
Customer: ZeroSix
Date: 06 June, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for ZeroSix

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OU

Type ERC1155 token; Certification

Platform EVM

Language Solidity

Methodology Link

Website https://zerosix.co/

Changelog
01.05.2023 – Initial Review
24.05.2023 – Second Review
06.06.2023 – Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://zerosix.co/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10

M01. Uninitialized Implementation
Low 10

L01. Outdated Solidity Version 10
L02. Floating Pragma 11
L03. Missing Validation 11
L04. Missing Validation 11
L05. Redundant Implementation 12
L06. Reading Array Length in a Loop 12
L07. Functions That Can Be Declared External 13
L08. Missing Zero Address Validation 13

Informational 13
I01. Redundant Function Declaration 13
I02. Misleading Contract Name 14
I03. Style Guide Violation 14
I04. Redundant Code Block 14
I05. Variables That Can Be Declared Immutable 15

Disclaimers 16
Appendix 1. Severity Definitions 17

Risk Levels 17
Impact Levels 18
Likelihood Levels 18
Informational 18

Appendix 2. Scope 19

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by ZeroSix (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

ZeroSix is an extended and modified ERC-1155 implementation which is named
ERC-1888. System explanation can be found in the following contracts:

● Registry — an extended ERC-1155 contract that can certify a token
and assign an issuer to give the entire control of the related token
id.
A certificate is basically a token id (ERC-1155) that can be minted
an infinite amount by only its issuer to any address. The issuer can
not be changed later once it is issued. Every certificate has an
expiration time and users cannot transfer or claim tokens once it is
expired.

● Issuer — a management contract that helps requesting/approving
workflows for issuing ERC-1888 certificates. Issuer contract is the
owner of the Registry contract. ERC-1888 operations are controlled
here.

● RegistryExtended — an extended version of Registry contract with
multiple batch issuing and multiple batch transfers. It inherits the
Registry contract.

● TokenAccount — a modified IERC1155Receiver contract that acts as an
intermediary that receives ERC1155 tokens and forwards them to a
specified wallet address.

● CommonConstants — a basic contract that is inherited by TokenAccount
to store constant variables.

Privileged roles
● The owner of the RegistryExtended contract can:

○ issue an ERC-1155 token id to itself (msg.sender)
○ handle batch issues and batch multiple issues

● The owner of the Issuer contract can:
○ set a private issuer
○ approve requested certification requests
○ issue a certification without needing certification request
○ mint more volume to existing certificates

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The project follows the official Solidity style guide.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

01 May 2023 8 1 0 0

24 May 2023 0 0 0 0

06 June 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing
https://docs.soliditylang.org/en/v0.8.19/style-guide.html


Risks

No potential risks were found.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Uninitialized Implementation

Impact Medium

Likelihood Medium

It is not recommended to leave an implementation contract
uninitialized. An uninitialized implementation contract can be taken
over by an attacker.

Path: ./packages/traceability/issuer/contracts/Issuer.sol

Recommendation: Invoke the _disableInitializers() function in the
constructor to automatically lock the contract when it is deployed.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

Low

L01. Outdated Solidity Version

Impact Low

Likelihood Medium

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version. The contracts in the project have the Solidity version
0.8.4.

Paths: ./packages/traceability/issuer/contracts/Issuer.sol

./packages/traceability/issuer/contracts/Registry.sol

./packages/traceability/issuer/contracts/RegistryExtended.sol

./packages/traceability/issuer/contracts/ERC1888/IERC1888.sol

./packages/trade/exchange-token-account/contracts/TokenAccount.sol

./packages/trade/exchange-token-account/contracts/Common.sol
www.hacken.io

10



Recommendation: Use a contemporary and the same compiler version for
all contracts.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

L02. Floating Pragma

Impact Low

Likelihood Medium

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths:

./packages/trade/exchange-token-account/contracts/TokenAccount.sol

./packages/trade/exchange-token-account/contracts/Common.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

L03. Missing Validation

Impact Medium

Likelihood Medium

The length of the inputs, _data and _owners are not checked against
the possible mistake of entering different lengths by accident.

This can lead to creating request with zero address or empty data.

Path:./packages/traceability/issuer/contracts/Issuer.sol:
requestCertificationForBatch()

Recommendation: Implement checks to validate that both 2 input arrays
are in the same size and addresses are not empty.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

L04. Missing Validation

Impact Low

www.hacken.io
11



Likelihood Medium

The length of the _expirationDates is not checked against the
possible mistake of entering different lengths by accident.

