
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Clearpool.finance
Date: 23 Aug, 2023



Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another
Party. Any subsequent publication of this report shall be without
mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Clearpool.finance

Approved By Oleksii Zaiats | SC Audits Head at Hacken OÜ

Type Staking (Lending Protocol Plugin)

Platform EVM

Language Solidity

Methodology Link

Website https://clearpool.finance

Changelog
21.07.2023 – Initial Review
10.08.2023 – Second Review
23.08.2023 – Third Review

www.hacken.io 2

mailto:support@hacken.io
https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://clearpool.finance


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Table of Contents
Document 2
Table of Contents 3
Introduction 4
System Overview 4
Executive Summary 5
Risks 5
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10

M01. Stuck Funds 10
M02. Highly Permissive Role 10

Low 11
L01. Unused Return Value 11
L02. Token Symbols Collision 11
L03. Unbounded Loop 11
L04. Inefficient Gas Model 12
L05. Token Dust Lock 12

Informational 13
I01. State Variables Default Visibility 13
I02. Inconsistent Operation 13
I03. Redundant Statements 13
I04. Check-Effect-Interaction Pattern Violations 14
I05. Confusing Code 14
I06. Override Overusage 14
I07. Misleading Name 15
I08. Code Duplication 15
I09. Suboptimal Algorithm 15
I10. Untrimmed Returned Array 15
I11. Unused Field 16
I12. Redundant Check 16
I13. Burn From Arbitrary Address 16
I14. Unfinalized Code 16
I15. Redundant Statements 17
I16. Grammar Errors 17
I17. Confusing Revert Message 17

Disclaimers 18
Appendix 1. Severity Definitions 19

Risk Levels 19
Impact Levels 20
Likelihood Levels 20
Informational 20

Appendix 2. Scope 21
Initial review scope 21
Second review scope 22
Third review scope 23

www.hacken.io 3

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Clearpool.finance (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

The Term Protocol is an extension of the Clearpool Permissionless smart
contracts. Its purpose is to allow users to lock their liquidity on
TermPool over a fixed period of time for the promise (in the form of the
tpToken) to receive additional APR.

There are several smart contracts in the audit scope:

● TermUtils — helper abstract contract.
● TermPoolFactory — contract for TermPool contracts deployment and

management.
● TermPool — contract for locking liquidity for rewards, deploy tpToken

contracts for each liquidity lock (Term).
● TpToken — simple mintable ERC20 token contract.

Roles

TermPoolFactory:

● Owner of permissionlessFactory is able to:
○ Change TermPool implementation used for deployment
○ Change TpToken implementation used for deployment by TermPool
○ Update permissionlessFactory address

TermPool:

● Borrower is able to:
○ Create a term to allow users locking liquidity
○ Top-up the contract with rewards to lenders
○ Cancel term if no one lent funds yet

● Owner of permissionlessFactory is able to:
○ Pause ability to lock liquidity in terms
○ Allow partial rewards top-up for the borrower

www.hacken.io 4

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 6 out of 10.

● Public functional requirements are not provided.
● Internal functional requirements are comprehensive.
● Technical description is not provided.
● Essential scripts are set up in the package.json file.

Code quality
The total Code Quality score is 10 out of 10.

● Development environment is set up.

Test coverage
Code coverage of the project is 100% (branch coverage).

Security score
As a result of the audit, the code does not contain security issues. The
security score is 10 out of 10.

All found issues are displayed in the Findings section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

21 July 2023 3 2 0 0

10 August 2023 3 0 0 0

23 August 2023 0 0 0 0

www.hacken.io 5

mailto:support@hacken.io
https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Risks

● The smart contracts system is upgradeable. In case of a key leak, an
attacker may receive access to user funds.

● The system highly depends on the permissionlessFactory state and
implementation, which is out of the audit scope.

