
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: GotBit
Date: 15 June, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another
Party. Any subsequent publication of this report shall be without
mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for GotBit

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OÜ

Type Bridge

Platform Solana

Language Rust

Methodology Link

Website gotbit.io

Changelog
18.05.2023 – Initial Review
07.06.2023 – Second Review
15.06.2023 – Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://gotbit.io


Table of Contents
Document 2
Table of Contents 3
Introduction 4
System Overview 4
Executive Summary 5

Documentation Quality 5
Code Quality 5
Test Coverage 5
Security Score 5
Summary 5

Risks 6
Checked Items 7
Findings 9

Critical 9
High 9

H01. Denial of Service 9
Medium 9

M01. Eager Division 9
M02. Immutable Ownership 10
M03. Highly Permissive Role 10
M04. Undocumented Behavior 11

Low 11
L01. Unlimited Fees 11
L02. Leak of Authorization 11

Informational 12
I01. Common Used Value 12
I02. Assert Violation 12
I03. Outdated Package Metadata 12
I04. Floating Language Version 13
I05. Redundant Functionality 13
I06. Redundant Statement 13
I07. Misleading Name 14
I08. Invalid Constraint 14
I09. Inconsistent Code 14
I10. Unformatted Code 14
I11. Used Variables Marked as Unused 15

Disclaimers 16
Appendix 1. Severity Definitions 17

Risk Levels 17
Impact Levels 18
Likelihood Levels 18
Informational 18

Appendix 2. Scope 19
Initial Review Scope 19
Second Review Scope 19
Third Review Scope 19

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by GotBit (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

GotBit Bridge — is a system that allows cross-chain token transfers. The
system contains the smart contract (bridge_solana), which was audited.

The smart contract's main purpose is processing incoming and outcoming
transfer requests. The system allows creation of several bridge instances
for bridging different tokens.

The smart contract has the following entrypoints:
● initialize — creates a new bridge instance.
● set_params — configures a given existing bridge instance.
● set_chain_data — allows whitelisting chains where the bridge

instances are deployed.
● fulfill — execute a transfer on this end of the bridge.
● send — save transaction details to be processed later by the bridge

authority.
● withdraw — transfer all tokens from bridge associated account to a

specified address.
The bridge fully relies on the owner, the authority for processing
outcoming transfer requests (distributing funds to receivers on the chain).
The system fully trusts the owner and does not require any additional
confirmations except for the owner’s will to distribute funds to users.

The system does not allow to cancel transfer requests and does not provide
any guarantees that the transfer request will be fulfilled.

Privileged roles
The bridge instance owner is able to:

● update transfer fees up to 99.99%,
● fulfill or ignore transfer requests,
● withdraw all deposited funds,
● configure bridge destination chains.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation Quality

The total Documentation Quality score is 9 out of 10.
● Functional requirements are provided.
● Architecture in Solana implementation differs from Ethereum one

making the requirements vague.
● The technical description on how to build and test the project is

provided.

Code Quality

The total Code Quality score is 9 out of 10.
● Functions that process common parameters, accept them differently.
● All the code is implemented in one file making navigation harder.
● Development environment is consistent with the requirements.

Test Coverage

Code coverage of the project is about 95%.
● Unit tests are not provided.
● Integration test coverage is a manual approximation.

Security Score

As a result of the audit, the code does not contain security issues. The
security score is 10 out of 10.

All found issues are displayed in the Findings section of the report.

Summary

According to the assessment, the Customer's smart contract has the
following score: 9.5.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

18 May 2023 2 4 1 0

7 June 2023 1 0 0 0

15 June 2023 0 0 0 0

Risks

● Unless the smart contract is deployed with the --final parameter, it
could be upgraded and its functionality may be changed.

● The owner is able to withdraw all the deposited funds to an arbitrary
address.

● The owner is able to set an unlimited fee for transactions.
● There are no guarantees that a transfer request will be fulfilled.
● Anyone is able to initialize a bridge instance. It is strongly

recommended to check if the used bridge instance is initialized by a
trusted account and the account is not compromised.

● The owner cannot be changed. In an emergency situation, the only
option for the owner is to:

1. Withdraw all the funds from the bridge.
2. Abandon the bridge and all the data associated with it (nonces,

bridge parameters, chain data and transaction history details
will be lost).