This can lead to creating request with zero address or empty data.

Path:./packages/traceability/issuer/contracts/Registry.sol:
batchIssue()

Recommendation: Implement check to validate that the length of the
expiration dates is same with the others.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

L05. Redundant Implementation

Impact Low

Likelihood Medium

In safeTransferAndClaimFrom function, the given token(s) is first
transferred from ‘_from’ to ‘_to’ address and then it is burned.

There is no need to transfer them if they are going to be burned
after.

Redundant implementations make the code look more sophisticated and
hard to understand.

Path:./packages/traceability/issuer/contracts/Registry.sol:
safeTransferAndClaimFrom()

Recommendation: Instead of sending the tokens to address ‘_to’, burn
them from the address ‘_from’ directly.

Found in: 4b407ff68

Status: Mitigated (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf) (Customer stated that the
reason of this implementation is to transfer tokens from the platform
wallet to custodial wallet of the user firstly and then burning them
to achieve the traceability of retirement or claiming functionality
on the platform.)

L06. Reading Array Length in a Loop

Impact Low

Likelihood Medium

Array length should be saved in a local variable instead of being
computed in each loop cycle during the condition check.

www.hacken.io
12



Path:./packages/traceability/issuer/contracts/Issuer.sol:
requestCertificationForBatch()

Recommendation: Save the array length in a variable and use that
variable in the for loop condition.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

L07. Functions That Can Be Declared External

Impact Low

Likelihood Medium

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Notice: it is also applicable to the “initialize” function in
upgradable contracts. There is no magic in declaring them public if
the contract is not inherited.

Path: ./packages/traceability/issuer/contracts/Issuer.sol:
initialize(), setPrivateIssuer(), getCertificationRequest(), issue(),
issueBatch()

Recommendation: Change functions' visibilities to external.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

L08. Missing Zero Address Validation

Impact Low

Likelihood Medium

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path:
./packages/trade/exchange-token-account/contracts/TokenAccount.sol:
constructor()

Recommendation: Implement zero address checks.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

www.hacken.io
13



Informational

I01. Redundant Function Declaration

requestCertification function is redundant since there is already
another function requestCertificationFor to do the same operation.
Users can set their own addresses(as msg.sender) as input for
requestCertificationFor function and there is no need for a second
function for this basic feature.

Similar redundant implementation is found in issue and issueBatch
functions. These functions are basically calling the
requestCertificationFor and approveCertificationRequest functions
with order. This can be controlled and applied manually from the web
side by calling requestCertificationFor and
approveCertificationRequest functions.

Path: ./packages/traceability/issuer/contracts/Issuer.sol:
requestCertification(), requestCertificationFor(),
approveCertificationRequest()

Recommendation: Remove the redundant function requestCertification.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

I02. Misleading Contract Name

ERC1888 interface is not named as IERC1888 although it is not a
contract but an interface.

Contract name should represent the contract logic and should not
mislead it.

Path: ./packages/traceability/issuer/contracts/ERC1888/IERC1888.sol

Recommendation: Change contract name to fit the logic.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

I03. Style Guide Violation

Some parts of the code violate the style guide standards.

The provided projects should follow the official guidelines.

Especially pay attention to ‘Maximum Line Length’.

Path: ./packages/traceability/issuer/contracts/ERC1888/IERC1888.sol

www.hacken.io
14



Recommendation: Follow the official Solidity guideline.
https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

I04. Redundant Code Block

Variables with public visibility do not need a getter function.

This increases Gas usage on deployment as the compiled bytecode will
be bigger.

Path: ./packages/traceability/issuer/contracts/Issuer.sol:
getRegistryAddress(), getPrivateIssuesAddress()

Recommendation: Remove redundant code.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

I05. Variables That Can Be Declared Immutable

Impact Low

Likelihood Medium

wallet address can be declared immutable because it is never changed
after being declared.

Redundant/mistaken declarations cause unnecessary Gas consumption.

Path:
./packages/trade/exchange-token-account/contracts/TokenAccount.sol

Recommendation: Declare the variable as immutable.