● The borrower may not provide any rewards for the lock activity.
● Rewards locked on the TermPool contract may not correspond to the

promised reward rate. Users are unable to check if the
permissionlessFactory owner allowed partial reward top-up for a
specific Term.

www.hacken.io 6

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Default
Visibility

Functions and state variables visibility should
be set explicitly. Visibility levels should be
specified consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math operations
should be safe from overflows and underflows. Passed

Outdated
Compiler
Version

It is recommended to use a recent version of the
Solidity compiler. Passed

Floating Pragma
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

Passed

Unchecked Call
Return Value

The return value of a message call should be
checked. Not Relevant

Access Control
& Authorization

Ownership takeover should not be possible. All
crucial functions should be protected. Users
could not affect data that belongs to other
users.

Passed

SELFDESTRUCT
Instruction

The contract should not be self-destructible
while it has funds belonging to users. Not Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should be
followed if the code performs ANY external call. Passed

Assert
Violation

Properly functioning code should never reach a
failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should never be
used. Passed

Delegatecall to
Untrusted
Callee

Delegatecalls should only be allowed to trusted
addresses. Not Relevant

DoS (Denial of
Service)

Execution of the code should never be blocked by
a specific contract state unless required. Passed

Race Conditions Race Conditions and Transactions Order Dependency
should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for authorization.
Not Relevant

www.hacken.io 7

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Block values as
a proxy for
time

Block numbers should not be used for time
calculations. Not Relevant

Signature
Unique Id

Signed messages should always have a unique id.
Chain identifiers should always be used. All
parameters from the signature should be used in
signer recovery. EIP-712 should be followed.

Not Relevant

Shadowing State
Variable

State variables should not be shadowed. Passed

Weak Sources of
Randomness

Random values should never be generated from
Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical functions,
a developer should carefully specify
inheritance in the correct order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed only
to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused variables
if this is not justified by design. Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be withdrawn
without proper permissions or be locked on
the contract.

Passed

User Balances
Manipulation

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data
Consistency

Smart contract data should be consistent all
over the data flow. Passed

Flashloan
Attack

When working with exchange rates, they should
be received from a trusted source and not be
vulnerable to short-term rate changes that
can be achieved by using flash loans. Oracles
should be used. Contracts shouldn’t rely on
values that can be changed in the same
transaction.

Passed

Token Supply
Manipulation

Tokens should be minted only according to
rules specified in a whitepaper or any other
documentation provided by the Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not depend
dramatically on the amount of data stored on
the contract. There should not be any cases
when execution fails due to the block Gas
limit.

Passed

www.hacken.io 8

mailto:support@hacken.io
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Style Guide
Violation

Style guides and best practices should be
followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Failed
(Documentation)

Secure Oracles
Usage

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Tests Coverage

The code should be covered with unit tests.
Test coverage should be sufficient, with both
negative and positive cases covered. Usage of
contracts by multiple users should be tested.

Passed

Stable Imports
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io 9

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Stuck Funds

Impact Medium

Likelihood Medium

There is no guarantee that the borrower will engage with the smart
contract. In this case, the lender will not receive any expected
reward and their funds will be stuck for a period of time, specified
in term.maturityDate, possibly many months.

It is not possible for a borrower to deposit rewards for lenders
before they deposit their liquidity. Once the lenders deposit their
cpTokens, it is not possible to withdraw them until the end of term,
even if there’s no reward for them for participating in such a
contract.

Path: ./contracts/TermPool.sol: lock(), topupReward()

Recommendation: Devise a way for ensuring mutual commitment. For
example, allow the parties to withdraw their deposits to match the
other party’s deposit, according to the reward calculation.

Found in: d3bdc28

Status: Mitigated (The behavior is intended, there is no guarantee
that rewards would be provided)

M02. Highly Permissive Role

Impact Medium

Likelihood Medium

Rewards meant for lenders can be withdrawn to borrowers by the
protocol governor at any point. This will strip the liquidity
providers of their reward.

