases, potential security
vulnerabilities. This can happen when ZSTs that do not implement Copy or Clone are involved in the serialization/deserialization

processes.

However, an examination of the HotStuff library's codebase indicates that it does not employ any ZSTs that utilize

BorshSerialize / BorshDeserialize without implementing Copy or Clone . As such, while this issue is present in the borsh

dependency, the specific usage in the HotStuff library does not expose it to the associated risks.

Recommendation

Despite the HotStuff library not being directly impacted by this specific issue, it is crucial to monitor updates and potential fixes to the borsh

crate. The associated issue can be tracked in the borsh repository at near/borsh-rs#19.

It is recommended to update the borsh dependency in the HotStuff library once a fix is released to eliminate potential future risk. Also, it is

advised that the development team of the HotStuff library exercises caution when introducing new ZSTs that involve
serialization/deserialization, ensuring they implement Copy or Clone to maintain soundness.

A proactive stance towards monitoring and resolving dependency vulnerabilities will significantly contribute to the overall security posture

of the HotStuff library.

Genesis Block's Quorum Certificate Has Incorrect chain_id

In the current implementation of the consensus the genesis block always contains quorum certificate with chain_id equal to zero.

ID PCH-013

Scope Genesis Configuration

Severity LOW

Status Acknowledged

Description

The current implementation of the consensus introduces a flaw in the quorum certificate of the genesis block. Specifically, the chain_id

value in the genesis quorum certificate is always set to zero, regardless of the actual chain_id defined by the chain_id() method in

the App trait:

src/types.rs:121:

https://rustsec.org/advisories/RUSTSEC-2023-0033
https://github.com/near/borsh-rs/issues/19

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 30 of 38

pub const fn genesis_qc() -> QuorumCertificate {

 QuorumCertificate {
 chain_id: 0,

 view: 0,
 block: [0u8; 32],

 phase: Phase::Generic,
 signatures: SignatureSet::new(),

 }
}

This inconsistency poses a potential security risk and could lead to attacks in the future if the code undergoes changes.

During replica initialization, the highest quorum certificate of the newly created BlockTree is established using the genesis_qc function,

which incorrectly sets the chain_id to zero. Subsequently, when the first proposal is created in the propose_or_nudge function, the new

block inherits this flawed quorum certificate, resulting in a proposal that contains a block with a quorum certificate featuring a zero

chain_id .

While this issue may not immediately lead to security vulnerabilities, it introduces error-prone behavior and opens the door to potential
vulnerabilities if the codebase evolves. The genesis_qc function is widely utilized, including the is_genesis_qc method, which is

extensively used to handle scenarios related to the genesis block. Therefore, an incorrect genesis_qc could potentially give rise to

severe security concerns in the future.

Proof of Concept

To verify this issue in tests, the following code can be added after the proposal is broadcasted:

if let ProgressMessage::Proposal(proposal_inner) = proposal.clone() {

 log::debug!(
 "proposal_inner.block.justify.chain_id == {}, proposal.chain_id() == {}",

 proposal_inner.block.justify.chain_id,
 proposal.chain_id()

);

}

By modifying the implementation of the chain_id() method in the tests and executing them:

fn chain_id(&self) -> ChainID {

 42
}

The output will indicate the following:

...

[ThreadId(9)][DEBUG] proposal_inner.block.justify.chain_id == 0, proposal.chain_id() == 42
...

Recommendation

It is strongly advised to revise the implementation of the genesis_qc function to correctly capture the chain_id value, as defined by the

chain_id() method in the App trait. This will ensure consistency and eliminate potential security risks associated with an incorrect

genesis_qc .

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 31 of 38

HotStuff build

The HotStuff library exhibits an efficient and error-free build process.

ID PCH-001

Scope Build Process

Description

The HotStuff library, a Rust implementation of the BFT consensus protocol, builds smoothly without any compiler errors or warnings. The

output of the cargo build --release command indicates a successful build process:

% cargo build --release
Finished release [optimized] target(s) in 25.44s

This output signifies adherence to sound Rust coding practices and idiomatic conventions. The absence of compiler warnings and errors
suggests a high degree of attention to detail and meticulous code management on the part of the developers.

Recommendation

Given that the build process is currently running optimally and without any issues, no changes are recommended at this time. The

development team should continue to uphold the established code quality standards and best practices in future updates and
modifications. It is essential to maintain the error-free status of the build process, as it is indicative of the robustness and reliability of the

software and minimizes potential risks and issues downstream.