3. Create a fresh new bridge instance with a new account.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Integer
Overflow and
Underflow

If unchecked math is used, all math operations
should be safe from overflows and underflows. Passed

Unchecked
Errors

If a function returns a Result, it should not be
ignored. Passed

Access
Control &
Authorization

Ownership takeover should not be possible. All
crucial functions should be protected. Users could
not affect data that belongs to other users.

Passed

Assert
Violation

Properly functioning code should never reach a
failing assert statement. Passed

Deprecated
Rust
Functions

Deprecated built-in functions should never be
used. Passed

DoS (Denial
of Service)

Execution of the code should never be blocked by a
specific contract state unless required. Passed

Block values
as a proxy
for time

Block numbers should not be used for time
calculations. Passed

Signature
Reuse

Signed messages that represent an approval of an
action should not be reusable. Not Relevant

Weak Sources
of Randomness

Random values should never be generated from Chain
Attributes or be predictable. Not Relevant

Race
Conditions

Race Conditions and Transactions Order Dependency
should not be possible. Passed

Calls Only to
Trusted
Addresses

All external calls should be performed only to
trusted addresses. Not Relevant

Presence of
Unused
Variables

The code should not contain unused variables if
this is not justified by design. Passed

Assets
Integrity

Funds are protected and cannot be withdrawn
without proper permissions or be locked on the
contract.

Passed

User Balances
Manipulation

Contract owners or any other third party should
not be able to access funds belonging to users. Passed

www.hacken.io
7



Data
Consistency

Smart contract data should be consistent all over
the data flow. Passed

Flashloan
Attack

When working with exchange rates, they should be
received from a trusted source and not be
vulnerable to short-term rate changes that can be
achieved by using flash loans. Oracles should be
used.

Not Relevant

Token Supply
Manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Not Relevant

Gas and Loops
Transaction execution costs should not depend
dramatically on the amount of data stored on the
contract.

Passed

Compiler
Warnings

The code should not force the compiler to throw
warnings. Passed

Requirements
Compliance

The code should be compliant with the requirements
provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and deploy
the code.

Passed

Secure
Oracles Usage

The code should have the ability to pause specific
data feeds that it relies on. This should be done
to protect a contract from compromised oracles.

Not Relevant

Tests
Coverage

The code should be covered with unit tests. Test
coverage should be sufficient, with both negative
and positive cases covered. The usage of contracts
by multiple users should be tested.

Passed

Stable
Imports

The code should not reference draft contracts,
that may be changed in the future. Passed

Unsafe Rust
code

The Rust type system does not check the memory
safety of unsafe Rust code. Thus, if a smart
contract contains any unsafe Rust code, it may
still suffer from memory corruptions such as
buffer overflows, use after frees, uninitialized
memory, etc.

Passed

Missing rent
exemption
checks

All Solana accounts holding an Account, Mint, or
Multisig must contain enough SOL to be considered
rent exempt. Otherwise, the accounts may fail to
load.

Not Relevant

Missing
freeze
authority
checks

When freezing is enabled but the program does not
verify that the freezing account call has been
signed by the appropriate freeze_authority.

Not Relevant

www.hacken.io
8



Findings

Critical

No critical severity issues were found.

High

H01. Denial of Service

Impact Medium

Likelihood High

According to the implementation, each user has a nonce counter (there
could be several transactions with the same nonce). However, during
the fulfillment seeds for empty_account contain nonce and do not
contain the sender.

This may block the ability to process transfers for most users after
the first one is processed and empty_account with seed nonce 0 is
created.

Path: ./anchor/programs/bridge-solana/src/lib.rs: Fulfill

Recommendation: Provide documentation to the protocol, use a pair of
seeds (sender, nonce) for empty_account creation.

Found in: 2f76331

Status: Mitigated (The Ethereum bridge implementation takes the logic
into account)

Medium

M01. Eager Division

Impact Medium

Likelihood Medium

The functions perform division before multiplication during fee
calculation.

This may lead to:

● the calculated fee value being lower than expected,
● if a user requests bridging of lower than 10000 tokens, no fee

would be charged.

Path: ./anchor/programs/bridge-solana/src/lib.rs: fulfill(), send()

Recommendation: Perform division after multiplication or define the
minimal amount for being processed.

www.hacken.io
9



Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

M02. Immutable Ownership

Impact High

Likelihood Low

The contract is designed in a way that ownership cannot be
transferred.