Path: ./contracts/TermPool.sol: withdrawReward()

Recommendation: Restrict withdrawal access if any liquidity is
provided. If there is a need to ensure there are no undistributed
rewards left in the contract after all transactions, any leftovers

www.hacken.io 10

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

can be automatically returned to the borrower after all liquidity is
withdrawn.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

Low

L01. Unused Return Value

Impact Low

Likelihood Low

Return values of the functions are not being validated.

Handling the return values may be helpful to avoid reentrancies and
erroneous function execution results.

Path: ./contracts/TermPool.sol: createTerm(), unlock(), cancelTerm()

Recommendation: Perform return value checks.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

L02. Token Symbols Collision

Impact Low

Likelihood Medium

The algorithm trims 12 bits from a hash to use as part of the token
symbol. Tokens may have the same symbols for different termId values.

For example, if the token symbol is cpAPP-LINK, and termId is 5 or
25, the resulting symbol is tpAPE-326.

Path: ./contracts/TermPool.sol: createTerm()

Recommendation: Consider using 2.5-4 bytes (5-8 characters) to make
the collision probability quite small.

Found in: d3bdc28

Status: Fixed (Revised commit: d0cbc8e)

L03. Unbounded Loop

Impact Medium

Likelihood Low

The listedPoolsCount value is not limited. The function may fail due
to Block Gas Limit being exceeded.

www.hacken.io 11

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

It is impossible to retrieve keys of poolsByCpToken mapping.
Therefore, it is impossible to retrieve needed information in case
many TermPool instances are deployed.

Path: ./contracts/TermPoolFactory.sol: getPools()

Recommendation: Limit the listedPoolsCount value, allow viewing keys
of poolsByCpToken mapping.

Found in: d3bdc28

Status: Mitigated (on behalf of L04)

L04. Inefficient Gas Model

Impact Medium

Likelihood Low

The function returns an array of unlimited length. The transaction
may be rejected due to consuming too much Gas.

Path: ./contracts/TermPoolFactory.sol: getUsedCpTokens()

Recommendation: Provide a function that allows retrieving elements of
the array by index. The behavior could be reached by changing the
_usedCpTokens variable visibility to public.

Found in: 47f4682

Status: Fixed (Revised commit: d0cbc8e)

L05. Token Dust Lock

Impact Low

Likelihood Medium

Some dust tokens may be locked on the contract.

This may be impactful in case the term token has a little number of
decimals and a lot of users participate in the term.

There may be more rewards (up to number of users deposited - 1) than
could be distributed.

Path: ./contracts/TermPool.sol

Each user may lose up to 1 cpToken due to division before
multiplication in case of partial rewards repayment allowed.

The rewardOf function performs division and then the result is
multiplied in the availableRewardOf function. Example: let it be
actual user reward is 1.5 and the reward availability rate is 90%,
according to the current implementation, the user will receive 0
reward due to 1.5 being rounded to 1 and then multiplied by 0.9.

www.hacken.io 12

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Path: ./contracts/TermPool.sol: availableRewardOf(), rewardOf()

Recommendation: Provide an ability to withdraw excessive reward after
the term comes to the Repayed status.

Found in: 47f4682

Status: Mitigated (Tokens with 6+ decimals are lowly affected by the
issue)

Informational

I01. State Variables Default Visibility

The variable visibilities are not specified. Specifying state
variable visibility helps to catch incorrect assumptions about the
scope of the variable accessibility.

Path: ./contracts/TermPool.sol: activeTermsIndex()

Recommendation: Specify variables as public (not available for
EnumerableSet), internal, or private. Explicitly define visibility
for all state variables.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I02. Inconsistent Operation

It is possible to get the remainder of the division using %
operation. The uint8(_i - (_i / 10) * 10)) code looks confusing.

Path: ./contracts/utils/TermUtils.sol: uint2bytes()

Recommendation: Use the modulo operation to get the remainder of the
division.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I03. Redundant Statements

Avoid redundant statements in the code.

Redundant imports are presented.