Please note that this issue does not cover the results of linting tools such as Clippy , which may provide additional warnings and

recommendations for code quality improvement. Those will be addressed in a separate issue.

Inconsistent Code Formatting in HotStuff Library

A cargo fmt check reveals inconsistent formatting in the HotStuff library's codebase.

ID PCH-005

Scope Code Quality

Status Fixed

Description

Code formatting is essential for maintaining the readability and maintainability of the codebase. Inconsistent code formatting can lead to

unnecessary diffs in the version control system, which can in turn complicate code reviews and make it more difficult to identify
substantive changes.

The cargo fmt -- --check command was used to run a simulation that identifies parts of the code that would be reformatted. This

command does not modify the code but prints out how the files would look after formatting.

Recommendation

We recommend running cargo fmt on the entire codebase to ensure that all code adheres to the standard Rust formatting. This can help

improve the readability and maintainability of the codebase.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 32 of 38

In addition, to prevent the introduction of improperly formatted code in the future, you may want to consider adding a cargo fmt -- --

check step to your continuous integration (CI) pipeline. This would alert developers to formatting issues in their code before it is merged

into the main codebase.

Insufficient Details in Functions and Data Structures Documentation

The documentation for the project can be enhanced, specifically regarding functions and data structures within the codebase.

ID PCH-012

Scope Documentation

Status Acknowledged

Description

The project's crate-level documentation is comprehensive and provides a solid understanding of the library's functionality and usage. It
covers every modules extensively, serving as a valuable resource for developers working with or integrating the HotStuff library.

However, there is a need for improvement at the function and data structure level. Many functions and structures lack descriptive doc
strings, which are essential for generating detailed API documentation automatically.

By enhancing the clarity and completeness of the documentation through well-crafted doc strings, developers can benefit from the ability
to generate API documentation effortlessly using the cargo doc command. This would greatly facilitate understanding and utilization of

the HotStuff library.

Recommendation

We recommend focusing on enhancing the doc strings for functions and structures throughout the codebase. By providing detailed
explanations, parameter descriptions, return value explanations, and relevant examples, we can significantly improve the clarity and

comprehensiveness of the documentation.

Furthermore, developers can take advantage of the convenient cargo doc command to access the API documentation directly,

facilitating their workflow and enhancing the overall developer experience with the HotStuff library.

Insufficient Error Handling Mechanism in HotStuff Library

The HotStuff project exhibits a significant deficiency in the implementation of its error handling system, frequently resorting to panic-
induced exits rather than providing insightful error messages.

ID PCH-018

Scope Error Handling

Status Acknowledged

Description

An in-depth examination of the HotStuff project revealed an absence of a proficient error handling system. Instead of presenting users with
detailed and explanatory error messages, which can guide effective troubleshooting and debugging, the project commonly relies on

unwrap() , panic!() , and unreachable!() macros. This practice does not promote user-friendly interactions with the library, nor does

it provide useful insights into the underlying issues when they occur.

The use of these macros is particularly troubling as they can cause unexpected panics, which are extremely undesirable within a library

such as HotStuff, designed for state machine replication. Panics can lead to node crashes, bringing forth considerable security concerns.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 33 of 38

A distinct instance of this issue is outlined in PCH-009.

While the unreachable!() macro may be utilized to validate certain scenarios deemed impossible, it possesses the potential to trigger

panics, which, combined with the substantial usage of other panic-prone macros, complicates code maintainability and readability.

Throughout the consensus component, we identified 81 instances of unwrap() , 9 instances of panic!() , and 2 instances of

unreachable!() (excluding tests). It is essential to reduce their usage and ensure that no instance can potentially cause node crashes,

even under actions performed by a Byzantine node.

Recommendation

To improve error handling, diminish panic risks, and promote better user experience, we propose the following recommendations:

Mitigate panic occurrences

Explicit documentation and
comments

Avoid unreachable!()

Implement structured error
handling

Develop a distinct module for error handling that comprises an enum representing all possible errors throughout the project's

modules.

Refactor the codebase to replace panic occurrences with the suitable application of the error enum, returning Result types that

encapsulate potential errors. This step facilitates structured error handling and graceful error propagation.

Update method signatures throughout the codebase to reflect the new error handling approach, ensuring that errors are properly

propagated up the call stack.

Consider incorporating the thiserror library, which simplifies the creation of custom error types and allows for customization of error

messages and associated data.