Found in: 4b407ff68

Status: Fixed (Revised commit:
e55d2e832c22878d0171a58c5c3ff1846c5e3bbf)

www.hacken.io
15

https://docs.soliditylang.org/en/v0.8.13/style-guide.html


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
16



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
17



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
18



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/482solutions/Zero6

Commit 4b407ff

Whitepaper -

Requirements -

Technical
Requirements Link

Contracts File: packages/traceability/issuer/contracts/Issuer.sol
SHA3: 4220f3a122bd89bd20eb2f3333ff54b99fbba0f5cce59daa57fd398e0d571f3a

File: packages/traceability/issuer/contracts/Registry.sol
SHA3: 893ef0650381caf6f0ded5cb9e5f1c723240bc29d79e1f4eb75c50ec2f32fc87

File: packages/traceability/issuer/contracts/RegistryExtended.sol
SHA3: cfb3b07c272fae16d90046fdb2f40565e29748e9ae784f394f642f796ab0449d

File: packages/traceability/issuer/contracts/ERC1888/IERC1888.sol
SHA3: 5194440eeccaba0c5a3169bea6f7387d75d2e21293427da7563b69211189d790

File: packages/trade/exchange-token-account/contracts/Common.sol
SHA3: 58fd2d8be9214f939a2f3428892a8843536c5934b9c0da805e446871407af7e3

File: packages/trade/exchange-token-account/contracts/TokenAccount.sol
SHA3: 1731e32b3d7dadd6d596a25be13452a977e560c235ec201c43d3f122bddd194b

Second review scope

Repository https://github.com/482solutions/Zero6

Commit e55d2e832c22878d0171a58c5c3ff1846c5e3bbf

Whitepaper -

Requirements ZeroSix-SC-Audit-Functional-Requirements

Technical
Requirements Link

Contracts File: ./packages/traceability/issuer/contracts/Issuer.sol
SHA3: 73d4cc97b5050fd773247ced2d22902b75b37df4e1de364096cec734c29d18a2

File: ./packages/traceability/issuer/contracts/Registry.sol
SHA3: 6d7c91e982566caf141bc7274debd879dab87c08c190e40d023756c47565f4cf

File: ./packages/traceability/issuer/contracts/RegistryExtended.sol

www.hacken.io
19

https://github.com/Zero6/tree/main/docs/traceability/contracts
https://github.com/Zero6/tree/main/docs/traceability/contracts


SHA3: ac37f4ae72b8178c69e689122923639151933c87207e167a0d65ec19a9eb3c7b

File: ./packages/traceability/issuer/contracts/ERC1888/IERC1888.sol
SHA3: 2d4c7d9fcaa309c854a84ab05ce28b5e00cfaa7914c13545c549569d67cef73a

File: ./packages/trade/exchange-token-account/contracts/Common.sol
SHA3: d0733f901a32aa9c48aba94669cbdf9c8624c0cd1866f7a5c2f32fa6f4bfe995

File:
./packages/trade/exchange-token-account/contracts/TokenAccount.sol
SHA3: 506f65a899ee7849b4f50f77e3a5d045a78c34a6fba619430e7e511275e60fdb

Third review scope

Repository https://github.com/482solutions/Zero6

Commit da0ae264338f188276e9f6c385667676b00a3e1e

Whitepaper -

Requirements ZeroSix-SC-Audit-Functional-Requirements

Technical
Requirements Link

Contracts File: ./packages/traceability/issuer/contracts/Issuer.sol
SHA3: 1139c75c7260ea66b8dadf1883b652b48ccdb7e0d039e7df8004c660e65c654b

File: ./packages/traceability/issuer/contracts/Registry.sol
SHA3: 226d5aa2e0deeaeb0b78fe193fc2bab22ebb2fcb4c038ba945639874907737ee

File: ./packages/traceability/issuer/contracts/RegistryExtended.sol
SHA3: fc4343d875d4a8a3134f9d20c8fd5c95b3f0f629f094a2e69b21778851974a75

File: ./packages/traceability/issuer/contracts/ERC1888/IERC1888.sol
SHA3: e1576ba53f5b3a10741a49b18d6e3d0c981b06ce0b57ef7f8d76101a6011b624

File: ./packages/trade/exchange-token-account/contracts/Common.sol
SHA3: d0733f901a32aa9c48aba94669cbdf9c8624c0cd1866f7a5c2f32fa6f4bfe995

File:
./packages/trade/exchange-token-account/contracts/TokenAccount.sol
SHA3: 2e7c6aff1d3ab7f1e6b383fc320956155c9a1c088d05f9521c549a9a08caa073

www.hacken.io
20

https://github.com/Zero6/tree/main/docs/traceability/contracts