Paths:

● ./contracts/TermPool.sol: IPermissionlessPoolFactory
● ./contracts/TermPoolFactory.sol: TermPool, IClassicPool

Redundant events are presented.

Path: ./contracts/interfaces/ITermPool.sol: FactoryAddressChanged,
Borrowed

Redundant errors are presented.

www.hacken.io 13

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Path: ./contracts/interfaces/ITermPool.sol: NotInMaturityWindow,
TermSizeIsTooSmall, TermIsNotActive

Recommendation: Eliminate the redundancies.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I04. Check-Effect-Interaction Pattern Violations

Violation of the Check-Effect-Interaction pattern may cause possible
reentrancy attacks. Provide all interactions with other contracts
only after changing all state variables.

The terms variable is increased with data generated based on
terms.length value. After the terms.length value is retrieved, an
external call is performed, and the value may not be actual at the
moment of the array increase.

Path: ./contracts/TermPool.sol: createTerm()

The _usedCpTokens variable is increased with no proof of the
uniqueness of the pushed value due to an external call being
performed and it is not checked that the function was reentered.

Path: ./contracts/TermPoolFactory.sol: createTermPool()

Recommendation: Follow the CEI pattern to eliminate theoretical
reentrancies.

Found in: d3bdc28

Status: Mitigated (The functions are implemented under the
nonReentrant modifier)

I05. Confusing Code

The code performs a set of various actions to get the tpToken symbol.
However, the algorithm is not documented.

Path: ./contracts/TermPool.sol: createTerm()

Recommendation: Add corresponding documentation or declarative
comments to the code.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I06. Override Overusage

The override keyword should be used to override functions declared as
virtual. However, it is excessively used in most functions.

Paths:

● ./contracts/TpToken.sol: burn(), mint()
● ./contracts/TermPoolFactory.sol: createTermPool()

www.hacken.io 14

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

● ./contracts/TermPool.sol: cancelTerm(), withdrawReward(),
topupReward(), unlock(), lock(), allowPartialRepayment()

Recommendation: Remove unnecessary override modifiers.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I07. Misleading Name

The _annualRate function has a misleading name as it calculates the
actual reward amount for a provided period of time.

Path: ./contracts/TermPool.sol: _annualRate()

Recommendation: Provide names in a declarative way.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I08. Code Duplication

The 1e18 value is commonly used throughout the contract. However, the
MULTIPLIER contract is declared.

Path: ./contracts/TermPool.sol

Recommendation: Replace the value with the constant identifier.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I09. Suboptimal Algorithm

The conversion from an integer to bytes is a bit inefficient. The
number of instructions can be reduced.

Path: ./contracts/TermUtils.sol: uint2bytes()

Recommendation: The loop only needs to do this:

_uintAsString[--len] = bytes1(48 + uint8(_i % 10)); _i /= 10;

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I10. Untrimmed Returned Array

It is possible to trim excessive space of memory array using the
simple assembly pattern: assembly { mstore(array, length) }. It may
save some Gas and prevent unexpectedly long outputs.

Path: ./contracts/TermPoolFactory.sol: getPools()

Recommendation: Use the pattern to trim excessive array space.

www.hacken.io 15

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I11. Unused Field

The field minSize is never used.

Path: ./contracts/interfaces/ITermPool.sol: Term

Recommendation: Use or remove it.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I12. Redundant Check

The counter < listedPoolsCount check is useless as it is always true
if poolsByCpToken[_usedCpTokens[i]].isListed and is not reached if
the mentioned check is false.

Path: ./contracts/TermPoolFactory.sol: getPools()

Recommendation: Change the check order.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I13. Burn From Arbitrary Address

The TermPool is allowed to burn user funds on the TpToken contract
without appropriate allowance.

Path: ./contracts/TpToken.sol: burn()

Recommendation: Use the burnFrom function of the ERC20Burnable
extension.

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I14. Unfinalized Code

The code contains TODO comments which imply the code is not
finalized.