Implementing these recommendations establishes a more robust error handling system, reduces the reliance on panics, and promotes the

resilience and stability of the project. Structured error handling enhances the usability of the library, provides clearer error information to
users, and facilitates better error diagnostics and troubleshooting.

Linter Warnings

cargo clippy generates numerous warnings that should be addressed to improve the overall code quality.

ID PCH-002

Scope Linters

Status Acknowledged

Description

During the static analysis process using cargo clippy , a significant number of warnings are generated. These warnings can indicate

various issues in the codebase, including:

Unoptimized or inefficient code

Non-idiomatic Rust patterns

Redundant or unnecessary code

Lack of documentation for unsafe functions

http://localhost:36681/%5BPCH-009%5D%5BCritical%5Dvote_remotely_crashes_nodes.md
https://crates.io/crates/thiserror

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 34 of 38

Missing implementations of expected methods

Potential coding errors or logic flaws

The full list of clippy lints that generated warnings includes:

collapsible_if

zero_prefixed_literal

needless_borrow

too_many_arguments

redundant_clone

len_zero

needless_bool

match_like_matches_macro

new_without_default

len_without_is_empty

map_entry

iter_skip_next

missing_safety_doc

let_and_return

unnecessary_cast

while_let_loop

needless_lifetimes

type_complexity

comparison_chain

Ignoring these warnings may lead to a harder-to-maintain codebase, potential performance issues, and even security vulnerabilities. It is

important to address all of the warnings generated by cargo clippy to ensure a high-quality and maintainable codebase.

It is important to note that cargo clippy is configured to generate warnings predominantly for the default set of lints. However, there may

exist additional issues that could be uncovered by enabling and meticulously examining supplementary lints. These potential issues will be
addressed systematically in separate, forthcoming issues.

Recommendation

To ensure a high-quality and maintainable codebase, it is crucial to address all the warnings generated by cargo clippy . By addressing

these linter warnings, you will enhance the overall code quality, making it easier to maintain, troubleshoot, and potentially improve the
performance and security of your Rust project.

We recommend the following steps:

Review each warning generated by cargo clippy and understand its implications on the codebase.

Apply appropriate code changes to resolve the warnings, following the best practices and idiomatic patterns of Rust programming.

Document any necessary changes or considerations in the codebase to ensure future developers are aware of the reasoning behind
the modifications.

Regularly run cargo clippy as part of the development workflow to catch new warnings and maintain code quality over time.

By proactively addressing the linter warnings, you will not only improve the overall code quality but also foster a culture of continuous

improvement and adherence to Rust's best practices.

https://rust-lang.github.io/rust-clippy/master/index.html#collapsible_if
https://rust-lang.github.io/rust-clippy/master/index.html#zero_prefixed_literal
https://rust-lang.github.io/rust-clippy/master/index.html#needless_borrow
https://rust-lang.github.io/rust-clippy/master/index.html#too_many_arguments
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_clone
https://rust-lang.github.io/rust-clippy/master/index.html#len_zero
https://rust-lang.github.io/rust-clippy/master/index.html#needless_bool
https://rust-lang.github.io/rust-clippy/master/index.html#match_like_matches_macro
https://rust-lang.github.io/rust-clippy/master/index.html#new_without_default
https://rust-lang.github.io/rust-clippy/master/index.html#len_without_is_empty
https://rust-lang.github.io/rust-clippy/master/index.html#map_entry
https://rust-lang.github.io/rust-clippy/master/index.html#iter_skip_next
https://rust-lang.github.io/rust-clippy/master/index.html#missing_safety_doc
https://rust-lang.github.io/rust-clippy/master/index.html#let_and_return
https://rust-lang.github.io/rust-clippy/master/index.html#unnecessary_cast
https://rust-lang.github.io/rust-clippy/master/index.html#while_let_loop
https://rust-lang.github.io/rust-clippy/master/index.html#needless_lifetimes
https://rust-lang.github.io/rust-clippy/master/index.html#type_complexity
https://rust-lang.github.io/rust-clippy/master/index.html#comparison_chain

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 35 of 38

Test coverage

The project shows a fair test coverage of 77.41%, but it's entirely comprised of two integration tests, with no unit tests present.

ID PCH-004

Scope Code Quality / Testing

Status Acknowledged

Description

We recommend utilizing the cargo tarpaulin command to assess code coverage. Running the following command will generate an HTML

file with detailed coverage information for each file:

cargo tarpaulin --out Html --output-dir ./tarpaulin-report

The generated HTML file provides coverage statistics for each file, including the number of lines covered and the percentage of coverage.