This may lead to the impossibility to update the owner in critical
situations.

Path: ./anchor/programs/bridge-solana/src/lib.rs

Recommendation: Implement an ability to transfer contract ownership.

Found in: 2f76331

Status: Mitigated (It is a design decision described in requirements)

M03. Highly Permissive Role

Impact High

Likelihood Low

The bridge_token_account PDA uses the owner as the authority. That
allows the owner to transfer funds from the account directly, calling
the SPL Token program.

Storing user funds on an account that allows direct transfers
authorized by any third party makes the project consistency
significantly lower.

This may lead to user funds being stolen by any contract which the
owner calls.

Path: ./anchor/programs/bridge-solana/src/lib.rs: Initialize

Recommendation: Use bridge_token_account itself as the authority.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

www.hacken.io
10



M04. Undocumented Behavior

Impact Medium

Likelihood Medium

The exchange_rate_from value highly influences the amount during
funds bridging. However, the behavior is not documented.

The exchange rate is used in both send and fulfill functions, which
makes it hard to understand the bridging process.

This may lead to incorrect amounts being bridged.

Path: ./anchor/programs/bridge-solana/src/lib.rs: send(), fulfill()

Recommendation: Provide corresponding documentation or remove the
misleading functionality.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

Low

L01. Unlimited Fees

Impact Medium

Likelihood Low

Owner is able to set fees without any limitations.

This may lead to users losing all funds during interactions with the
project.

Path: ./anchor/programs/bridge-solana/src/lib.rs: initialize(),
set_params()

Recommendation: Limit the fee percentages to reasonable values.

Found in: 2f76331

Status: Mitigated (It is a design decision described in requirements)

L02. Leak of Authorization

Impact Low

Likelihood Medium

Anyone is able to create a bridge instance on the smart contract.

www.hacken.io
11



This may lead to project reputation risks due to malefactors may use
the smart contract to grind users.

Path: ./anchor/programs/bridge-solana/src/lib.rs: initialize()

Recommendation: Disallow the ability of bridge creation for untrusted
accounts.

Found in: 2f76331

Status: Mitigated (The ability of several bridge instances with
different owners creation is justified by design)

Informational

I01. Common Used Value

Commonly used values should be represented as constants to prevent
typos and make code reusable.

This may lead to new issues appearing during further development.

Path: ./anchor/programs/bridge-solana/src/lib.rs: 10000

Recommendation: Extract the common value into a constant.

Found in: 2f76331

Status: Fixed (Revised commit: b3a3626)

I02. Assert Violation

Assert statements should be used to validate project invariants.

This may lead to the code failing with a panic instead of an error.

Path: ./anchor/programs/bridge-solana/src/lib.rs: initialize(),
set_params(), set_chain_data(), fulfill(), send()

Recommendation: Use require!(..) macro instead.

Found in: 2f76331

Status: Fixed (Revised commit: b3a3626)

I03. Outdated Package Metadata

The description is a short blurb about the package. However, the
current description is Created with Anchor, which does not correctly
describe the project.

This may lead to an incorrect description shown to interested at
crates.io.

Path: ./anchor/programs/bridge-solana/Cargo.toml

www.hacken.io
12

https://crates.io


Recommendation: Make the description declarative.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

I04. Floating Language Version

It is preferable for a production project, especially a smart
contract, to have the programming language version pinned explicitly.
This results in a stable build output, and guards against unexpected
toolchain differences or bugs present in older versions, which could
be used to build the project.

The language version could be pinned in automation/CI scripts, as
well as proclaimed in README or other kinds of developer
documentation. However, in the Rust ecosystem, it can be achieved
more ergonomically via a rust-toolchain.toml descriptor (see
https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file)

Path: ./rust-toolchain.toml

Recommendation: Pin the language version at the project level.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

I05. Redundant Functionality

The _current_chain value is used as a seed for most of the PDAs
throughout the project. However, it is not documented or intuitive of
how it could be various and what it is responsible for.

Path: ./anchor/programs/bridge-solana/src/lib.rs

Recommendation: Provide corresponding documentation or remove the
functionality as redundant.

Found in: 2f76331

Status: Reported

I06. Redundant Statement

The instructions_sysvar account is listed in the Fulfill structure
but is never used.