Paths:

● ./contracts/TermPool.sol
● ./contracts/TermPoolFactory.sol

Recommendation: Implement the code according to the plan or remove
the comments.

www.hacken.io 16

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: d3bdc28

Status: Fixed (Revised commit: 47f4682)

I15. Redundant Statements

Avoid redundant statements in the code.

Redundant events are presented.

Path: ./contracts/interfaces/ITermPool.sol: RewardDrop

Recommendation: Eliminate the redundancies.

Found in: 47f4682

Status: Fixed (Revised commit: d0cbc8e)

I16. Grammar Errors

Some names are spelled wrong: TermIdNotSetted, isTermIdSetted,
TermStatus.Repayed.

Recommendation: Use correct spelling.

Found in: 47f4682

Status: Fixed (Revised commit: d0cbc8e)

I17. Confusing Revert Message

The function may revert with WrongTermState(expected: Created,
expected: Created) error.

Path: contracts/TermPool.sol: cancelTerm()

Recommendation: Avoid confusing revert messages.

Found in: 47f4682

Status: Fixed (Revised commit: d0cbc8e)

www.hacken.io 17

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io 18

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io 19

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io 20

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/clearpool-finance/term-protocol

Commit d3bdc283b23592b45f42c156e9fed98448bc9e88

Requirements Public requirements are not provided

Contracts File: ./contracts/TermPool.sol
SHA3: a20bac53757243a4ca7be73232c5c4b5648f6e15511f44fa24d2015e5c9215d4

File: ./contracts/TermPoolFactory.sol
SHA3: c34b4f27e07f547162c9a61bd53716839af541f30986bccaf301c9bf50e0460b

File: ./contracts/TpToken.sol
SHA3: 5cb05dec0a747590fd52ca45d167a344a42bec7c183d2b161fc4a6c2607887e8

File: ./contracts/interfaces/IClassicPool.sol
SHA3: 9cdd13e7d0c9d7c2e31ce31c3bc49cee625a44aae016680378007d05a56ad5fb

File: ./contracts/interfaces/IOwnable.sol
SHA3: 43b07e927d69df0a8846563635b48a51570395f8d5745fcdcf545638d8d77af9

File: ./contracts/interfaces/IPermissionlessPoolFactory.sol
SHA3: 26805f76eabd7488a9a32bc4d90b4fde70c52c77df00bd075f5d2c9376437cde

File: ./contracts/interfaces/IPermissionlessPoolMaster.sol
SHA3: 5ec9b2352e8f9a611dbed7208cca838febf7084b25f3c34c6a2152e8a99cc08e

File: ./contracts/interfaces/ITermPool.sol
SHA3: cafbdf0e1b1c3fdfaa038a009bd9ac05424d631d245adb7f2ea8cb2fffab20f0

File: ./contracts/interfaces/ITermPoolFactory.sol
SHA3: 0c514e11fc4d163de32212ff3534a4e562e56c3c5b5ed8a13b0cc2ad8b11bcc5

File: ./contracts/interfaces/ITpToken.sol
SHA3: 80c7d51787ceb707a72558511ad2e7e6e9d5bff27bbe7e925c5b2b7e255e6e24

File: ./contracts/utils/TermUtils.sol
SHA3: 367317e063b9542d6f3d761bcaf06430b13c2afe65617ed606179e06875790ae

www.hacken.io 21

mailto:support@hacken.io
https://github.com/clearpool-finance/term-protocol


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Second review scope

Repository https://github.com/clearpool-finance/term-protocol

Commit 47f46822878932e1a92618be5d7f2d3049a50f87

Requirements Public requirements are not provided

Contracts File: contracts/TermPool.sol
SHA3: f8b0f91c7ced329ba559e9fa2c43555e109ab3d7650d8b721801ef0aea4745c1

File: contracts/TermPoolFactory.sol
SHA3: ddd479c67bfb5d1a1cd42a0aef8978b310da159d2e324e0ded5a50fe77476077

