
Customer: Embr
Date: 26 Jul, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Embr

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OU

Tags Signatures; Proxy

Platform EVM

Language Solidity

Methodology Link

Website https://www.embr.org/

Changelog
1.06.2023 – Initial Review
27.06.2023 - Second Review
26.07.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.embr.org/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
C01. Signed Message Replay Attack; Irrevocable Signed Message 10

High 10
H01. Missing Validation 10

Medium 11
M01. Unchecked Transfer or Approve 11
M02. Copy Of Well Known Contract 11

Low 12
L01. Missing Zero Address Validation 12
L02. State Variables Can Be Declared Immutable 12
L03. Missing Events 12
L04. Docs Mismatch 13
L05. Unused Return Value 13

Informational 13
I01. Style Guide Violation 13
I02. No Messages In Revert 14
I03. Style Guide Violation - Naming Conventions 15
I04. Redundant Import 15

Disclaimers 16
Appendix 1. Severity Definitions 17

Risk Levels 17
Impact Levels 18
Likelihood Levels 18
Informational 18

Appendix 2. Scope 19

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Embr (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The Vault contract is a Solidity smart contract that implements
functionality for token swapping tokens, it forwards calls to 1inch v5: an
Aggregation Router contract. The contract incorporates essential features
from the OpenZeppelin libraries, including access control through Ownable,
token handling using SafeERC20, and signature verification through EIP712.
Notably, the contract owner has the authority to manage the addresses
eligible for signature verification and has the ability to withdraw ERC20
tokens unintentionally sent to the contract.

Privileged roles
● The Vault contract provides functionality for the owner to manage

signatories for signature verification and grants them the capability
to withdraw ERC-20 tokens from the contract. The addition or removal
of signatories is at the discretion of the contract owner, allowing
for flexibility in the signatory management process.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are detailed.
● Technical description is robust.
● NatSpec is sufficient.

Code quality
The total Code Quality score is 10 out of 10.

● No Solidity Style Guide violations.
● No best practice violations.

Security score
As a result of the audit, the code contains 0 issues. The security score is
10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

30 May 2023 5 1 1 1

27 June 2023 2 2 1 0

26 July 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● _data parameter for transactions in the swapUsdcToTargetToken() and
swap() functions is generated via 1inch router API. If this parameter
is supplied through the backend system and is compromised by an
attacker, there exists a potential security vulnerability. The
attacker could manipulate one of the parameters utilized in
generating the _data argument, specifically the destReceiver address,
allowing them to redirect the exchanged tokens to their own address.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Not
Relevant

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not
Relevant

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not
Relevant

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

C01. Signed Message Replay Attack; Irrevocable Signed Message

Impact High

Likelihood High

The protocol's pool and staking contracts, which inherit from
VerifySignatureSystem, are not utilizing EIP712 for signatures and
deadlines. The current implementation of signed messages lacks
mechanisms to prevent replay attacks and does not offer a mechanism
for message expiration.

Without a standard such as EIP712, signed messages can potentially be
reused on other chains (replay attacks).

This can lead to unauthorized execution of smart contract functions,
manipulation of the contract's state and data, or compromise of the
integrity and security of the contract's operations.

The signature revoke issue arises when a contract lacks functionality
that allows revoking a signed message.

This can result in the execution of a signed transaction when it is
not desired by a signer.

Path: ./contracts/Vault.sol : verifySignature()

Recommendation: Implement EIP712 for signatures in the protocol.
EIP712 offers a standard way to structure data and generate
signatures, which would significantly enhance the security of the
contract by protecting it from replay attacks. Consider adding an
expiration timestamp (deadline) to the signed messages to ensure that
they cannot be used indefinitely, further increasing the robustness
of the protocol. Implement a mechanism to prevent re-use of the
already used message hash.

Found in: 2675537

Status: Fixed (Revised commit: f6b8542)

High

H01. Missing Validation

Impact High

Likelihood Medium

Insufficient validation is observed within the
swapUsdcToTargetToken() and swap() functions, wherein the provided
swap arguments (amount, srcToken, and dstToken) lack validation

www.hacken.io
10



against the corresponding arguments derived from the off-chain
creation of the _data argument.

This can lead to unexpected contract behavior.

Path: ./contracts/Vault.sol : swap(), swapUsdcToTargetToken()

Recommendation: Verify if values in _data are the same as amount,
srcToken and dstToken function parameters or create function call
data inside function.

Found in: 2675537

Status: Mitigated(_data parameter is generated via 1inch API and
validation check is done in the backend system.)

Medium

M01. Unchecked Transfer or Approve

Impact Medium

Likelihood Medium

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

The functions do not use the SafeERC20 library for checking the
result of ERC20 token transfer and approvals. Tokens may not follow
the ERC20 standard and return false in case of transfer failure or
not returning any value at all.

This may lead to denial of service vulnerabilities when interacting
with non-standard tokens.

Path: ./contracts/Vault.sol : swap(), swapUsdcToTargetToken()

Recommendation: Use the SafeERC20 library to interact with tokens
safely.

Found in: 2675537

Status: Fixed (Revised commit: d266126)

M02. Copy Of Well Known Contract

Impact Low

Likelihood High

Well-known contracts from projects like EIP712 from OpenZeppelin
should be imported directly from source as the projects are in
development and may update the contracts in future.

The system uses a copy of OpenZeppelin EIP712.

www.hacken.io
11



Path: ./contracts/Vault.sol

Recommendation: Import the contract directly from source, avoid
modifying them.

Found in: f6b8542

Status: Fixed (Revised commit: d266126)

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Medium

Address parameters are used without checking against the possibility
of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/Vault.sol : constructor(), emergencyWithdraw()

Recommendation: Implement zero address checks.