The associated_token_program account in the structure Initialize is
never used.

Path: ./anchor/programs/bridge-solana/src/lib.rs: Fulfill, Initialize

Recommendation: Remove redundancies.

www.hacken.io
13

https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file


Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

I07. Misleading Name

The empty_account field in the Fullfill struct does not match its
purpose. The existence of this account serves as a boolean flag of
the successful completion of a given transaction to prevent double
execution.

Path: ./anchor/programs/bridge-solana/src/lib.rs: Fulfill

Recommendation: Rename the field to better reflect the purpose (for
example, is_tx_fullfilled).

Found in: 2f76331

Status: Reported

I08. Invalid Constraint

The constraints user_t_a.owner == user.key() && user_t_a.mint ==
_token_mint.key() is not enough to validate that the account is a
token account and the user is its owner.

An arbitrary account could be passed to the function.

Path: ./anchor/programs/bridge-solana/src/lib.rs: Send

Recommendation: Use token::mint = _token_mint && token::authority =
user validation.

Found in: 2f76331

Status: Fixed (Revised commit: b3a3626)

I09. Inconsistent Code

Some functions receive _token_mint/_owner accounts as function
parameters directly, others - in the form of token_mint/owner fields
in context structures.

Path: ./anchor/programs/bridge-solana/src/lib.rs

Recommendation: Pass all accounts into context structures.

Found in: f205b8a

Status: Reported

I10. Unformatted Code

cargo fmt yields changes in the file.

Path: ./anchor/programs/bridge-solana/src/lib.rs

www.hacken.io
14



Recommendation: Format the code using rustfmt or equivalent.

Found in: f205b8a

Status: Fixed (Revised commit: b3a3626)

I11. Used Variables Marked as Unused

The variables _version and _current_chain are used inside functions
but are named as though they are not being used.

Path: ./anchor/programs/bridge-solana/src/lib.rs: fulfill(..),
withdraw(..)

Recommendation: Remove “_” prefix from their names.

Found in: f205b8a

Status: Fixed (Revised commit: b3a3626)

www.hacken.io
15



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
16



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
17



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
18



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial Review Scope

Repository https://github.com/GotBit/bridge

Commit 2f7633185cf94c002480c0700942992551492dfe

Technical
Requirements Link

Functional
Requirements Link

Contracts File: ./anchor/programs/bridge-solana/src/lib.rs
SHA3: a7a45221ce6b786c76dbef722cd31fd3f3e1d67635d22dd8265036309653053b

Second Review Scope

Repository https://github.com/GotBit/bridge

Commit f205b8a2df5f1fdebc5291a1a61f99689d428374

Technical
Requirements Link

Functional
Requirements Link

Contracts File: ./anchor/programs/bridge-solana/src/lib.rs
SHA3: efcd919dabdf35e18f0631890ee1dd6c1c8be5fede9f86f8fc690ea0ce44e647

Third Review Scope

Repository https://github.com/GotBit/bridge

Commit b3a36262ddfd5c28a2da1e4ca175e7010f19babd

Technical
Requirements Link

Functional
Requirements Link

Contracts File: ./anchor/programs/bridge-solana/src/lib.rs
SHA3: 77ff18ada2c27f3d95b0afe3cf654322e474d0404d4983a3a4c7909c3409c0e7

www.hacken.io
19

https://github.com/GotBit/bridge
https://github.com/GotBit/bridge/blob/2f7633185cf94c002480c0700942992551492dfe/anchor/README.md
https://docs.google.com/document/d/1pEEqd8DbL6FH0fBXT86mgBpQboVwzH0l0W_WjMG1FaA
https://github.com/GotBit/bridge
https://github.com/GotBit/bridge/blob/f205b8a2df5f1fdebc5291a1a61f99689d428374/anchor/README.md
https://docs.google.com/document/d/1pEEqd8DbL6FH0fBXT86mgBpQboVwzH0l0W_WjMG1FaA
https://github.com/GotBit/bridge
https://github.com/GotBit/bridge/blob/b3a36262ddfd5c28a2da1e4ca175e7010f19babd/anchor/README.md
https://docs.google.com/document/d/1pEEqd8DbL6FH0fBXT86mgBpQboVwzH0l0W_WjMG1FaA