File: contracts/TpToken.sol
SHA3: ada036535a315ec5e60edb47e1dd8aa8f9737efbddab718796004b1ed3fa0f83

File: contracts/interfaces/IClassicPool.sol
SHA3: 9cdd13e7d0c9d7c2e31ce31c3bc49cee625a44aae016680378007d05a56ad5fb

File: contracts/interfaces/IOwnable.sol
SHA3: 43b07e927d69df0a8846563635b48a51570395f8d5745fcdcf545638d8d77af9

File: contracts/interfaces/IPermissionlessPoolFactory.sol
SHA3: 26805f76eabd7488a9a32bc4d90b4fde70c52c77df00bd075f5d2c9376437cde

File: contracts/interfaces/IPermissionlessPoolMaster.sol
SHA3: 5ec9b2352e8f9a611dbed7208cca838febf7084b25f3c34c6a2152e8a99cc08e

File: contracts/interfaces/ITermPool.sol
SHA3: 6a9be87402e0fc513e350de2e961eaf1a54197eb19226ea39b564979f83a31b2

File: contracts/interfaces/ITermPoolFactory.sol
SHA3: 7622cd4abe5325e2cd045e4fd469221130684fae89ee12b2713691079cd19c81

File: contracts/interfaces/ITpToken.sol
SHA3: 5dd03ab78444f4e0b71bb9a576ca94f49c04ee7ea91ca2f8622689b52c0c16f9

File: contracts/utils/TermUtils.sol
SHA3: 58f42c5fc6731c886869e8d8be96c3d2ae69591a8ed1694bd0eec8036be0d671

www.hacken.io 22

mailto:support@hacken.io
https://github.com/clearpool-finance/term-protocol


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Third review scope

Repository https://github.com/clearpool-finance/term-protocol

Commit d0cbc8e4d0b6ee4e581701df85cd643ac8a5030d

Requirements Public requirements are not provided

Contracts File: contracts/TermPool.sol
SHA3: 5fd17bbadbcbb137958053fb10eabb761509c9413c54dfc8bc28f7d3a4459a0f

File: contracts/TermPoolFactory.sol
SHA3: cfebe9af42cd92856bd35169188e314934261889a354096ddd230f301b97317c

File: contracts/TpToken.sol
SHA3: ada036535a315ec5e60edb47e1dd8aa8f9737efbddab718796004b1ed3fa0f83

File: contracts/interfaces/IClassicPool.sol
SHA3: 9cdd13e7d0c9d7c2e31ce31c3bc49cee625a44aae016680378007d05a56ad5fb

File: contracts/interfaces/IOwnable.sol
SHA3: 43b07e927d69df0a8846563635b48a51570395f8d5745fcdcf545638d8d77af9

File: contracts/interfaces/IPermissionlessPoolFactory.sol
SHA3: 26805f76eabd7488a9a32bc4d90b4fde70c52c77df00bd075f5d2c9376437cde

File: contracts/interfaces/IPermissionlessPoolMaster.sol
SHA3: 5ec9b2352e8f9a611dbed7208cca838febf7084b25f3c34c6a2152e8a99cc08e

File: contracts/interfaces/ITermPool.sol
SHA3: df2efd35be2e10765e2bb17d3eae78690b103a87a4c77e86ef0ef3a1cecd29f8

File: contracts/interfaces/ITermPoolFactory.sol
SHA3: e573395df4eaab96ad3b8e1f59f18c891c1baffb4801eaa08f46e10705f91b90

File: contracts/interfaces/ITpToken.sol
SHA3: 5dd03ab78444f4e0b71bb9a576ca94f49c04ee7ea91ca2f8622689b52c0c16f9

File: contracts/utils/TermUtils.sol
SHA3: af79c92b5ba77d178e0147ed0143246a02403dc42d5960ce3af34e13b52dd433

www.hacken.io 23

mailto:support@hacken.io
https://github.com/clearpool-finance/term-protocol