Found in: 2675537

Status: Fixed (Revised commit: f6b8542)

L02. State Variables Can Be Declared Immutable

Impact Low

Likelihood Low

Variable`s USDC_ADDRESS and AGGREGATION_ROUTER_V5 values are set in
the constructor. This variable can be declared immutable.

This will lower the Gas taxes.

Path: ./contracts/Vault.sol : USDC_ADDRESS, AGGREGATION_ROUTER_V5

Recommendation: Declare mentioned variables as immutable.

Found in: 2675537

Status: Fixed (Revised commit: f6b8542)

L03. Missing Events

Impact Low

Likelihood Low

Events for critical state changes should be emitted for tracking
things off-chain.

www.hacken.io
12



Path: ./contracts/Vault.sol : removeSignatory(), addSignatory(),
emergencyWithdraw(), swapUsdcToTargetToken()

Recommendation: Create and emit related events.

Found in: 2675537

Status: Fixed (Revised commit: d266126)

L04. Docs Mismatch

Impact Low

Likelihood Low

The project should be consistent and contain no self contradictions.

According to documentation, the swapUsdcToTargetToken() function is
intended to be exclusively accessible to the admin.

Have admin function which swap USDC token to the target token.

However, in the implementation, there is a missing verification
mechanism to ascertain whether the invoking entity (msg.sender)
possesses the necessary administrative privileges.

This may lead to unexpected contract behavior.

Path: ./contracts/Vault.sol

Recommendation: Fix the mismatch.

Found in: 2675537

Status: Fixed (Revised commit: d266126)

L05. Unused Return Value

Impact Low

Likelihood Low

The return value _returnData is stored during function execution but
never used.

This makes code harder to read and more expensive.

Path: ./contracts/Vault.sol: swapUsdcToTargetToken(), swap()

Recommendation: Remove unused variable.

Found in: 2675537

Status: Fixed (Revised commit: f6b8542)

www.hacken.io
13



Informational

I01. Style Guide Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be ordered and grouped by their visibility as
follows:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions is strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Path: ./contracts/Vault.sol

Recommendation: Reorder the functions to adhere to the official
Solidity Style Guide. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.

Found in: 2675537

Status: Fixed (Revised commit: d266126)

I02. No Messages In Revert

Some revert() statements are missing revert messages.

This makes the code harder to test and debug.

Path: ./contracts/Vault.sol: swapUsdcToTargetToken(), swap()

www.hacken.io
14



Recommendation: Add revert message to the revert() statement in
swapUsdcToTargetToken(). Provide a more detailed message to the
revert() statement in the swap() function.

Found in: 2675537

Status: Fixed (Revised commit: f6b8542)

I03. Style Guide Violation - Naming Conventions

The project should follow the official code style guidelines.

Local and State Variable Names should be named with mixedCase.

Path: ./contracts/Vault.sol : DOMAIN_SEPARATOR

Recommendation: The official Solidity style guidelines should be
followed.

Found in: f6b8542

Status: Fixed (Revised commit: d266126)

I04. Redundant Import

The contract imports OpenZeppelin’s IERC20 but it is already part of
SafeERC20.

Path: ./contracts/Vault.sol

Recommendation: Remove redundant inheritance to save Gas on
deployment and increase the code quality.

Found in: f6b8542

Status: Fixed (Revised commit: d266126)

www.hacken.io
15

https://docs.soliditylang.org/en/v0.8.19/style-guide.html#naming-conventions


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
16



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
17



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
18



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/teamembr/router-contract

Commit 26755371c5e6e2e5602cc5c21a27224f644b3185

Whitepaper https://whitepaper.mattr.one/

Requirements Link

Technical
Requirements Link

Contracts File: contracts/Vault.sol
SHA3: 7ebf279a04aa330093c42042bd24c880f3c31e008fc880c774925e300f43b3fe

Second review scope

Repository https://github.com/teamembr/router-contract

Commit f6b854287cd0035b236db619ca8802f8dcf0de34

Whitepaper https://whitepaper.mattr.one/

Requirements Link

Technical
Requirements Link

Contracts File: contracts/Vault.sol
SHA3: d585d351d1956cdf857763db32a94ba33ab4d8c40108e8ba0aab335b62fa246e

Third review scope

Repository https://github.com/teamembr/router-contract

Commit d266126002ac9c4d39767332706ad692ff45c509

Whitepaper https://whitepaper.mattr.one/

Requirements Link

Technical
Requirements Link

Contracts File: contracts/Vault.sol
SHA3: 733733d87a125d0a36562b112639622875e665f16176e24e3f51f0e1f96c7ff2

www.hacken.io
19

https://github.com/teamembr/router-contract
https://whitepaper.mattr.one/
https://github.com/teamembr/router-contract/blob/main/REQUIREMENTS.md
https://docs.google.com/document/d/1QVAazsispJ_LYIBFku3WhOycFuF9L_g_n7zYxjbf6iI/edit?usp=sharing
https://github.com/teamembr/router-contract
https://whitepaper.mattr.one/
https://github.com/teamembr/router-contract/blob/main/REQUIREMENTS.md
https://docs.google.com/document/d/1QVAazsispJ_LYIBFku3WhOycFuF9L_g_n7zYxjbf6iI/edit?usp=sharing
https://github.com/teamembr/router-contract
https://whitepaper.mattr.one/
https://docs.google.com/document/d/1QVAazsispJ_LYIBFku3WhOycFuF9L_g_n7zYxjbf6iI/edit?usp=sharing
https://docs.google.com/document/d/1QVAazsispJ_LYIBFku3WhOycFuF9L_g_n7zYxjbf6iI/edit?usp=sharing