Covered: 722 of 933 (77.41%)

File Coverage

algorithm.rs 144/212 (67.92%)

app.rs 8/12 (66.67%)

logging.rs 31/37 (83.78%)

messages.rs 32/36 (88.89%)

networking.rs 49/81 (60.49%)

pacemaker.rs 9/11 (81.82%)

replica.rs 32/32 (100.00%)

state.rs 241/362 (66.57%)

sync_server.rs 7/14 (50.00%)

types.rs 111/136 (81.62%)

The coverage statistics indicate that the files algorithm.rs , app.rs , networking.rs , state.rs , and sync_server.rs currently have

lower test coverage.

While having integration tests is important to test the consensus as a whole, it is advisable to create unit tests for each module as well.

Unit tests provide more flexibility and allow for testing individual functions separately, covering all edge cases and ensuring comprehensive
coverage of necessary workflows.

Recommendation

We recommend improving the test coverage in the project by implementing a comprehensive test suite that includes both integration tests

and smaller unit tests for each modules. A thorough testing approach is essential for ensuring the security, stability, and maintainability of
the project. Having separate small unit tests for each module will further enhance the test coverage and enable thorough testing of

individual functionalities.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 36 of 38

Unconventional Pattern Matching

The code includes an unusual usage of match pattern, leading to unnecessary usage of unreachable!() . This unconventional pattern

matching reduces code readability and increases the potential for errors.

ID PCH-010

Scope Code Quality

Status Fixed

Description

The following code snippet illustrates the issue:

src/algorithm.rs:231:

match () {

 // Produce a proposal.
 () if highest_qc.phase.is_generic() || highest_qc.phase.is_commit() => {

 /* ... */
 },

 // Produce a nudge.

 () if highest_qc.phase.is_prepare() || highest_qc.phase.is_precommit() => {
 /* ... */

 },
 _ => unreachable!(),

}

While this code snippet does not introduce any errors, the use of this unconventional match pattern is not idiomatic and unnecessary. It

makes the code less readable and harder for other developers to understand.

Furthermore, the presence of unreachable!() introduces a potential panic if the code changes. This renders the code more error-prone

and could lead to security issues in the future.

Recommendation

We recommend refactoring the code to use a more conventional matching pattern, which improves code readability and eliminates the
need for unreachable!() :

match highest_qc.phase {
 Phase::Generic | Phase::Commit(_) => {

 /* ... */
 },

 Phase::Prepare | Phase::Precommit(_) => {
 /* ... */

 }
}

This refactored code is safe and does not leave room for potential panics.

Additionally, it is advisable to conduct a thorough code review to identify any other sections of code that may potentially panic and

consider removing them if possible. To assist with this, you can use the clippy lint tool with the unreachable warning:

cargo clippy -- -W clippy::unreachable

Furthermore, we recommend using more conventional matching patterns and idiomatic Rust constructs throughout your codebase. By

following idiomatic Rust practices, you can improve code readability, maintainability, and reduce the likelihood of introducing errors.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 37 of 38

Adhering to these practices also helps other developers understand the code more easily, promotes consistency, and aligns with

community best practices.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 38 of 38

Disclaimers

Hacken disclaimer

The code base provided for audit has been analyzed according to the latest industry code quality, software processes and cybersecurity
practices at the date of this report, with discovered security vulnerabilities and issues the details of which are disclosed in this report

(Source Code); the Source Code compilation, deployment, and functionality (performing the intended functional specifications). The report
contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code

(branch/tag/commit hash) submitted to and reviewed, so it may not be relevant to any other branch. Do not consider this report as a final
and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements. While we have

done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we
recommend proceeding with several independent audits, public bug bounty program and CI/CD process to ensure security and code

quality. English is the original language of the report. The Сonsultant is not responsible for the correctness of the translated versions.

Technical disclaimer

Protocol Level Systems are deployed and executed on hardware and software underlying platforms and platform dependencies
(Operating System, System Libraries, Runtime Virtual Machines, linked libraries, etc.). The platform, programming languages, and other

software related to the Protocol Level System may have vulnerabilities that can lead to security issues and exploits. Thus, Consultant
cannot guarantee the explicit security of the Protocol system in full execution environment stack (hardware, OS, libraries, etc.)

